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Abstract

Developing countries characterized by increasing electricity demand face a dilemma:
fossil-fuel fired generation is cheap and reliable yet has substantial environmental con-
sequences. Using a difference-in-differences approach comparing locations close to ver-
sus far away from coal-fired power plants in India, we show that increases in coal-fired
capacity result in sizable increases in local air pollution levels and infant mortality. In
contrast, using data on firm-level outcomes, district-level agricultural outcomes, and
district-level “night-lights”, we find that coal-fired capacity increases have relatively
small (but precisely estimated) impacts on local economic benefits. Combined, our
results indicate that the environmental costs of coal-fired power plants vary substan-
tially over space while the economic benefits from these plants are distributed across
the state or region; this suggests that coal-fired power plants should be sited based
primarily on their environmental costs.
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1 Introduction

Despite substantial growth in clean/renewable energy production in the developed world,
most poor countries still rely heavily on coal-fired power plants for electricity.1 While
cheap and reliable electricity is critical for the growth of developing countries (Wolfram,
Shelef and Gertler, 2012; Gertler et al., 2016), coal-fired power plants dramatically impair
local environmental quality, which has been shown to adversely affect health, productivity,
and a range of other outcomes.2 How do the social costs of coal-fired power generation –
born by individuals that live and work near the power plants – compare to the benefits of
electricity, which potentially are shared much more equally across space? Despite a large
literature linking pollution to health, we still know very little about the costs and benefits
of electricity suppliers, especially in the developing world.3

In this paper, we exploit temporal and geographic variation in the expansion of coal-
fired power plants in India together with a newly constructed database of district-level
infant mortality rates, wages, and productivity to derive the first ex-post estimates of the
costs and benefits of coal-fired power plants in the developing world. The centerpiece of
our analysis is a unique panel of district-level infant mortality rates (IMR) broken down by
urban vs rural and gender over the period 1996 -2014 that we assembled from administrative
records from the Indian Vital Statistics Civil Registry. These data allows us to compare
changes in IMR over time across districts that saw new plant construction and districts
that did not. This setting is particularly well-suited to estimate causal impacts because
India significantly expanded its coal-fired capacity in recent years, and because migration
rates in India are unusually low (Munshi and Rosenzweig, 2009), which means endogenous
sorting plays a limited role in our context (Moretti and Neidell, 2011).

We address two main questions. First, we ask: what are the health effects of coal-
fired power plants for people living and working near the plants? In theory, coal-fired
power plants increase ambient pollution levels, which negatively impact health. But coal-
fired power plants also generate benefits for end-use consumers of electricity that could
contribute to better health outcomes. For example, increased electricity supply lowers
price of heating and cooling, which could benefit health outcomes. Also, lower energy

1For example, coal-fired power plants generate 75% of grid-based electricity in India today, and this
number is expect to increase to over 90% by 2030 (Shearer, Fofrich and Davis, 2017).

2See Zivin and Neidell (2013a) and Currie et al. (2014) for reviews on the effects of air pollution on
human health in general.

3We know of only one other paper that estimates the health effects from power plant openings – Clay,
Lewis and Severnini (2015), who estimate impacts in the US. We review the rest of the related literature
below
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costs to firms could feed through to higher wages and lower output prices, which could
both benefit health outcomes. To the extent that these benefits accrue differentially to
people living and working near the power plants, the reduced-form impact captures the
net effect.

Second, we investigate local economic benefits directly. If electricity travels costlessly
throughout the country, then local economic benefits should be minimal.4 However, if
there are transportation costs associated with electricity, either in the form of nominal
costs or transmission loss, then firms or individuals located nearer to the plant may benefit
more from the construction of a new plant compared to people living further away. We are
interested in estimating these local benefits of coal-fired power plants both so that we can
decompose the net health effects into direct effects (via pollution) and indirect effects (via
consumption of electricity, employment, wages, final good prices, etc), and so that we can
compare the local benefits against the local costs.

Our main specification exploits geographic and temporal variation across districts in
coal-fired electricity production capacity. To measure exposure, we compute both total
in-district capacity as the sum of plant-level capacity for all plants in the district, as well
as area-based measures of the share of a district covered by disks of different radii around
all plants (whether the plants are sited in the district or not). We then relate these two
measures either to district-level or firm-level annual outcomes. The identifying assumption
is that outcomes in districts that saw exposure increases would have trended the same
way as districts that did not see exposure increases, absent the realized coal-fired plant
expansion. In support of this assumption, we provide evidence that none of the outcomes
measures we consider were trending differently for high exposure vs low exposure districts
before the construction of plants.

Controlling for district fixed effects, state-year fixed effects, district level temperature
and precipitation and weighting by live births, we find on net that coal-fired power plants
dramatically increase infant mortality rates. While infant mortality rates were falling gen-
erally over the period, we find that an extra GW of installed capacity increased infant
mortality rates (IMR) by 1.9 - 2.4 deaths per 1000 live births, depending on the specifi-
cation. On a base rate of approximately 13 deaths per 1000 live births, this represents an
14-18% increase in IMR. Additionally, we find that these impacts were entirely driven by
urban IMR, but do not see any statistically significant difference between male vs female

4Even if electricity travels near costlessly within states in India, there might be supply-side effects
on health through employment at the plant itself. Though if the only supply-side effect stemmed from
employment at the plant itself, it is unlikely that we would detect any difference at the district level.
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infants. These results are robust to a variety of different specification checks.5

We next test for local economic benefits from coal-fired power plants on a array of out-
come variables. First, we test for local benefits to manufacturing firms using the nationally
representative Annual Survey of Industries (ASI). The ASI contains detailed information
on electricity use, wages, material inputs, gross sales, and product level output prices by
firm. The (relatively) newly available panel version of the ASI allows us to track firms over
time, so we are able to control for firm fixed effects in the estimation. However, the panel
version of the ASI omits district identifiers. In order to exploit the geographic variation
in plant rollout, we designed our own procedure for merging district identifiers from the
cross-section version.6 With our geographically linked panel data, we find that increases
in coal-fired capacity cause manufacturing firms to substitute away from own-generator
production of electricity. This result implies that distance to the plant matters, at least for
manufacturing firms. However, despite the robust result on electricity use, we fail to reject
the null of no impact on wages, employment, labor productivity, total factor productivity,
and product-level output prices. The null result on wages and prices suggest that eco-
nomic benefits do not accrue differentially to worker/consumers living near power plants
via supply-side channels. Additionally, the null result on sales and productivity imply that
manufacturing firms do not benefit directly as a result of having coal-fired plants nearby,
even though they substitute towards grid-based electricity.

Next, we test for benefits to agricultural wages and yields. Electricity is an important
input into the production of home goods and agricultural outputs. Increased electricity
supply could push up labor demand via input complementarities, which would raise wages
and yields. To test for impacts in the agricultural sector, we examine data from the Village
Dynamics in South Asia Meso data set, which is compiled y researchers at the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT 2015). The data set provides
district-level information on annual agricultural production, prices, acreage, and yields, by
crop. We generate aggregate price-weighted district level measures of total yield in each

5In the appendix, we also provide evidence that coal-fired power plants differentially increased satellite
based measures of local air pollution. However, since our input variable potentially affects health through
many different pollutants, estimating the IV impacts of any one pollutant on IMR is invalid (as in Green-
stone and Hanna (2014)). Furthermore, while the impacts on NO2 are precisely estimated, we fail to reject
a null result on PM2.5. The conclusion that coal-fired power plants fail to increase PM2.5 concentrations
seems highly suspect, and suggests that even though satellite-based measures of pollution provide better
coverage than ground monitors, researchers should take caution in relying exclusively on satellite-based
measures to estimate pollution effects.

6Martin, Nataraj and Harrison (2017) was the first to merge district identifyers from the cross section,
though we design our own procedure for this.
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district for the six major crops (rice, wheat, sugarcane, groundnut, sorghum, and maize) as
well as the five major monsoon crops (read: excluding wheat). ICRISAT also provides data
on district level averages of rural wages and employment separately for men and women.
With these data, we fail to reject the null of no impact on either wages or yields, further
supporting the lack of local economic benefits.

Lastly on the benefits, we estimate the local impact on aggregate economic activ-
ity using satellite-based measures of light intensity at nights, “nightlights” (Henderson,
Storeygard and Weil, 2012). We fail to reject the null of no impact.

Taken together, our paper shows that coal-fired power plants generate large local health
costs to people living near the coal plants, while yielding minor (if any) local benefits.
From a policy perspective, our findings highlight that building new coal-fired power plants
sufficiently far away from population centers minimizes environmental costs without signif-
icantly affecting the economic benefits from these plants; a similar logic applies to shutting
down existing coal-fired plants. Importantly, though we do not comprehensively quantify
either the full local environmental costs or economic benefits from coal-fired power plants,
the magnitude of our effect linking coal-fired capacity to infant mortality is strikingly large.
This suggests that policymakers would have to apply a very low value of statistical life to
the total number of deaths due to coal-fired electricity generation in order to justify the
existing level and spatial distribution of coal-fired generation in India (Greenstone and
Jack, 2015).

Our paper contributes to three strands of literature. First our paper contributes to
a small group of papers that estimates the health impacts of power/industrial plants.
Luechinger (2014) and Tanaka (2015) study the impacts of regulations aimed at power
plants in Germany and China, respectively, finding that regulation-induced reductions in
air pollution lower IMR. Cesur, Tekin and Ulker (2017) finds that natural gas infrastructure
expansion lowered IMR in Turkey through fuel-switching away from coal use by households.
Beach and Hanlon (2016) finds that cities in the England in the 1850s with more industrial
coal use had higher IMRs. And Lavaine and Neidell (2017) finds that strikes in France that
shut down oil refineries contributed to improved health outcomes. Relative to these papers,
we study plant openings, rather than regulation or changes in infrastructure or industrial
composition. While the epidemiological effects of coal should be the same (conditional
on disease environment and individual health), the attendant economic benefits are likely
different from plant openings compared to regulatory effects. Thus, the net relationship
between pollution and health in our context could be quite different from previous work.
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Additionally, opening new coal-fired plants generates considerably larger pollution changes
than regulations on the intensive margin, so which might produce larger impacts if the
dose-response function is non-linear. Additionally, the estimates of the elasticity between
health and pollution are mostly based on developed-world studies, which might not be
valid in developing countries (Arceo-Gomez, Hanna and Oliva, n.d.).

