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Abstract

We estimate the nationwide mortality effects of acute pollution exposure in
the US over the period 1972–1988. Using wind direction as an instrument for
changes in daily pollution levels, we estimate that a one-day increase in sulfur
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0.15 deaths per million over three days. Our estimated effects are largest for the
elderly, but are also significant for infants and non-elderly adults. We also find
that the marginal mortality effect of SO2 is larger in counties that are richer
and less polluted. Our results suggest that a uniform reduction in pollution
levels would benefit high-income individuals more than low-income individuals
and lead to higher mortality reductions in areas with lower pollution levels, all
else equal.
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1 Introduction

The World Health Organization (WHO) estimates that ambient air pollution caused 3

million premature deaths in 2012 (WHO, 2018). While such assessments are grounded

in a large number of epidemiological studies, the studies themselves generally lack an

exogenous source of pollution variation, casting doubts on the validity of their esti-

mates.1 Although quasi-experimental studies can overcome this identification chal-

lenge, they are typically based on a small subset of the population of interest. This

makes it difficult to draw conclusions for the general population, especially if the

marginal effects of air pollution depend on variables such as income, access to health-

care, or existing pollution levels, which vary throughout the population and over

time. Such variation also matters for understanding the distributional consequences

of pollution regulation.

We use a novel source of exogenous variation–changes in the local wind direction–

to estimate the causal impact of acute sulfur dioxide (SO2) exposure on county-level

mortality in the US, using national data from a 17-year period (1972–1988). To our

knowledge, ours is the largest-scale study of acute pollution exposure on mortality,

encompassing nearly 18 million deaths. We show that daily changes in the local wind

direction are strongly correlated with changes in daily SO2 concentrations, even after

flexibly controlling for temperature, wind speed, and precipitation. Although other

recent studies have combined a local pollution source – such as a highway, factory, or

airport – with information on whether an area is upwind or downwind,2 Deryugina

et al. (2018) and this paper are the first to exploit such variation at the national

scale. In addition, our large sample size enables us to separately estimate the effects
1See Englert (2004) for a review, and Dominici, Greenstone and Sunstein (2014) for additional

discussion.
2See, for example, Anderson (2015); Hanna and Oliva (2015); Schlenker and Walker (2016);

Knittel, Miller and Sanders (2016).
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of multiple pollutants.

Our comprehensive data also allow us to investigate the distributional burden of

air pollution, which depends not just on the relationship between pollution levels

and income, but also on how the marginal effects of pollution are related to income.

Specifically, we estimate how the marginal effect of SO2 varies as a function of average

county-level income and pollution. Future versions of this paper will also include

data from the years 1989–2015, enabling us to estimate contemporary relationships

between marginal pollution damages, pollution levels, and income, and to investigate

whether these relationships have changed over time.3

We find that a one-part-per-billion daily increase in SO2 (about 10 percent of the

mean) raises overall mortality by 0.15 deaths per million over three days (0.20 percent

of the mean). The largest absolute and relative increase occurs among those aged 65

and older: their mortality rate increases by 1.02 deaths per million (0.23 percent).

Those aged between 1 and 64 also experience significant mortality increases of 0.035

deaths per million (0.14 percent). Infant mortality increases by a marginally signifi-

cant 0.16 deaths per million. Our results are robust to including rich sets of control

variables and fixed effects, and are not driven by other pollutants. Importantly, our

IV results are up to ten times larger than the corresponding OLS estimates, suggest-

ing that observational estimates from prior studies may significantly understate the

health effects of pollution.

Surprisingly, we find that the marginal effect of SO2 rises with income and with

the percentage of residents who are above the poverty line, implying that poorer

individuals are less affected by acute pollution fluctuations. We also find that the

mortality impacts of increases in SO2 fall with average SO2 levels, implying a con-
3County-level daily mortality data during this time period are not publicly available, necessitating

the use of a Census Research Data Center to extend the analysis to encompass this time period.
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cave pollution-mortality relationship. To be clear, these results are descriptive, not

causal: counties’ pollution levels, incomes, and poverty rates are correlated with nu-

merous other characteristics that could plausibly mediate or exacerbate the impact

of pollution. Nevertheless, these results matter for understanding the distributional

benefits of a given reduction in air pollution and imply that a uniform reduction would

have relatively larger mortality benefits in areas that are richer and less polluted.