Also within this group, there are three closely related papers that do study the impact
of plant openings. First, Currie et al. (2015) studies the health effects from 1600 toxic
plant opening and closings in the US. Compared to Currie et al. (2015), we focus just
on coal-fired power plants (where Currie et al. (2015) includes lots of different industrial
plants), consider different pollutants, and look at a larger radius around the plant such that
treatment could include some local economic benefits as well. Clay, Lewis and Severnini
(2015) studies the benefits and costs of coal plant openings in the U.S. in the mid 20th
century. With low levels of environmental regulation and electrification rates, mid 20th
century U.S. resembles our development setting to some degree. Finally, Gupta and Spears
(2017) also estimate the health impacts of coal-fired power plant openings in India, though
Gupta and Spears (2017) only studies plants that opened between 2005 and 2012 and do
not estimate impacts on infant mortality or firm-level outcomes.

Second, we contribute to the literature on electrification/electricity supply. This liter-
ature tends to focus on impacts of grid expansion (Burlig and Preonas, 2016; Barron and
Torero, 2017; Dinkelman, 2011; Lipscomb, Mobarak and Barham, 2013), which generates
benefits from electrical services for households, though not much costs in terms of pollution
from power plant output.7 To the extent that benefits from electricity services from plant
openings disproportionately affect households nearer to the power plants, our estimates in-
clude these benefits. Also on the supply side, Allcott, Collard-Wexler and O’Connell (2016)
estimates firm-level impacts of supply shocks to hydroelectric power plants in India.

Finally, our paper contributes to the broader literature on environment and health in the
developing world. While this literature is small relative to it’s developed-world counterpart
(Greenstone and Jack, 2015), a handful of studies have estimated the health impacts of air
pollution from sources such as wild fires (Jayachandran, 2009), vehicles (Greenstone and
Hanna, 2014), exporting (Bombardini and Li, 2016), and thermal inversions (Arceo-Gomez,
Hanna and Oliva, n.d.). By relating health outcomes directly to proximity to polluting
activity, we bypass the thorny issue of measuring pollution with sparsely distributed ground
monitors.

7though increased electricity consumption obviously also means increased supply, the attendant effects
of this supply increase is not a focus of this literature
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2 Conceptual Framework

In this section, we present a conceptual framework to explain how the construction of new
coal-fired power plants impacts health and wages. In general, health and wages are jointly
determined, so reduced-form estimates of coal capacity on health and wages fail to identify
the individual channels. However, under certain assumptions or in certain circumstances,
reduced-form estimates can shed light on the magnitudes of local costs and benefits.

A representative worker-consumer supplies 1 unit of labor inelastically and derives
utility from health H, and a composite good X, with

U = U(X,H) (1)

Health depends on the incidence of becoming sick φ and ex-post medical expenses,M . The
incidence to become sick depends on ambient outdoor air pollution Z, which results from
coal-fired electricity plants connected to the grid. Indexing coal-fired electricity plants by
θ, we have

Z = Z(θ) (2)

and

H = H (M,φ(Z(θ))) (3)

where H() is twice continuously differentiable.
Worker wage w is determined in equilibrium by the local demand for labor. Labor

demand in turn is determined in part by supply of electricity as in Allcott, Collard-Wexler
and O’Connell (2016). Wages also depend on work productivity, which depends on H.
Thus, we have

w = w(H, θ) (4)

Worker-consumers solve the problem

Max
X,M

L = U(X,H)− λ [pX ∗X + pM ∗M − w(H, θ)] (5)

This set up is similar to the one from Zivin and Neidell (2013b), though we omitted medical
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expenditures that mitigate the impacts of pollution on φ and add a direct income effect of
coal capacity through the supply side.

First order conditions with respect to X and M implicitly define optimal consumption
plans

X∗ = X∗ (pX , pM , φ(θ), θ) (6)

M∗ = M∗ (pX , pM , φ(θ), θ) (7)

In a context with low migration costs, welfare costs of θ can be estimated by the change
in housing prices. Optimal consumption plans X∗ and M∗ determine the indirect utility
function, which can then be interpreted as the value of living in a given region.

However, in a context with high migration costs, it cannot be assumed that residential
sorting equilibrates the housing market. In this case, there is no convenient sufficient
statistic for welfare. To get a sense of the costs and benefits, we investigate reduced-form
impacts to health and wages. Substituting M∗ into 3 and 4 and totally differentiating, we
have

dH

dθ
=
∂H

∂M

[
∂M

∂φ

∂φ

∂Z

∂Z

∂θ
+
∂M

∂θ

]
+
∂H

∂φ

∂φ

∂Z

∂Z

∂θ
(8)

which can be rearranged as

dH

dθ
=

[
∂H

∂M

∂M

∂φ
+
∂H

∂φ

]
∂φ

∂Z

∂Z

∂θ︸ ︷︷ ︸
Net Pollution Effect

+
∂H

∂M

∂M

∂θ︸ ︷︷ ︸
Supply Side Health Effect

(9)

and

dw

dθ
=

∂w

∂H

dH

dθ︸ ︷︷ ︸
Health Productivity Effect

+
∂w

∂θ︸︷︷︸
Supply Side Income Effect

(10)

The reduced-form health effect dH
dθ

is the sum of a Net Pollution Effect (NPE) and a
Supply Side Health Effect (SSHE). The former results from both increased incidence of
sickness due to coal-fired power plants and from increased ex-post medical expenditures
induced by coal-related illnesses. Hence, the NPE is net of mitigating behaviors (hence
the term “Net”). The SSHE results from increased medical expenditures induced by higher
wages. As long as medical expenses are a normal good, the SSHE is weakly greater than
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zero. The reduced-form wage effect dw
dθ

is the sum of a Health Productivity Effect (HPE)
and a Supply Side Income Effect (SSIE). The former results from lower productivity due to
weaker health status, while the latter represents the pure income effect from higher labor
demand.

The NPE can be thought of as a pure environmental cost of the coal-fired plant. The
SSIE is a pure benefit of the plant. The SSHE is also a benefit of the coal-fired plant in
the sense that it leads to better health, while the HPE is also a cost of the plant, in that
it leads to lower wages.

What can we say about the local costs vs benefits of the coal fired power plant? First,
suppose we only consider the impact on health. In this case, we only identify the net effect
on health. We cannot say how large is the NPE nor the SSHE. The magnitude of dH

dθ

merely reflects the difference between the two.
Now assume we can estimate dH

dθ
and dw

dθ
. If we assume that SSHE=HPE=0, then dH

dθ

and dw
dθ

reduce to just the NPE and the SSIE, and we can quantify the local environmental
costs vs local environmental benefits. Without this assumption, it is not clear what dH

dθ

and dw
dθ

say about local costs vs local benefits.
In the event that we estimate dH

dθ
< 0 and dw

dθ
= 0, we have two possible cases. Either,

∂w
∂H

= ∂w
∂θ

= 0, in which case there are no local economic benefits and dw
dθ

represents just the
NPE. Alternatively, we could have ∂w

∂θ
= − ∂w

∂H
dH
dθ
. I.e., the SSIE exactly offsets the HPE,

yielding no reduced-form effect on wages. In this case, dH
dθ

understates the NPE and the
SSIE is proportional to the elasticity of wages with respect to health

∂w

∂θ
∝ ∂w

∂H
(11)

3 Background and Empirical Strategy

India is an ideal place to study the impact of coal-fired power plants because (i) India
has dramatically increased it’s coal-fired capacity in recent years (ii) regional health data
can be linked to coal plants at high spatial resolution (iii) migration rates are very low, so
endogenous sorting should not be an issue. In this section, we briefly review key features
of the electricity production sector in India, present our data on coal-fired power plants,
and then discuss our empirical strategy.
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3.1 Electricity Production in India

Today, roughly 75% (73%) of India’s (China’s) electricity generation came from coal-fired
sources in 2015 (based on World Bank statistics). Moreover, coal-fired power plants in India
generated roughly 950TWh of electricity in 2016, making India one of the largest consumers
of coal in the world. Unfortunately, India does not currently have cost-effective, reliable
alternatives to coal for generating electricity. For example, unlike the United States, India
does not have plentiful reserves of natural gas; only 5% of India’s electricity generation came
from natural gas fired sources in 2014 (World Bank statistics). Even as of the third quarter
of 2017, Bloomberg estimates that the levelized cost of generating electricity from coal-fired
sources in India is 52.03 USD/MWh compared with 94.66 USD/MWH for natural gas fired
sources. Finally, though the share of renewable resources is rapidly growing, these sources
only provided 5% of India’s electricity generation in 2015 and remain relatively costly to
install.

Relative to coal mined in the United States, Indian coal typically has high ash content
(ranging from 35-50%), high moisture content (4-20%), low sulfur content (0.2-0.7%), and
low calorific values (between 2500-5000 kcal/kg, which is much less than the normal range of
5000 to 8000 kcal/kg) (Mittal, Sharma and Singh, 2012). The low sulfur content results in
a relatively low level of SO2 emissions from burning Indian coal, but the high moisture and
ash contents along with the low heat content makes Indian coal particularly environmental
unfriendly in terms of CO2, PM2.5, and NO2 emissions. CO2 emissions are a global stock
pollutant that contribute to climate change rather than a local pollutant such as PM2.5 that
has negative health impacts (including increased mortality risk). However, most plants in
India have installed electrostatic precipitators (ESPs) designed to mitigate fine particulate
(PM2.5); we do not observe the installation date for these ESPs in our data nor whether a
given power plant even has an ESP.

The location of coal-fired power plants in India has been influenced by regulation begin-
ning with the Third Five Year Plan (1961-66). Currently, new power plants are typically
built further than 25km of the outer periphery of a city, 500m away from the flood plain of
the river system, and based on availability of land, water, and coal (either transportation
infrastructure or a mine). The current guidelines certainly reflect some of the environ-
mental costs of placing coal-fired power plants in cities as well as the relatively low costs
of transmitting electricity long distances. However, older coal-fired power plants still in
operation today were sometimes built in or near cities in order to easily serve electricity
demand in these cities; two particularly salient examples are the recently shut down plant
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in Delhi (Badarpur Thermal Power Station) and the still operating plant located near
Mumbai (Trombay Thermal Power Station).

Finally, India now has a single electricity transmission grid that covers the entire coun-
try; this was not always the case. For example, India connected its southern power grid
with the national grid only in late 2013.8 Understanding the extent to which India’s
transmission grid can effectively move electricity from coal-fired power plants to electricity
demand centers is crucial for identifying whether the economic benefits from these coal-
fired power plants are primarily local or regional.9 In particular, our paper sets out to
answer: are the districts in India with coal-fired power plants compensated via economic
growth for the local environmental costs they face from their plants?

3.2 Empirical Strategy

We exploit geographic and temporal variation in the expansion of coal-fired production
capacity in India in recent years to estimate causal impacts. To measure exposure, we
assembled data on the precise geographic location of each coal-fired power plant in India
(latitude and longitude) as well as opening date (and shut down date, if applicable), and
the date of any additional capacity installations to the plant from administrative records
of the Central Electricity Authority (CEA).

Figure 1 plots the rollout of coal-fired power plants in India by year between 1939 and
2017. The left panel depicts plant openings (left axis) and cumulative plant openings (right
axis) by year. In total, we count 180 coal-fired power plant openings over the period. From
the red line in the left panel (which displays the cumulative distribution function of plant
openings), we see that 50% of plant openings occurred after 2006, so there has clearly been
a large acceleration in the construction of coal-fired power plants. In the right panel of
Figure 1, we plot total installed capacity over time in Gigawatts (GW) and find a similar
acceleration in the level of installed capacity after 2006. By the final year of our sample
(2017), we observe 191 GW of coal-fired capacity, with approximately 50% of this total
having been constructed since 2009.10

8For more information, see this news article titled “India interconnects southern
power grid with 765 kV transmission line”: http://www.elp.com/articles/2014/01/
india-interconnects-southern-power-grid-with-765-kv-transmission-line.html.

9Ryan (2017) quantifies the economic benefits from increased electricity transmission in India inclusive
of the reduction in the exercise of market power due to these increases in transmission.

10Total installed capacity is measured in GW. To convert GW to the maximum amount of possible
electricity generated in a year in Gigawatt-hours (GWh), we multiply by 8760 hours. For the final year in
the sample, this gives us 191× 8760

1000 = 1670.5 TWh of potential electricity generated in a year.
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Figure 1: Roll-out of Coal-Fired Power Plants over Time
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Notes: On the left, left axis counts number of plant openings per year. Right axis plots cumulative share
of plants opened by year (red line).

Figure 2 presents the location of online plants for 4 years in the sample. Here, we see
the geographic variation in the rollout. In Figure 2, we can see that coal-fired plants are
distributed throughout India, though there are some clusters of plants in the North and
Northeast. It is also clear from Figure 2 that plants are often built near district boundaries.
Given that air pollution can travel fairly large distances (up to 100km), proximity to plants
outside the district borders should also be taken into account in computing exposure.

The main results in the paper relate variation in coal-fired electricity capacity to district-
level outcome metrics. At the district-level, we compute two measures of exposure. First,
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Figure 2: Map of Coal-Fired Power Plants

 

Notes: Sub-figures show the location of active plants in the year indicated. Colors correspond to the year
of plant opening.
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we sum up total installed capacity in each district in each year

DistCapd,t =
P∑
p=1

PlantCapp,t (12)

where d indexes districts, p plants, and t years. Second, to take account of air pollution
from neighboring districts, we compute the share of each district that intersects with circles
of different radius around each plants. That is, we construct a weighted average of installed
capacity where the weights correspond to the share of each district that intersects a circle
of radius k around each plant shradius=kp,d :

Exposureradius=kd,t =
P∑
p=1

PlantCapp,t ∗ shradius=kp,d (13)

For small radii, only plants within the district borders will receive positive weights. How-
ever, when we increase the radius, the installed capacity from neighboring plants will enter
into the sum in (13).

With these exposure measures, we estimate district-level impacts in a difference-in-
difference-like framework

Yd,t = αd + θs,t + β ∗ Coald,t +Xd,tγ + εd,t (14)

where Yd,t represents a district level outcome , Coald,t is either DistCapd,t or area-weighted
exposure Exposureradius=kd,t , αd is a district fixed effect, Xd,t are time-varying district-level
controls and εd,t an idiosyncratic error term. Baseline specifications also control for flexible
state-year effects θs,t, which absorb any time-varying trends at the state-level.

The identifying assumption in equation (14) is that outcomes for districts that saw
increased exposure to coal-fired power plants would have trended in a parallel fashion to
districts that did not see increases, absent the observed rollout. While this assumption
is inherently untestable, we can test for whether outcomes were trending together in the
years prior to capacity expansions. Following SS, we estimate a flexible “event study”
specification that allows for multiple “events” per district. Let j indicate an “event,” which
corresponds to an increase in district-level coal-fired capacity. We estimate:

Yd,t = αd + θs,t +

Jd∑
j

L∑
l=−L

βl ∗ 1(t− ejd = l) +Xd,tγ + εd,t (15)
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where t index years in calendar time, l indexes event time, and ejd is the year of event j
occurring in district d. The βl’s capture the impact of an event on outcome Y l years
in the past or future. If the timing of coal plant openings are exogenous to unobserved
determinants of outcome Y , we should have βl = 0 for all l ≤ 0.

For each outcome variable, we will present estimates of (14) and (15). In the case of
(14), we estimate taking by turns DistCapd,t and Exposureradius=kd,t , for different radii k.

4 Local Health Costs of Coal-fired Power Plants

This section estimates the net cost to infant mortality of coal-fired capacity. We first
discuss our data for district-level infant mortality rates from 1996-2014, and then present
our empirical results.

4.1 IMR Data

We obtain data on infant mortality and number of live births for 1996-2014 recorded in the
Civil Registration System (CRS) and aggregated at the district level as part of the annual
report on the Vital Statistics of India. Each state is responsible for reporting district level
measures on live births, infant deaths and total deaths disaggregated by urban and rural
localities and by gender. While the estimates from CRS are typically lower than other
estimates of infant mortality, the district level variation is similar to other data sources
such as the Sample Registration System (Greenstone and Hanna, 2014).

Table 1 presents descriptive statistics on infant deaths per 1000 live births. Columns
1-4 (5-8) present statistics for districts that never (ever) site a coal-fired power plant. An
observation corresponds to a district-year.

Figure 3 plots average IMR over time. The left panel plots the overall average as well as
the average for rural vs urban locations, while the right panel breaks out rural and urban
each by gender. We can see that average IMR has been falling in India, both overall and
within each sub-population.

4.2 IMR Results

Tables 2 and 3 presents our main findings with respect to infant health. In Table 2, Panels
A and B estimate equation (14) taking DistCapd,t and Exposureradius=100

d,t , respectively as
the measure of exposure. Table 3 takes Exposureradius=kd,t as exposure for different k. In all
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Table 1: Infant Death per 1000 Live Births

No Coal Plants Coal Plants
567 Districts 108 Districts

(1) (2) (3) (4) (5) (6) (7) (8)
mean min max obs mean min max obs

Total 13.6 0.01 800 6489 11.1 0.01 99 1521

Urban 15.6 0.02 2406 5999 12.4 0.01 204 1489
Male 13.7 0.06 983 3811 12.3 0.02 101 902
Female 11.7 0.05 855 3825 10.1 0.06 98 907

Rural 14.6 0.01 597 6100 10.1 0.04 92 1426
Male 12.6 0.03 250 3781 7.9 0.05 120 844
Female 12.3 0.04 142 3786 8.0 0.05 106 849

Notes: Observation corresponds to a district-year. Columns 1-4 (5-8) present
statistics for districts that never (ever) site a coal-fired power plant.

cases, the exposure measure has been transformed so that a unit increase corresponds to
1 standard deviation (1σ). Finally, Panel C presents estimates of equation (15), where we
group event time into 5 periods. Event time ∈ [−4,−2] indicates years that are between
2 and 4 years before the capacity increase. Event time ∈ [−1, 1] indicates years that are
within 1 year of the capacity increase on either side of the construction date. Event time
∈ [2, 4] and ∈ [5,∞] indicate years that are 2 to 4 years and 5 to infinity years after the
event, respectively. The excluded category is Event time ∈ [−∞,−5], so all coefficients
in Panel C are relative to the years 5 or more before the event. All regressions control
for district and state-yr fixed effects, as well as district-level temperature, precipitation,
and number of live births. All regressions are weighted by the number of live births and
standard errors are clustered at the district level.

Column 1-3 in Tables 2 and 3 present the results for the full sample. We have 5841
district-years observations across 457 districts for which we have non-missing values for
total, urban, and rural IMR. In Panel A, we find that total and urban IMR increase with
in-district capacity, though the point estimates are not statistically distinguishable from
zero. Point estimates in Panel B of Table 2 and throughout Table 3 , where we account
for proximity to coal-fired plants beyond the district borders are very similar. In Panel C
of Table 2, we find fail that trends in IMR are related to coal-fired capacity prior to the
capacity increase (Event time ∈ [−4,−2]), while IMR sometimes increases after the event.

The weak statistical evidence of causal impacts in column 1-3 are perhaps surprising,
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Figure 3: IMR over time
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given the amount of toxic pollution generated by burning coal. However, in columns 4-6,
we find that the weak correlations are driven entirely by two outlier districts that built
enormous coal plants at the end of the sample. When we throw out these two district from
the estimation, we find large and statistically significant impacts on total IMR and Urban
IMR. In panel A of Table 2, we find that a 1σ increase in coal-fired capacity exposure
leads to 1.27 more infant deaths per 1000 live births overall, and 2.05 more deaths per
1000 in urban areas. These estimates are statistically significant at the 5% and 1% levels,
respectively. In column 6, we find no corresponding impact on rural IMR. We find the
same qualitative result in Table 3, though the point estimates are attenuated somewhat.
Finally, we find no evidence of differential trends prior to capacity increases (panel C),
which bolsters support for the parallel trends assumption. These results are robust to the
inclusion of year fixed effects instead of state-year effects, as well as omitting analytical
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weights. We can also vary the definition of Exposureradius=kd,t to reflect the share of total
area of the district covered, and results are qualitatively unchanged.

In terms of magnitudes, the point estimates in panel A imply that a 1GW increase
in coal-fired capacity increases total IMR 1.27*.52 =2.43 deaths, with a 95% confidence
interval of (0.47, 4.40). On a base rate of 13.15, this level increase implies an 18.5%
increase in IMR overall, with a 95% confidence interval of (3.6%, 33.4%). Looking just
at Urban IMR, the point estimate in panel A implies a 1GW increase in IMR causes
2.05*0.52=3.94 more deaths (95% confidence interval of (1.15, 6.73)), or an increase of
26.4% (95% confidence interval of (7.7%, 45.1%)). The annual district-level costs of this
average increase in overall infant mortality rates, using a value of statistical life of 1.2
million dollars (USD 2000) (Viscusi and Aldy, 2003), is roughly 93 million dollars (USD
2000).11

Next, in Tables 4 and 5, we present results separately by gender. IMR rates by gender
are available only for the more recent years (2002 - 2014). In columns 1 and 4 of Tables
4 and 5, we present results for the full sample aggregated to urban (column 1) and rural
(column 5). Sample in columns 1 and 5 are slightly larger than in Tables 2 and 3 because
we do not impose here that all three aggregate measures (total, urban, and rural) have
non-missing values. Columns 2 and 6 restrict to observations for which regional totals as
well as male and female breakdowns are all non-missing. Hence, the estimates in columns
2-4 and 6-8 derive from the same set of observations. We have again excluded the two
outlier districts. Specifications are identical to Tables 2 and 3.