The Environmental Protection Agency (EPA) estimates that sulfur concentrations

have fallen by about 87 percent between 1980 and 2016 (EPA, 2016). If we conser-

vatively assume that each additional death results in just one year of life lost, then

our estimates imply that the reduction in SO2 saved 780,000 life-years in 1972–1988.

Adopting a conventional value of a statistical life year of $100,000 (Cutler, 2004), the

economic value of these mortality reductions is $78 billion.

While several prior studies have investigated the effect of pollution on infant mor-

tality (e.g., Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker,

2011; Knittel, Miller and Sanders, 2016), the existing evidence for adult mortal-

ity is either limited geographically or lacks credible exogenous variation in pollution

(e.g., Borja-Aburto et al., 1997; Laden et al., 2000; Chay, Dobkin and Greenstone,

2003; Moretti and Neidell, 2011). Important exceptions include Chen et al. (2013),

who study the long-term mortality effects of particulate matter in China; Deschênes,

Greenstone and Shapiro (2017), who estimate the mortality impacts of the US NOx

budget program; and Barreca, Neidell and Sanders (2017), who consider the long-run

mortality effects of sulfur dioxide in the US. However, none of these studies considers

heterogeneity in the pollution-mortality relationship, other than by age. We show

that the heterogeneity along other dimensions is substantial, underscoring the need

for nationally representative samples. Finally, researchers and policymakers are often

interested in understanding whether low-income individuals are more vulnerable to
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pollution and whether the marginal impact of pollution falls or rises with increasing

ambient concentrations (i.e., whether the pollution-mortality gradient is convex or

concave). Our study provides these answers for sulfur dioxide and develops a general

methodology that can be applied to other pollutants.

The rest of the paper is organized as follows. Section 2 provides a brief background

on air pollution, describes the data we employ, and provides the intuition underlying

our identification strategy. Section 3 discusses our empirical strategy in more detail.

Section 4 presents and discusses the results, and Section 5 concludes.

2 Background and data

2.1 Air pollution

Sulfur dioxide harms human health through two main channels. First, direct exposure

to SO2 has a negative short-run effect on respiratory function, especially in people with

asthma (Agency for Toxic Substances and Disease Registry, 1998). Second, sulfur

dioxide frequently transforms into sulfate, SO4(2
−), which is a primary component

of fine particulate matter (PM 2.5). Due to its own harmful health effects, PM 2.5

has increasingly become the focus of EPA air quality regulations. Unfortunately, fine

particulate matter itself was not widely monitored until the late 1990’s, so we cannot

include it in our analysis.

Our air pollution data come from the EPA’s Air Quality System database, which

provides hourly data at the pollution monitor level for the six different criteria pollu-

tants regulated by the EPA. The amount of spatial and temporal coverage depends on

the pollutant. Our analysis focuses on the mortality impacts of sulfur dioxide (SO2),

but we also consider three other air pollutants that have been widely monitored over
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the past several decades due to health concerns: nitrogen dioxide (NO2), ozone (O3),

and carbon monoxide (CO).

Figure 1 displays the population-weighted concentrations and the number of moni-

tored counties over time for each pollutant. Except for ozone, the population-weighted

mean for all pollutants declines substantially during our sample period. CO data are

readily available since the mid-1970’s and maintain consistent coverage of approxi-

mately 225 counties per year, while ozone data are unavailable prior to 1980. Data

on SO2 and NO2 are available for a larger number of counties than CO, although this

spatial coverage declines beginning in 1976. Each year during our sample period, at

least 400 counties monitor sulfur dioxide concentrations, and about 50 percent of US

individuals live in a county that monitors SO2.

Panel A of Table 1 shows summary statistics for daily ambient pollution con-

centrations during 1972–1988. The average sulfur dioxide concentration during our

sample period is 9.31 parts per billion, with a standard deviation of 12.6. The average

levels of nitrogen dioxide and ozone are higher, at about 22 and 25.5 parts per bil-

lion, respectively. The most prevalent pollutant is carbon monoxide, with an average

concentration of 1.64 parts per million (1,640 parts per billion). We are at least twice

as likely to observe sulfur dioxide levels as any of the other three pollutants, which is

one of the reasons we focus on SO2.