In Tables 2 and 3, we find again that overall impact are driven entirely by urban areas.
Neither the overall levels nor the gender breakdowns yield results that are statistically
distinguishable form zero for the rural populations. In columns 5-8, we find that impacts
on urban IMR are large and statistically significant at conventional levels. Additionally,
we find that the impact on male IMR is stronger than the impacts on female IMR.

There are two possible explanations for why coal impacts are higher for urban than
for rural IMR. First, it could be that coal plants are systematically placed closer to urban
areas. Hence, urban parts of districts experience higher exposure to coal plants. Second,
even if exposure were equal across urban vs rural areas, there could be non-linearities in
the does-response function. Urban areas tend to have higher pollution rates. If IMR is
particularly sensitive to pollution at higher levels, then we would expect to see the type of
heterogeneity in Tables 2 and 3.

11The full calculation is 2.43 deaths per 1000 * 33,094 live births * 1.2 million USD = 92.93 million USD
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Table 2: IMR Results

Full Sample Restricted Sample

Total Urban Rural Total Urban Rural
(1) (2) (3) (4) (5) (6)

Panel A
Cap (1σ) 0.54 0.88 0.05 1.27∗∗ 2.05∗∗∗ 0.04

(0.43) (0.60) (0.40) (0.52) (0.74) (0.88)

R squared 0.78 0.58 0.75 0.78 0.59 0.75

Panel B
ACap (1σ) 0.53 0.90 0.09 1.00∗ 1.69∗∗ 0.12

(0.39) (0.57) (0.38) (0.52) (0.78) (0.67)

R squared 0.78 0.58 0.75 0.78 0.59 0.75

Panel C
Event time ∈ [−4,−2] 0.39 0.54 0.06 0.32 0.52 -0.03

(0.36) (0.59) (0.42) (0.37) (0.63) (0.43)

Event time ∈ [−1, 1] 0.61 2.01∗∗∗ -0.48 0.70 2.28∗∗∗ -0.60
(0.53) (0.71) (0.54) (0.58) (0.74) (0.59)

Event time ∈ [2, 4] 0.18 0.88 -0.42 0.19 0.98 -0.53
(0.54) (0.94) (0.46) (0.58) (0.99) (0.51)

Event time ∈ [5,∞] 1.30∗∗ 1.63 0.22 1.34∗ 1.79∗ 0.10
(0.65) (0.99) (0.68) (0.68) (1.03) (0.73)

R squared 0.78 0.59 0.75 0.78 0.59 0.75
mdv 10.6 12.2 9.6 10.6 12.2 9.7
# Obs 5841 5841 5841 5817 5817 5817
# Districts 457 457 457 455 455 455
Notes: All regressions include district and state-yr fixed effects, as well as district-level
controls for temperature, precipitation, and number of live births. All regressions are
weighted by the number of live births and standard errors are clustered at the district
level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

To investigate the mechanism behind the heterogeneity in urban vs rural, we estimate
heterogeneity in density of population around the coal plant sites. If it is true that coal
plants are placed closer to urban areas, then we should see higher population density closer
to the plants. We first compute average population density in concentric circles around
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Table 3: IMR Results ACap

Full Sample Restricted Sample

Total Urban Rural Total Urban Rural
(1) (2) (3) (4) (5) (6)

Panel A : Radius 1
ACap (1σ) 0.52 0.85 0.05 1.25∗∗ 2.00∗∗∗ 0.03

(0.42) (0.59) (0.40) (0.52) (0.74) (0.88)

R squared 0.78 0.58 0.75 0.78 0.59 0.75

Panel B : Radius 10
ACap (1σ) 0.69 0.98 0.13 1.33∗∗∗ 1.89∗∗ 0.18

(0.47) (0.63) (0.49) (0.48) (0.74) (0.89)

R squared 0.78 0.58 0.75 0.78 0.59 0.75

Panel C : Radius 50
ACap (1σ) 0.74 0.99 0.09 1.27∗∗ 1.73∗∗ 0.11

(0.50) (0.67) (0.59) (0.55) (0.87) (0.95)

R squared 0.78 0.58 0.75 0.78 0.59 0.75

Panel D : Radius 100
ACap (1σ) 0.53 0.90 0.09 1.00∗ 1.69∗∗ 0.12

(0.39) (0.57) (0.38) (0.52) (0.78) (0.67)

R squared 0.78 0.58 0.75 0.78 0.59 0.75
mdv 10.6 12.2 9.6 10.6 12.2 9.7
# Obs 5841 5841 5841 5817 5817 5817
# Districts 457 457 457 455 455 455
Notes: All regressions include district and state-yr fixed effects, as well as district-level
controls for temperature, precipitation, and number of live births. All regressions are
weighted by the number of live births and standard errors are clustered at the district
level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

each of our 180 power plants for radius of 1km, 5km, 10km, 20km, 100km, 200k, and 500km
from census data for years 2000, 2005, 2010, and 2015. We then estimate:

log(Dp,t,b) = αp,t +
B∑
l=1

βl ∗ 1(b = l) + εp,t,b (16)

where log(Dp,t,b) is the log of population density in year t around plant p in a buffer of radius
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Table 4: IMR Results Urban vs Rural Breakdowns

Rural Urban

Total Total Male Female Total Total Male Female
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
Cap (1σ) 0.07 0.58 0.62 0.52 2.26∗∗∗ 1.81∗∗ 2.11∗∗ 1.56∗

(0.85) (0.89) (0.92) (0.87) (0.77) (0.90) (1.03) (0.82)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

Panel B
ACap (1σ) 0.04 0.25 0.22 0.27 1.94∗∗ 1.20 1.29 1.08

(0.67) (0.70) (0.73) (0.68) (0.85) (0.82) (0.90) (0.80)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

Panel C
Event time ∈ [−4,−2] -0.03 0.25 0.20 0.30 0.54 0.97 0.43 1.57∗∗

(0.41) (0.39) (0.42) (0.41) (0.60) (0.62) (0.73) (0.69)

Event time ∈ [−1, 1] -0.50 0.24 0.29 0.18 2.50∗∗∗ 2.08∗∗∗ 2.20∗∗ 2.01∗∗∗

(0.56) (0.54) (0.56) (0.56) (0.81) (0.78) (0.88) (0.76)

Event time ∈ [2, 4] -0.46 -0.13 -0.04 -0.23 1.74 1.47 1.97 0.97
(0.49) (0.54) (0.56) (0.58) (1.10) (1.21) (1.52) (1.01)

Event time ∈ [5,∞] 0.20 0.09 0.20 -0.04 2.24∗∗ 2.06 2.02 2.26
(0.73) (0.91) (0.94) (0.91) (1.06) (1.76) (2.09) (1.52)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70
mdv 9.6 8.2 8.4 8.0 12.5 11.6 12.7 10.4
# Obs 6192 3280 3280 3280 6203 3280 3280 3280
# Districts 476 358 358 358 471 358 358 358

Notes: All regressions include district and state-yr fixed effects, as well as district-level controls for
temperature, precipitation, and number of live births. All regressions are weighted by the number of live
births and standard errors are clustered at the district level. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

b, αp,t is a plant year fixed effect. The coefficients of interest are the βl’s, which measure the
average population density by distance from the plant, controlling for plant-year effects.

Estimates of equation 16 are presented in Figure 4. We omit the dummy variable for
buffer of 100km, so all point estimates are relative to a distance of 100km. In Figure 16,
we find that population density is nonlinear in distance from the plant. The density within
5km of the plant is no greater than the density between 50 and 100 kms. However, the area
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Table 5: IMR Results Urban vs Rural Breakdowns ACAP

Rural Urban

Total Total Male Female Total Total Male Female
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A : Radius 1
ACap (1σ) 0.02 0.58 0.62 0.52 2.22∗∗∗ 1.81∗∗ 2.11∗∗ 1.56∗

(0.86) (0.89) (0.92) (0.87) (0.77) (0.90) (1.03) (0.82)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

Panel B : Radius 10
ACap (1σ) -0.03 0.69 0.76 0.61 2.13∗∗∗ 1.92∗∗ 2.22∗∗ 1.66∗

(0.92) (0.91) (0.94) (0.90) (0.78) (0.98) (1.09) (0.89)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

Panel C : Radius 50
ACap (1σ) -0.02 0.45 0.42 0.47 1.97∗∗ 1.49 1.55 1.46

(0.95) (1.03) (1.07) (0.99) (0.90) (1.09) (1.21) (1.01)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

Panel D : Radius 100
ACap (1σ) 0.04 0.25 0.22 0.27 1.94∗∗ 1.20 1.29 1.08

(0.67) (0.70) (0.73) (0.68) (0.85) (0.82) (0.90) (0.80)

R squared 0.70 0.81 0.79 0.80 0.45 0.74 0.74 0.70

mdv 9.6 8.2 8.4 8.0 12.5 11.6 12.7 10.4
# Obs 6192 3280 3280 3280 6203 3280 3280 3280
# Districts 476 358 358 358 471 358 358 358

Notes: All regressions include district and state-yr fixed effects, as well as district-level controls for
temperature, precipitation, and number of live births. All regressions are weighted by the number of
live births and standard errors are clustered at the district level. Asterisks indicate statistical significance
at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

between 5 and 10km and 10 and 20km are about 35% more dense than the area between
50km and 100km. The results indicate that coal plants tend to be placed between 5-20km
from high density areas, i.e. urban areas, which indicates that endogenous placement plays
a role in the heterogeneous IMR effects.
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Figure 4: Plant Placement
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5 The (Lack of) Local Benefits of Coal Capacity

This section provides statistical evidence arguing that the vast majority of the economic
benefits from a coal-fired power plant are dispersed equally to people at the state-level
or national-level; there are little additional economic benefits to having a coal-fired power
plant located either nearby or within your district relative to being in the same state as
the power plant. To make this claim, we focus on the impact of district-level coal-fired
capacity on tow sectors of the economy – manufacturing and agriculture, and one summary
variable of economic activity – “night-lights” (the average luminosity of different areas at
night).

5.1 The Effect of Coal-Fired Capacity on Manufacturing Firms

In this section, we test for differential impacts of increases in generating capacity on manu-
facturing firm production outcomes. Coal-fired plant construction shifts out the aggregate
supply of electricity, which lowers the price for manufacturing firms. If electricity flows
across regions without cost, then the price effects will be shared equally across all firms,
regardless of where the plants are built. However, if there are nontrivial transportation
costs (for example, transmission constraints or line losses) associated with electricity sup-
ply, then new supply should disproportionately benefit manufacturing firms nearer to the
new plant. To estimate local economic benefits, we merge our two measures of district
capacity to annual firm-level outcomes in the Indian Annual Survey of Industries (ASI).

Allcott, Collard-Wexler and O’Connell (2016) show that temporary electricity short-
ages (“blackouts”) are a significant problem for manufacturing firms in India. Allcott,
Collard-Wexler and O’Connell (2016) also show that blackouts lead to lower material in-
put expenditures and lower sales. In a theoretical section, Allcott, Collard-Wexler and
O’Connell (2016) also show that blackouts can lead to lower labor demand as well as lower
productivity. The construction of coal-fired power plants should alleviate pressure on the
grid and lower the incidence of blackout, which should trigger all the mechanisms indicated
by Allcott, Collard-Wexler and O’Connell (2016). In particular, if local coal-fired capacity
construction leads to higher wages or more employment, then workers living near the plants
might experience the supply-side health benefits discussed in the conceptual framework.
The reduced form impacts in section 4 indicate that however big these supply-side effects
are, the direct effect from pollution is larger, since the reduce form impact on health is
negative. Still, we can assess the supply-side effects directly by testing for impact on labor.
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5.1.1 ASI Data

The ASI is a plant-level survey of formal manufacturing units conducted every year in
India, which we aggregate up to the firm level. All registered plants with more than
10 workers are included in the sampling frame. Large firms are surveyed every year,
while smaller firms are surveyed randomly only in some years. Sampling is conducted to
achieve representation at the state-by-industry level, but researchers have generally taken
the survey to be approximately representative at the district level.

The ASI reports annual information on a range of outcomes, including outputs in
quantities and values, labor inputs broken down by worker type, material inputs, capital
stocks, and detailed energy use. In terms of energy, we observe nominal price reported for
electricity purchased from the grid, quantity of electricity purchased from the grid (from
which we compute nominal unit values of electricity purchased from the grid), as well as
quantity of electricity consumed from on-site production. Nominal outputs and inputs are
deflated using industry-specific price deflators, and labor, capital, and electricity prices are
deflated by country-level inflation rates.

Descriptive statistics are reported in Table 13. In total, we observe 107,782 firms
operating between the years 1999 and 2010, yielding 254,186 firm-year observations.12 The
average firm generates 141 million Rs (in year 2000 Rs) in sales per year, or roughly 3
million USD. The average firms consumes 0.918 GWh of electricity each year in total, with
0.770 GWh coming from the grid. The rest is generated on site.13 Firms report average
prices of 4.672 rs/KWH over the period, with implied price per unit falling slightly below
this level. Average man-days worked and effective wage (inclusive of benefits) are 27,000
and 196,000 RS/Day, respectively. Converting to annual levels, these figures imply about
85 full-time workers (working 6-day weeks), each working for an annual salary of 61,000
Rs, or about 1,350 USD.

From these raw data, we compute total revenue factor productivity (TRFP) following
Allcott, Collard-Wexler and O’Connell (2016). We assume deflated firm-level revenue is
the result of Cobb-Douglas production function in deflated expenditures on materials and
labor and deflated value of capital stock. With this assumption, the factor elasticities for
variable inputs labor and materials are equal to the input factor share in total revenue.

12Our algorithm for merging in district identifiers results in dropping the year 1998.
13Summing over all firms, we compute total electricity consumption of about 40 TWh per year. Over

the same period, we calculate that average coal-fired capacity equaled 69 GW, or 69× 8760
1000 = 604 TWh of

production. Thus, the firms in the sample only account for around 7% of the total electricity production
from coal-fired plants.
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Table 6: Descriptive Statistics ASI

Mean Std. Dev. # of Obs.

Panel A : Firm level

Electricity Consumption

Total Electricity Consumption (GWH) 0.918 2.565 223832
Electricity Purchased from Grid (GWH) 0.770 2.088 223834
Electricity Generated on site (GWH) 0.067 0.306 229028
Share of Electricity Generated on site (0-1) 0.060 0.141 224036
real electricity price implied (val/qty) rs/KWH 4.672 0.902 221642
real electricity price stated (val/qty) rs/KWH 4.244 1.392 209078

Inputs

Man-Days Worked (millions) 0.027 0.044 243074
Effective Wage (1000 Rs per day) 0.196 0.134 239074
Capital Share in Total Sales 0.507 0.929 238808
Labor Share in Total Sales 0.122 0.138 244437
Material Share in Total Sales 0.676 0.207 219857
Energy Share in Total Sales 0.058 0.088 222029

Output and Productivity

Real Gross Sales (billions Rs) 0.141 0.336 243775
Log TRFP – GMM 1.201 0.504 206210

Panel B : Firm-product level

Sales (Bill Rs) 0.069 0.187 348909
Qty (various units) 0.413 1.654 348909
Unit Value (Bill Rs/unit) 0.026 0.081 348908

Notes: Top and bottom 1% of dependent-variable values have been excluded.

Capital stocks are assumed to adjust with a 1-year lag. Thus, following the procedure
from Allcott, Collard-Wexler and O’Connell (2016), we compute production coefficients
for each industry-year assuming Cobb-Douglas technology, and then subtract fitted values
of labor and material from deflated gross sales. Next, we estimate the capital elasticity by
regressing this residual on capital share, instrumenting the capital share with the lag of its
value. We then take the difference between log sales and fitted sales as productivity (Log
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TRFP – GMM). Descriptive statistics for Log TRFP – GMM are reported in Table 13.
Finally, in the ASI, firms also list quantity and value of sales at the product-line level

along with units of quantity. Products are classified according to the ASI commodity
classification (ASICC) code. Firms list up to 10 individual product lines along with an
“other” category. With these product-level data, we can estimate impacts on output prices
by computing unit values, as long as units are constant over time within firm-product line.
Descriptive statistics at the firm-product level are reported in panel B of Table 13. The
average firm-product line generates 69 million Rs in revenue.

In order to relate outcomes in the ASI to our district-level exposure measures, we need
to associate each firm in the ASI to a specific district. The panel version of the ASI allows
us to track firms over time, but the panel version omits the district identifiers. District
codes are included in the cross-section version of the ASI (without firm-level identifiers).
We follow Martin, Nataraj and Harrison (2017) and merge district codes from the cross-
sectional data in order to exploit the spatial variation in coal-fired plant rollout.14

We then estimate firm-and firm-product versions of (14) and (15)

Yi,d,t = αi + θs,t + β ∗ Coald,t +Xd,tγ + εi,d,t (17)

and

Yi,d,t = αi + θs,t +

Jd∑
j

L∑
l=−L

βl ∗ 1(t− ejd = l) +Xd,tγ + εi,d,t (18)

where i indexes either firm or firm-product. At the firm-product level, we also include
product category-by-year fixed effects to absorb product-specific time trends.

5.1.2 ASI Results

We begin by estimating impacts of local coal-fired electricity capacity on the electricity
consumption of firms in the ASI. Tables 7 and 8 report results for total electricity con-
sumption (GWH), electricity purchased from the grid (GWH), unit value of electricity
(rs/KWH), and indicator for generating any electricity on site (0,1), and the quantity of
electricity generated on site (GWH). All variables except the own generation indicator (col-
umn 4) are logged and the top and bottom 1% of values have been excluded. As before,
coal exposure is converted so that a 1-unit increase corresponds to 1 standard deviation.

14We develop our own algorithm (departing from Martin, Nataraj and Harrison (2017)) to merge district
identifiers from the cross-section files that minimizes information loss.
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Table 7: ASI Electricity

etotal epurchase unit value 1(owngen) eowngen
(1) (2) (3) (4) (5)

Panel A : In-District
Cap (1σ) 0.014 0.036 0.017∗∗∗ -0.022∗∗∗ -0.138∗∗

(0.021) (0.023) (0.005) (0.007) (0.070)

R squared 0.93 0.93 0.82 0.64 0.79

Panel B: Area-Weighted
ACap (1σ) 0.039∗∗ 0.049∗∗ 0.010∗ -0.011 -0.131

(0.017) (0.021) (0.006) (0.009) (0.102)

R squared 0.93 0.93 0.82 0.64 0.79

Panel C: Event Study
ET ∈ [−4,−2] -0.003 0.007 0.004 0.015 -0.021

(0.020) (0.027) (0.006) (0.014) (0.045)

ET ∈ [−1, 1] -0.029 0.007 0.026∗∗∗ -0.006 -0.137∗∗
(0.026) (0.026) (0.007) (0.015) (0.061)

ET ∈ [2, 4] -0.001 0.005 0.008 -0.017 -0.029
(0.025) (0.030) (0.006) (0.013) (0.054)

ET ∈ [5,∞] -0.053 -0.011 0.015∗∗ -0.033∗ -0.300∗
(0.052) (0.056) (0.007) (0.019) (0.175)

R squared 0.93 0.93 0.82 0.64 0.79
mdv -1.8 -1.9 1.9 0.4 -2.9
# Obs 152693 152564 152501 179564 49709
# Firms 46334 46295 46415 52413 15092
Notes: All regressions include firm and state-yr fixed effects, as well as district-level
controls for temperature and precipitation. Top and bottom 1% of dependent-variable
values have been excluded. Standard errors are clustered at the district level. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

In panel A of Tables 7, we find that total electricity consumption and electricity pur-
chased from the grid increase with coal-fired capacity, but the point estimates are small
and statistically indistinguishable from 0. In Panel B, where exposure is measured by the
weighted share of a district covered by a radius of 100km around a coal plant, estimates are
larger and statistically significant. A 1σ increase in coal exposure leads to 3.9% and 4.9%
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more total electricity and prid-based electricity, respectively. However, we see in Table 8
that these results are sensitive to the specification. Point estimates are always positive, and
in the range of 1% - 5%, though only statistically significant in some cases. Additionally,
in panel C, we find no evidence of differential trends in electricity consumption prior to
increases in coal-fired capacity.

In columns 4-5 of Tables 7 and 8, we estimate impacts to the propensity to produce
any electricity on-site, and the quantity of electricity produced on-site. In panel A of
Table 7, we find that firms respond to construction of coal plants in their own districts by
reducing the propensity to produce generation on-site, and reduce the quantity, conditional
on having a generator. On the extensive margin, a 1σ increase in coal capacity reduces
the propensity of firms to generate electricity on-site by 2.2 percentage points on a base
rate of 41%, or about 5%. On the intensive margin, we find that a 1σ increase in capacity
lower the quantity of electricity generated on-site by 13.8%. These results are statisticaly
significant at the 1% and 5% levels, respectively. However, in Table 8, we find that these
results are also somewhat sensitive to the specification. For exposure measures based on
radii up to 50km, we find that capacity increases lowers the propensity to use a generator.
But for the exposure measure based on 100km radius, the point estimate is statistically
indistinguishable from 0. Together, these results indicate that the construction of new coal-
fired capacity differentially impact the electricity consumption patterns of firms nearer vs
farther away from the power plants, but the impacts are modest in magnitude.