We do not include data on total suspended particulates (TSP’s) in our analysis

for two reasons. First, TSP’s include particles up to 100 micrometers in diameter, but

the current scientific consensus is that the negative health effects are predominantly

caused by small particles with diameters of less than 10 micrometers (PM 10), and

particularly by those with less than 2.5 micrometers (PM 2.5). Indeed, although

EPA regulated TSP’s in the 1970’s, current regulations apply only to those smaller

particles. Second, both SO2 and NO2 are precursors to TSP’s; adding TSP to the
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analysis would therefore complicate the interpretation of results.

2.2 Wind and weather conditions

Our identification strategy is motivated by the fact that a lot of the air pollution

in the United States is transported over long distances by wind currents. Figure 2

shows the fraction of PM 2.5 and sulfates–for which SO2 is a precursor–that can be

attributed to local versus regional sources for thirteen large U.S. cities. In the vast

majority of these examples, regional contributions to air pollution far exceed the local

ones.

It is possible to explicitly model the transport of pollutants by wind currents

and then use the predicted pollution as an instrument for changes in local pollution

levels. But doing so is both computationally intensive, especially at the daily level,

and requires fairly comprehensive data on emissions, which are largely not available

during our study period. However, a valid instrument needs only to meet two criteria:

a strong first stage and exogeneity with respect to the variable of interest. Thus, we

take a much simpler approach and use changes in local wind direction as instruments

for changes in SO2. Our key identifying assumption is that,conditional on other

climatic variables, wind direction is plausibly exogenous with respect to mortality.

In this section, we provide evidence that wind direction is also a good predictor of

changes in local pollution. (This will also be confirmed formally in the next section.)

We obtain wind speed and wind direction data from a 6-hour reanalysis dataset

published by the Japan Meteorological Agency (JMA).4 These data are available going

back as far as 1958. They consist of vector pairs, one for the East-West wind direction

(u-component) and one for the North-South wind direction (v-component), reported

on a grid with a resolution of 1.25 degrees (about 86 miles). We first interpolate be-
4Available from http://rda.ucar.edu/datasets/ds628.0/.
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tween grid points in the original dataset to calculate the 6-hour u- and v-components

at the location of each pollution monitor in the EPA data. We then calculate the

average daily wind direction and wind speed to match the frequency of our mortality

data. Specifically, we average the u- and v- components within a station-day and use

trigonometry to convert the average component into wind direction and speed.

A potential threat to our identification strategy is that changes in wind direction

may be correlated with certain other atmospheric conditions, which could themselves

affect mortality. For this reason, we include flexible controls for daily temperature

and precipitation in our estimation and probe the sensitivity of our results to their

inclusion. We obtain daily temperature and precipitation from Schlenker and Roberts

(2009). Combining monthly PRISM with daily data from weather stations, which

are unevenly distributed throughout the US, Schlenker and Roberts (2009) derive a

similarly spatially detailed weather map at the daily level. The final dataset spans the

years 1950–2015 and includes total daily precipitation and daily maximum and daily

minimum temperatures for each point on a 2.5 by 2.5 mile grid covering the contiguous

United States.5 To aggregate the gridded data to the county level, we simply average

the daily measures across all grid points located in a particular county.

Figure 3 illustrates the variation we use to estimate the causal impacts of acute

pollution exposure. The graphs show the relationships between daily average wind

direction (in 10-degree bins) and SO2 in two states, Illinois and Massachusetts, after

controlling for other temperatures, precipitation, wind speed, as well as county and

month-by-year fixed effects in the same way we will control for them in our main

specification.6 The maps next to each graph show the locations of the included
5See http://www.prism.oregonstate.edu/ for the original PRISM dataset and http://www.

wolfram-schlenker.com/dailyData/dataDescription.pdf for a more detailed description of the
daily data.

6Appendix Figure A1 shows corresponding graphs for each mainland state.
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monitors.