Next, in Tables 9 and 10, we test for impacts to labor, output, and productivity. Tables
7 and 8 indicate some evidence of local impacts to electricity purchases of firms. As shown
in Allcott, Collard-Wexler and O’Connell (2016), these impacts to electricity impacts may
pass through to labor, sales, and productivity.

In columns 1-2 of Tables 9 and 10, we find no evidence that firms pay higher wages or
hire more labor. Using both measures of exposure, point estimates are small and statisti-
cally indistinguishable from 0. For days worked, we can reject at the 5% level any impact
of a one standard deviation increase of coal-fired capacity outside the interval (-2.8% ,
1.4%); similarly, for effective wages, we can reject any impacts outside the interval (-0.8%
, 0.8%).15 Additionally, in column 4, we cannot reject the null of no impact to firm-level
sales. It seems that to whatever extent firms purchase more electricity due to local con-

15The full calculation is (−0.032 − (1.96 × 0.047)) × 0.226 = −0.028 for the lower bound of the 95%
confidence interval and (−0.032 + (1.96 × 0.047)) × 0.226 = 0.014 for the upper bound for days worked;
similarly, for effective wages, we calculate: (−0.001− (1.96× 0.018))× 0.226 = −0.008 for the lower bound
of the 95% confidence interval and (−0.001 + (1.96 × 0.018)) × 0.226 = 0.008 for the upper bound of the
95% confidence interval.
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Table 8: ASI Electricity Acap

etotal epurchase unit value 1(owngen) eowngen
(1) (2) (3) (4) (5)

Panel A : Radius 1
ACap (1σ) 0.014 0.035 0.016∗∗∗ -0.021∗∗∗ -0.135∗

(0.021) (0.023) (0.005) (0.007) (0.071)

R squared 0.93 0.93 0.82 0.64 0.79

Panel B: Radius 10
ACap (1σ) 0.012 0.028 0.018∗∗∗ -0.018∗∗ -0.076

(0.021) (0.025) (0.006) (0.007) (0.085)

R squared 0.93 0.93 0.82 0.64 0.79

Panel C: Radius 50
ACap (1σ) 0.031 0.049∗∗ 0.015∗∗ -0.025∗∗∗ -0.104

(0.022) (0.025) (0.007) (0.009) (0.093)

R squared 0.93 0.93 0.82 0.64 0.79

Panel D: Radius 100
ACap (1σ) 0.039∗∗ 0.049∗∗ 0.010∗ -0.011 -0.131

(0.017) (0.021) (0.006) (0.009) (0.102)

R squared 0.93 0.93 0.82 0.64 0.79
mdv -1.8 -1.9 1.9 0.4 -2.9
# Obs 152693 152564 152501 179564 49709
# Firms 46334 46295 46415 52413 15092

Notes: All regressions include firm and state-yr fixed effects, as well as district-
level controls for temperature and precipitation. Top and bottom 1% of
dependent-variable values have been excluded. Standard errors are clustered
at the district level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5%
∗∗, and 10% ∗ levels.

struction of coal-fired power plants, these input expenditures do not translate into more
labor expenditures or more output. In terms of the conceptual framework, the null result
on wages and employment indicate that there are no local supply-side benefits to health
of worker-consumers living near the plants.

Next, in columns 3 and 5, we test for impacts on labor productivity and TFP, re-
spectively. In panel A of Table 9, we find that capacity increases tend to lower labor
productivity and TFP, though the point estimates are small and indistinguishable from 0.
These results are echoed through Table 10, except for a slightly positive impact on TFP
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using the exposure measure with radius 100. Again, while there is some mixed evidence of
benefits to electricity inputs, there do not appear to be any robust impacts to productivity.

Table 9: ASI Economic

Days Worked Wages LP Sales TFP
(1) (2) (3) (4) (5)

Panel A : In-District
Cap (1σ) -0.022 -0.006 -0.003 -0.014 -0.005

(0.014) (0.005) (0.012) (0.014) (0.008)

R squared 0.92 0.88 0.84 0.92 0.81

Panel B: Area-Weighted
ACap (1σ) -0.006 0.003 0.019 -0.012 0.016∗

(0.013) (0.006) (0.016) (0.015) (0.010)

R squared 0.92 0.88 0.84 0.92 0.81

Panel C: Event Study
ET ∈ [−4,−2] 0.016 0.004 -0.003 0.013 -0.004

(0.014) (0.012) (0.012) (0.027) (0.007)

ET ∈ [−1, 1] -0.022 -0.001 -0.010 -0.026 -0.007
(0.021) (0.011) (0.012) (0.025) (0.012)

ET ∈ [2, 4] -0.011 0.006 0.011 -0.029 0.001
(0.015) (0.007) (0.010) (0.026) (0.007)

ET ∈ [5,∞] -0.058∗∗ -0.025∗∗ -0.020 -0.051 -0.014
(0.027) (0.012) (0.017) (0.032) (0.023)

R squared 0.92 0.88 0.84 0.92 0.81
mdv 9.5 5.6 -2.8 3.4 1.2
# Obs 169767 167228 168171 171655 140863
# Firms 50542 49897 49237 50420 43152

Notes: All regressions include firm and state-yr fixed effects, as well as district-
level controls for temperature and precipitation. Top and bottom 1% of
dependent-variable values have been excluded. Standard errors are clustered
at the district level. Asterisks indicate statistical significance at the 1% ∗∗∗,
5% ∗∗, and 10% ∗ levels.

Lastly, we test for impacts to firm-product outputs. One way that worker-consumers
might benefit from local construction of coal-fired power plants might be through lower
output prices. Lower prices would effect welfare directly, but they might also impact
health through the budget constraint. Lower prices means more disposable income to
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Table 10: ASI Economic Acap

Days Worked Wages LP Sales TFP
(1) (2) (3) (4) (5)

Panel A : Radius 1
ACap (1σ) -0.019 -0.006 -0.002 -0.012 -0.005

(0.014) (0.005) (0.012) (0.014) (0.008)

R squared 0.92 0.88 0.84 0.92 0.81

Panel B: Radius 10
ACap (1σ) -0.011 -0.009 -0.002 -0.005 -0.003

(0.015) (0.006) (0.013) (0.016) (0.007)

R squared 0.92 0.88 0.84 0.92 0.81

Panel C: Radius 50
ACap (1σ) -0.009 -0.005 0.010 -0.016 0.014

(0.015) (0.006) (0.016) (0.016) (0.010)

R squared 0.92 0.88 0.84 0.92 0.81

Panel D: Radius 100
ACap (1σ) -0.006 0.003 0.019 -0.012 0.016∗

(0.013) (0.006) (0.016) (0.015) (0.010)

R squared 0.92 0.88 0.84 0.92 0.81

mdv 9.5 5.6 -2.8 3.4 1.2
# Obs 169767 167228 168171 171655 140863
# Firms 50542 49897 49237 50420 43152

Notes: All regressions include firm and state-yr fixed effects, as well as
district-level controls for temperature and precipitation. Top and bottom
1% of dependent-variable values have been excluded. Standard errors are
clustered at the district level. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

spend on medical services, which improve health. Again, to any extent that these benefits
materialize, the reduced-form impacts in section 4 indicate that the direct pollution effects
dominate. Still, by estimating the price effects directly, we learn how the pollution effect
relates to the reduced-form estimates.

In Tables 11 and 12, we find no evidence of impacts to firm-level revenues (column 1)
real sales (column 2) or unit values (column 3). The point estimates on unit values are
negative, but we in none of our specification can we reject a null of no impact.
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Table 11: ASI Product-level

Sales Qty UV
(1) (2) (3)

Panel A : In-District
Cap (1σ) -0.046 -0.006 -0.025

(0.045) (0.056) (0.049)

R squared 0.93 0.93 0.93

Panel B: Area-Weighted
ACap (1σ) -0.033 0.019 -0.049

(0.052) (0.062) (0.047)

R squared 0.93 0.93 0.93

Panel C: Event Study
ET ∈ [−4,−2] -0.013 -0.011 0.003

(0.034) (0.047) (0.029)

ET ∈ [−1, 1] -0.030 -0.016 -0.022
(0.028) (0.056) (0.041)

ET ∈ [2, 4] -0.004 -0.069∗ 0.043
(0.024) (0.037) (0.035)

ET ∈ [5,∞] -0.049 0.003 -0.115
(0.036) (0.079) (0.075)

R squared 0.93 0.93 0.93
mdv 2.3 8.6 -6.4
# Obs 127327 127333 127642
# Firm-products 46256 46219 46230
Notes: All regressions include firm-product, state-yr, and
product-category-year fixed effects, as well as district-level con-
trols for temperature and precipitation. Top and bottom 1% of
dependent-variable values have been excluded. Standard errors
are clustered at the district level. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 12: ASI Product-level Acap

Sales Qty UV
(1) (2) (3)

Panel A : Radius 1
ACap (1σ) -0.044 -0.005 -0.025

(0.044) (0.054) (0.047)

R squared 0.93 0.93 0.93

Panel B: Radius 10
ACap (1σ) -0.051 0.016 -0.046

(0.041) (0.050) (0.044)

R squared 0.93 0.93 0.93

Panel C: Radius 50
ACap (1σ) -0.059 0.021 -0.060

(0.046) (0.058) (0.043)

R squared 0.93 0.93 0.93

Panel D: Radius 100
ACap (1σ) -0.033 0.019 -0.049

(0.052) (0.062) (0.047)

R squared 0.93 0.93 0.93
mdv 2.3 8.6 -6.4
# Obs 127327 127333 127642
# Firm-products 46256 46219 46230
Notes: All regressions include firm and state-yr fixed effects,
as well as district-level controls for temperature and precip-
itation. Top and bottom 1% of dependent-variable values
have been excluded. Standard errors are clustered at the
district level. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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5.2 The Effect of Coal-Fired Capacity on Agriculture and Night-

lights

We next test for impacts on agricultural outcomes and night-time luminosity as measured
by satellites (“Night-lights”). In the conceptual framework, we showed how local benefits
to industry in terms of wages or employment may lead to better health outcomes through
increased medical expenditures. We might expect to see better these supply-side benefits
in the manufacturing sector, which has a higher input share of electricity. Still, electricity
is important for agricultural production as well. In addition, local coal-plant construction
could lower the effective price of heating and cooling for households, which may make
them more productive. We test for these channels in the reduced form with district-level
agricultural yield and wages.

Next, as a test of overall economic benefits, we estimate impacts to “Night-lights”.
“Night-lights” have been used both as a measure of economic growth (Henderson, Storey-
gard and Weil, 2012) and a measure of rural electrification (Burlig and Preonas, 2016).

5.2.1 Agriculture and Night-lights Data

Agricultural data come from the Village Dynamics in South Asia Meso data set, which
is compiled by researchers at the International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT 2015). The data set provides district-level information on annual
agricultural production, prices, acreage, and yields, by crop. We generate aggregate price-
weighted district level measures of total yield in each district for the six major crops (rice,
wheat, sugarcane, groundnut, sorghum, and maize) as well as the five major monsoon crops
(read: excluding wheat). ICRISAT also provides data on district level averages of rural
wages and employment separately for men and women. We report summary statistics in
Table 13 panel A.

Night lights data
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Table 13: Agricultural and Nightlights Data

No Coal Plants Coal Plants
567 Districts 108 Districts

(1) (2) (3) (4) (5) (6) (7) (8)
mean min max obs mean min max obs

Panel A : Agricultural Data

Yield 5.1 0.0 6.5 7274 5.1 1.3 6.6 2205
Yieldm 4.9 -1.1 7.0 7270 5.0 -3.2 6.6 2205
Male Wages 46.2 0.0 540.0 4764 42.0 0.0 283.3 1571
Female Wages 32.4 0.0 341.7 4370 28.6 0.0 215.6 1400

Panel B : Night Lights

Night Lights SA 0.35 -2.24 16.87 9555 1.16 -1.86 54.78 2226
Night Lights WA 0.37 -2.25 16.87 9555 1.09 -1.55 49.71 2226

Notes: Top and bottom 1% of dependent-variable values have been excluded.

5.2.2 Agriculture and Night-lights Results

Tables 14 and 15 estimate impacts on agricultural outcomes and night lights. All specifica-
tions include district-level fixed effects and state-year effects as before, as well as controls
for temperature and precipitation. Dependent variables are logged, so point estimates are
directly interperable as semi elasticities with respect to a 1σ increase in coal capacity. In
panel A of Table 14, we find that yields decline mildly with coal fired capacity, though
the point estimates are statistically indistinguishable from 0. Looking at Table 14, we are
never able to reject a null of no impact on yields.

In columns 3-4, we estimate impacts on male and female wages, respectively. Here, the
point estimates indicate that wages increase with coal-fired capacity; though again, we can
never reject the null of no impact.

Finally, columns 5 and 6 demonstrate that changes in district-level coal-fired generat-
ing capacity do not have a statistically significant impact on night-lights. Moreover, the
economic magnitude of these coefficients is small; a 1 GW increase in district-level ca-
pacity (akin to adding a very large coal-fired power plant) only results in a roughly 2.5%
average increase in night-lights if we consider the in-district measure of coal-fired capacity
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(see Column 1). Henderson, Storeygard and Weil (2012) uses night-lights as a measure of
economic growth, while Burlig and Preonas (2016) uses night-lights as a measure of rural
electrification; based on either interpretation of night-lights, our results indicate that a
district with a coal-fired power plant receives no additional economic benefits from this
plant relative to other districts within the state. If we use the conversion factor between
night-lights and economic output mentioned in Henderson, Storeygard and Weil (2012),
the upper 95% confidence bound for our coefficient estimate in Column 1 implies an annual
increase of 12.68 million dollars (in 2000 USD) in district-level gross domestic product
(GDP) from a one standard deviation increase in district-level coal-fired capacity.16

16From Henderson, Storeygard andWeil (2012) (pg. 996): “Third, we obtain an estimate of the structural
elasticity of growth in night lights with respect to true GDP growth; the point estimate we obtain is just
over one.”.
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Table 14: Agricultural and Nightlight Results

Yield YieldM Wage M Wage F NL (SA) NL (WA)
(1) (2) (3) (4) (5) (6)

Panel A
Cap (1σ) -0.017 -0.020 0.012 0.040 -0.003 -0.002

(0.021) (0.026) (0.025) (0.027) (0.060) (0.059)

R squared 0.92 0.92 0.91 0.92 0.91 0.92

Panel B
ACap (1σ) 0.006 0.008 0.005 -0.000 -0.060 -0.065

(0.031) (0.035) (0.031) (0.024) (0.055) (0.056)

R squared 0.92 0.92 0.91 0.92 0.91 0.92

Panel C
Event time ∈ [−4,−2] -0.015 -0.007 -0.038∗∗ -0.030 0.047 0.033

(0.016) (0.020) (0.017) (0.024) (0.039) (0.035)

Event time ∈ [−1, 1] 0.003 0.013 -0.023 0.014 0.032 0.039
(0.016) (0.024) (0.019) (0.020) (0.078) (0.082)

Event time ∈ [2, 4] 0.000 -0.003 -0.030∗ -0.006 -0.006 0.003
(0.022) (0.030) (0.017) (0.020) (0.062) (0.063)

Event time ∈ [5,∞] -0.038 -0.020 -0.005 0.025 0.065 0.056
(0.029) (0.028) (0.024) (0.042) (0.077) (0.079)

R squared 0.92 0.92 0.91 0.92 0.91 0.92
mdv 5.285 5.168 4.279 3.981 1.001 1.050
# Obs 3720 3720 2493 2079 7420 7420
# Districts 280 280 247 224 489 489

Notes: All regressions include district and state-yr fixed effects, as well as district-level controls
for temperature and precipitation. District-yer observations are weighted by number of live births.
Standard errors are clustered at the district level. Asterisks indicate statistical significance at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 15: Agricultural Results Acap

Yield YieldM Wage M Wage F NL (SA) NL (WA)
(1) (2) (3) (4) (5) (6)

Panel A : Radius 1
ACap (1σ) -0.017 -0.021 0.012 0.040 0.003 0.003

(0.021) (0.026) (0.025) (0.027) (0.060) (0.059)

R squared 0.92 0.92 0.91 0.92 0.91 0.92

Panel B : Radius 10
ACap (1σ) -0.015 -0.018 0.020 0.043 0.009 0.007

(0.019) (0.024) (0.026) (0.027) (0.059) (0.058)

R squared 0.92 0.92 0.91 0.92 0.91 0.92

Panel C : Radius 50
ACap (1σ) -0.011 -0.010 0.026 0.037 -0.051 -0.059

(0.024) (0.029) (0.029) (0.025) (0.064) (0.064)

R squared 0.92 0.92 0.91 0.92 0.91 0.92

Panel D : Radius 100
ACap (1σ) 0.006 0.008 0.005 -0.000 -0.060 -0.065

(0.031) (0.035) (0.031) (0.024) (0.055) (0.056)

R squared 0.92 0.92 0.91 0.92 0.91 0.92
mdv 5.285 5.168 4.279 3.981 1.001 1.050
# Obs 3720 3720 2493 2079 7420 7420
# Districts 280 280 247 224 489 489

Notes: All regressions include district and state-yr fixed effects, as well as district-level con-
trols for temperature and precipitation. District-yer observations are weighted by number of
live births. Standard errors are clustered at the district level. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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6 Conclusion

The trajectory of economic development in developing countries is characterized by in-
creased demand for electricity. This demand is often met through relatively inexpensive
coal-fired electricity generation. Against the backdrop of India’s rapid build-out of coal-
fired power plants, we quantify the local infant mortality costs versus the local economic
benefits arising from coal-fired capacity expansions over the last two decades using an adap-
tation of the standard difference-in-differences framework. We find that capacity increases
generate sizable local health costs on net but yield only modest local economic benefits.
Moreover, the local economic benefits we do find seem to accrue to manufacturing firms
rather than workers or residents living nearby these coal-fired power plants. To the extent
that these plants generate significant economic benefits, these benefits are likely distributed
at the state or regional level.

Our results have several important implications for policymakers in India and other
developing countries considering similar expansions of coal-fired power generation. First,
our paper provides suggestive evidence that only a very low implied value of statistical
life would need to be considered by policymakers in order to justify how much electricity
generation in India currently comes from coal-fired generation sources. Of course, a more
thorough accounting of both the environmental costs and economic benefits of coal-fired
electricity generation is required to definitely assert that the level of electricity generation
coming from coal-fired sources is either too high or too low.

However, given that most of the benefits are likely regional but costs are local, it is
clear that the placement of new coal-fired power plants and planned capacity increases
should ideally be located away from population centers. Yet, a large number of coal-fired
power plants in India are currently located near urban centers. This also raises important
questions on the political economy of power generation; who should bear the costs of the
electricity generation that everybody benefits from? We leave it to future work to quantify
the extent to which economic, environmental, and political factors drive the placement of
coal-fired power plants in India in practice.
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A Additional Tables and Figures

B Coal-Fired Capacity and Local Air Pollution

In this section, we test for impacts to local air pollution from increase in coal-fired capacity.
We present two sets of results. First, we measure average air pollution levels in concentric
circles of increasing radius around each power plant site for each year in the pollution
data. With these data, we estimate a difference-in-difference model where we compare the
change in pollution before and after a plant either comes online or increases capacity for
areas near the plant vs areas far from the plant. Next, we take average pollution measures
at the district level and relate to our two measures of district exposure.

B.1 Data Sources

Van Donkelaar et al. (2016) constructs annual, globally gridded data at the 0.1◦ × 0.1◦

resolution on ambient NO2 concentration levels for the sample period 1996-2012; we use
these data to construct average NO2 levels around different distance buffers (ex: 1km, 5km,
100km) from each coal-fired power plant site. Van Donkelaar et al. (2016) also provides
annual PM2.5 data gridded at the 0.01◦× 0.01◦ resolution for 1998-2015, and the Modern-
Era Retrospective analysis for Research and Applications (MERRA) database lists monthly
PM2.5 and SO2 for the sample period 1980-2016 gridded at the 0.5◦ × 0.625◦ resolution;
these data are used in supplementary analyses. Finally, we present results differentiating
local air pollution effects upwind versus downwind from the plant site; the wind direction
for these specifications is calculated using MERRA data.

B.2 Empirical Methodology: Coal-Fired capacity and Local Air

Pollution

We estimate the following ordinary least squares (OLS) regression specification linking
coal-fired capacity to the (log of) local air pollution levels around each plant site:

log(Yp,t,b) = αp,b+θs,y+β0Capacityp,t+β1Capacityp,t1(b = Not 500km Buffer)+εp,t,b (19)

where y indexes year-of-sample. Capacityp,y is the annual electricity generating capacity
(in GW) at plant site p, while 1(b = Not 500km Buffer) is an indicator that takes on 1 if the
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observation corresponds to an average of the outcome variable taken using a distance band-
width less than 500km rather than 500km (we consider b = (1, 5, 10, 20, 50, 100, 200)km ver-
sus b = 500km). We include plant-buffer fixed effects (αp,b) as well as state/year-of-sample
fixed effects (θs,y).