It is immediately apparent that there is a very strong relationship between wind

direction and pollution in both places. Across all the monitors in Illinois, relative

pollution levels are highest when the wind is blowing from the South and Southeast,

where many coal power plants are located, and lowest when the wind is blowing from

the West, Northwest, or North, a much cleaner area. In Massachusetts, the pattern

is slightly different: SO2 levels are highest when the wind is blowing from the South-

west, a relatively industrial area. SO2 levels are substantially lower for many other

directions, such as when the wind is blowing from the Northwest, North, Northeast,

and East, areas that include the Atlantic Ocean and more sparsely populated states.

Over long distances, it is common for wind patterns to be non-linear, so these es-

timates are not necessarily informative of the ultimate emission sources. However,

they are generally consistent with patterns of industrial activity, lending credence to

our identification strategy.

2.3 Mortality and county-level characteristics

We obtain daily mortality data from the National Vital Statistics System of the

National Center for Health Statistics. These data include counts of death, by county

of occurrence, along with the cause of death and basic demographic information

about the decedent such as age, gender, and race. We focus our analysis on the years

1972–1988 because those years contain data on the exact date of death.7 We classify

causes of death into four categories: cardiovascular, cancer, external, and “other”.

Cardiovascular disease is the leading cause of death, accounting for almost half of

the deaths in our sample. Cancer deaths make up slightly over twenty percent of
7The exact date of death is unavailable prior to 1972, and is suppressed after 1988 for confiden-

tiality reasons.
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overall mortality. External causes of deaths are responsible for about eight percent

of all deaths and include car accidents, poisonings, suicides, and other causes not

originating in the body. The remaining twenty or so percent of deaths are grouped

into the “other” category because none is large enough to warrant its own. The two

largest components of the “other” category are chronic lower respiratory illnesses and

diabetes.

To calculate death rates, we obtain annual intercensal population estimates from

the Surveillance, Epidemiology, and End Results (SEER) Program of the National

Cancer Institute. We calculate the death rate by dividing the count of deaths by the

size of the relevant population. Figure 4 displays death rates by age group and by

cause of death during the time period 1972–1988. Death rates are highest for the

elderly. The infant mortality rate steadily declines over time, and nearly equals the

average death rate of the population by the end of our sample period.

Panel B of Table 1 shows the average 3-day mortality rates for different subgroups

over this time period. Across all ages and all causes, the death rate is 74 per million

over any given 3-day period. The rate is higher for those aged 1 and under (99

per million) and substantially higher for those aged 65 and over (446 per million).

Individuals between the ages of 1 and 65 die at much lower rates (about 25 per

million).

The panel also shows mortality rates by major causes of death. Over a typical

3-day period, about 36 deaths per million were from cardiovascular causes. Cancer

and “other” causes each accounted for 16 deaths per million, and the remaining 6

deaths per million are attributable to external causes.

We obtain county-level poverty rates from the U.S. Census Bureau for the years

1970, 1980, 1990, and 2000. Data on county-level median incomes come from the

Regional Economic Information System (REIS), published by the Bureau of Eco-
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nomic Analysis. Finally, data on the share of the population that is black come from

SEER. To simplify interpretation, we use 1970 values of these variables in our current

analysis.

3 Using wind direction to estimate the effect of acute

pollution exposure on mortality

We expect the effect of wind direction on pollution concentration to differ across

space. For example, a westerly wind may be associated with high pollution levels

in Pennsylvania, a state located just to the east of the manufacturing-heavy state of

Ohio. A westerly wind in California, however, blows in from the Pacific Ocean and

thus may be associated with relatively low pollution levels for that area.