We also consider the following specification where an indicator for whether the plant
has opened by time t is the independent variable of interest:

log(Yp,t,b) = αp,b + θs,y + 1(Plant p has opened)p,t(β0 + β11(b = Not 500km Buffer)) + εp,t,b (20)

As before, we include plant-buffer fixed effects (αp,b) and state/year-of-sample fixed effects
(θs,y).

Finally, for both of these specifications, we take the average NO2 levels at different
distance bandwidths separately for upwind versus downwind locations; taking the coal
capacity regression as an example, we estimate:

log(NO2)p,y,b,w = αp,b,w + θs,y + εp,y,b

+Capacityp,y(β0 + β11(b = Not 500km Buffer) + β21(w = Downwind)

+β3Capacityp,y1(b = Not 500km Buffer)1(w = Downwind))

where w ∈ {downwind, upwind} indexes an average taken over upwind versus downwind
locations.

B.3 Empirical Results: Coal-Fired Capacity Local Air Pollution

Tables 16 and 17 present results at the buffer level. In each table, the top panel presents
the specifications where coal-fired capacity is the independent variable of interest, while
the bottom panel presents the specifications where an indicator for whether a plant opened
on or before the year-of-sample is the independent variable of interest. In both cases, the
independent variable of interest is interacted with an indicator that’s one if the observation
corresponds to an average taken over the bandwidth less than 500km rather than 500km
(1km in Column (1), 5km in Column (2), ..., and 200km in Column (7)). All specifications
include both plant-buffer fixed effects (“Area”), state-year fixed effects, and plant-buffer
controls for temperature and precipitation. Standard errors are clustered at the district
level.

In Table 16, we find that both capacity increases (panel A) and plant openings (panel
B) increase NO2 concentrations. In panel A, we find that a 1GW average increase in
electricity generating capacity at a plant-site results in a 7.7% (3.2%) average increase in
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Table 16: Buffer Results NO2

Dependent Variable: Log NO2

(1) (2) (3) (4) (5) (6)
1km 5km 10km 50km 100km 200km

Panel A
CapacityXclose 0.077∗∗∗ 0.077∗∗∗ 0.078∗∗∗ 0.060∗∗∗ 0.032∗∗ 0.006

(0.021) (0.021) (0.022) (0.016) (0.014) (0.013)

R squared 0.974 0.974 0.974 0.980 0.980 0.985

Panel B
OnlineXclose 0.080∗∗∗ 0.080∗∗∗ 0.079∗∗∗ 0.067∗∗∗ 0.038∗∗∗ 0.013

(0.019) (0.019) (0.019) (0.012) (0.009) (0.011)

R squared 0.974 0.974 0.974 0.980 0.980 0.985
Area FE X X X X X X
Controls X X X X X X
State X Year FE X X X X X X
# Obs 5962 5962 5962 5962 5962 5962
# Plants 180 180 180 180 180 180
# Plant-Years 2981 2981 2981 2981 2981 2981
Notes: All regressions control for annual temperature and precipitation. Asterisks indicate statis-
tical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

NO2 levels around 1km (100km) from this plant site relative to 500km away. In panel B,
the average plant opening (not including capacity additions at existing plant sites) results
in an average increase of 8.0% (3.8%) in NO2 levels 1km (100km) versus 500km away from
the plant site. In both panels, the point estimates are statistically significant up to 100km,
and then become statistically indistinguishable from 0.

By contrast, in Table 17 we find no evidence that either capacity increases or plant
openings increase PM2.5 concentrations. Across all specifications, point estimates are small
and statistically indistinguishable from 0.

Next, in Tables 18 and 19, we present estimates at the district level. In both tables,
columns 1-4 present results for NO2, while columns 5-8 present results for PM2.5. Columns
1 and 5 present specifications with year fixed effects and no analytical weights. Subsequent
columns add state-by-year affects and analytical weights for live births. All specifications
include district fixed effects and cluster on the district level. Coal exposure has been
transformed so that a 1 unit increase corresponds to an increase in 1 standard deviation
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Table 17: Buffer Results PM2.5

Dependent Variable: Log PM2.5

(1) (2) (3) (4) (5) (6)
1km 5km 10km 50km 100km 200km

Panel A
CapacityXclose 0.000 0.001 0.001 0.001 0.002 0.004

(0.004) (0.004) (0.004) (0.004) (0.004) (0.003)

R squared 0.986 0.986 0.986 0.987 0.988 0.992

Panel B
OnlineXclose 0.001 0.001 0.002 0.002 0.002 0.003

(0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

R squared 0.986 0.986 0.986 0.987 0.988 0.992
Area FE X X X X X X
Controls X X X X X X
State X Year FE X X X X X X
# Obs 6480 6480 6480 6480 6480 6480
# Plants 180 180 180 180 180 180
# Plant-Years 3240 3240 3240 3240 3240 3240
Notes: All regressions control for annual temperature and precipitation. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

for comparability.
In panel A of Table 18, we find that a 1σ increase in coal-fired capacity increases

ambient NO2 levels between 3.2% and 4.2%, depending on the specification. In panel B,
where we allow for impact from coal plants in neighboring districts, 1σ increase in exposure
generates between 8.3% and 10.3% more NO2. By contrast, in columns 5-8, we find no
evidence that district-level PM2.5 is related to coal exposure. Point estimates are in the
neighborhood of 1% and never statistically significant. Additionally, in panel C, we cannot
reject the null of no impact in the years prior to coal capacity expansions. These results
are robust to varying the radius of exposure around the plant, as documented in Table 19.
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Table 18: Pollution Results

Log NO2 Log PM25

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
Cap (1σ) 0.042∗∗ 0.036∗∗∗ 0.038∗∗ 0.032∗∗ 0.018 0.003 0.025 0.001

(0.017) (0.013) (0.016) (0.013) (0.013) (0.006) (0.017) (0.006)

R squared 0.92 0.97 0.94 0.97 0.97 0.99 0.98 0.99

Panel B
ACap (1σ) 0.083∗∗∗ 0.103∗∗∗ 0.093∗∗∗ 0.088∗∗∗ -0.018 -0.002 -0.006 -0.004

(0.031) (0.022) (0.021) (0.022) (0.022) (0.006) (0.025) (0.007)

R squared 0.92 0.97 0.95 0.97 0.97 0.99 0.98 0.99

Panel C
Event time ∈ [−4,−2] 0.011 0.010 0.002 0.003 0.002 0.004 0.002 0.002

(0.015) (0.011) (0.011) (0.009) (0.007) (0.005) (0.006) (0.006)

Event time ∈ [−1,−1] 0.018 0.009 0.014 0.007 0.013 -0.000 0.023∗ 0.000
(0.014) (0.011) (0.010) (0.009) (0.010) (0.005) (0.012) (0.005)

Event time ∈ [2, 4] 0.021∗ 0.009 0.017∗ 0.006 0.017∗∗ 0.007 0.017 0.004
(0.012) (0.010) (0.010) (0.009) (0.008) (0.006) (0.011) (0.007)

Event time ∈ [5,∞] 0.029∗ 0.032∗∗ 0.024 0.026∗ 0.012 0.014 0.009 0.008
(0.017) (0.014) (0.018) (0.015) (0.012) (0.009) (0.012) (0.009)

R squared 0.92 0.97 0.94 0.97 0.97 0.99 0.98 0.99
District FE X X X X X X X X
Controls X X X X X X X X
Year FE X X X X
State X Year FE X X X X
Analytical Weights X X X X
# Obs 4551 4527 4551 4527 4106 4085 4106 4085
# Districts 428 425 428 425 422 419 422 419
Mean Dep Var -1.05 -1.05 -0.95 -0.95 2.93 2.93 3.00 3.00

Notes: All regressions control for annual temperature and precipitation. Analytical weights reflect number of live
births. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 19: Pollution Results ACap

Log NO2 Log PM25

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A : Radius 1
ACap (1σ) 0.043∗∗ 0.036∗∗∗ 0.038∗∗ 0.032∗∗ 0.019 0.003 0.026 0.001

(0.017) (0.013) (0.016) (0.013) (0.013) (0.006) (0.017) (0.006)

R squared 0.92 0.97 0.94 0.97 0.97 0.99 0.98 0.99

Panel B : Radius 10
ACap (1σ) 0.053∗∗∗ 0.042∗∗∗ 0.046∗∗∗ 0.037∗∗∗ 0.022∗ 0.003 0.027∗ -0.000

(0.018) (0.013) (0.015) (0.013) (0.012) (0.006) (0.015) (0.006)

R squared 0.92 0.97 0.94 0.97 0.97 0.99 0.98 0.99

Panel C : Radius 50
ACap (1σ) 0.110∗∗∗ 0.087∗∗∗ 0.097∗∗∗ 0.071∗∗∗ 0.003 0.000 0.012 -0.002

(0.036) (0.023) (0.031) (0.019) (0.026) (0.007) (0.025) (0.007)

R squared 0.92 0.97 0.94 0.97 0.97 0.99 0.98 0.99

Panel D : Radius 100
ACap (1σ) 0.083∗∗∗ 0.103∗∗∗ 0.093∗∗∗ 0.088∗∗∗ -0.018 -0.002 -0.006 -0.004

(0.031) (0.022) (0.021) (0.022) (0.022) (0.006) (0.025) (0.007)

R squared 0.92 0.97 0.95 0.97 0.97 0.99 0.98 0.99
District FE X X X X X X X X
Controls X X X X X X X X
Year FE X X X X
State X Year FE X X X X
Analytical Weights X X X X
# Obs 4551 4527 4551 4527 4106 4085 4106 4085
# Districts 428 425 428 425 422 419 422 419
mdv -1.05 -1.05 -0.95 -0.95 2.93 2.93 3.00 3.00

Notes: All regressions control for annual temperature and precipitation. Analytical weights reflect number of live
births. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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C Geographic Sorting

Using our population data, we test for aggregate sorting towards or away from the coal
plants. We estimate

log(Dp,t,b) = αp,b + θs,t + 1(Plant p has opened)p,t(β0 + β11(b = Not 500km Buffer)) + εp,t,b

(21)
where log(Dp,t,b) is the log of population density in year t around plant p in a buffer of
radius b, αp,b is a plant-buffer fixed effect, and θs,t is a state-year fixed effect. The coefficient
of interest is β1, the interaction effect from increases in capacity on log population density
closer as opposed to further from the plant. If the increase in coal capacity leads to outward
migration, we would expect β1 < 0.

Estimates of equation 21 are presented in Figure 5. We find no evidence of sorting in
response to the capacity increases.

Figure 5: Migration
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Notes: Figure presents point estimates and 95% confidence intervals from estimates of equation 21.
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