Estimating the effect of wind direction on local pollution separately for each pollu-

tion monitor, however, may capture pollution transport within a county. Intuitively,

pollution transport within a county may increase or decrease the measured pollution

concentrations at the monitor while leaving the average person’s pollution exposure

unchanged. The first stage would then suffer from measurement error that leads to at-

tenuation bias in the second stage. To avoid this problem, we allow the wind-pollution

relationship to vary by state, using local measures of wind direction but restricting

the coefficients on wind direction to be the same across all monitors within the same
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state. Specifically, we estimate the following first stage equation:

SO2cdmy =
50∑
s=1

2∑
b=0

βbs1[S = s]× 1[WDcdmy ⊆ [90b, 90b+ 90)]

+
2∑

l=0

fl(Tempc(d+l)my, P rcpc(d+l)my,WSc(d+l)my)

+
2∑

l=−2,l 6=0

50∑
s=1

2∑
b=0

γbsl1[S = s]× 1[WDc(d+l)my ⊆ [90b, 90b+ 90)]

+αc + αsm + αmy + εcdmy,

(1)

where c indexes counties, s indexes states, and d, m, y are day, month, and year,

respectively. The dependent variable, SO2cdmy, is the daily average sulfur dioxide

concentration, in parts per billion. The key independent variables are the 150 in-

dicators formed by the interaction of state indicators, 1[S = s], and wind direction

indicators, 1[WDcdmy ⊆ [90b, 90b + 90)] for b = 0, 1, and 2. The wind direction in-

dicators are equal to 1 if the daily average wind direction falls in the 90-degree bin

given by 90b and 90b+ 90, and 0 otherwise. The choice of relatively coarse wind an-

gle bins is driven by computational considerations, as increasing the number of bins

increases computational time drastically. As we demonstrate in Section 4.2, however,

our results are robust to increasing the number of wind direction bins.

We control for temperature, Tempcdmy, using a set of indicators for the minimum

or maximum temperature falling into a particular 3-degree Celsius range. The mini-

mum and maximum bins capture temperatures below −15 degrees or over 30 degrees.

We control for precipitation Prcpcdmy and wind speed WScdmy with two sets of indi-

cators for whether these climatic variables fall into one of ten deciles. The function

f() then forms a set of all possible interactions of these atmospheric controls, allowing

for tens of thousands of weather indicators. Again, our results are very stable when
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we vary the weather controls, supporting the validity of our instrumental variables

strategy.

As we discuss below, our main outcome of interest is the death rate over a three-

day period that includes the day of the pollution shock and the two subsequent days.

It is thus important to control for all variables that could be correlated with our

instruments and affect mortality over this time period. We control for two weather

leads with fl(), constructed in the same way as contemporaneous weather controls.

We also control for two leads and lags of the instruments, which will capture any

autocorrelation in wind direction. Finally, we also control for county, state-by-month,

and month-by-year fixed effects (αc, αsm, and αmy, respectively). Similar to our other

modeling choices, omitting the instrument lags and varying fixed effects does not

change our results much.

Our second-stage specification follows naturally from the first-stage specification:

DeathRate3daycdmy = ρ ̂SO2cdmy +
2∑

l=0

gl(Tempc(d+l)my, P rcpc(d+l)my,WSc(d+l)my)

+
2∑

l=−2,l 6=0

50∑
s=1

2∑
b=0

θbsl1[S = s]× 1[WDc(d+l)my ⊆ [90b, 90b+ 90)]

+αc + αsm + αmy + εcdmy.

(2)

The variable DeathRate3daycdmy is the 3-day mortality rate, calculated as the

number of deaths on days d, d + 1, and d + 2 per million people. We also consider

death rates of infants (<1 years old), those between the ages of 1 and 64, those who

are 65 and older, and deaths due to different causes. The key coefficient of interest is

ρ, which measures the effect of daily average sulfur dioxide concentration, ̂SO2cdmy,

on the mortality rate. The other control variables are the same as those shown in
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equation (1). Standard errors are clustered by county, and the regression is weighted

by county-year population.

While we focus our attention on SO2, our empirical approach does allow us to

instrument for multiple pollutants simultaneously. If there is sufficient variation in

the pollutant-wind relationship across pollutants, we can identify the acute mortality

impacts of each one. The cost of doing so, however, is a greatly reduced sample

size because many counties do not monitor all criteria pollutants at the same time.

The smaller sample size, in turn, reduces the power of our instruments and, more

importantly, the generalizability of our estimates. Thus, we do not include multiple

pollutants in our primary specification. Instead, we later perform a robustness check

to ensure that our conclusions about SO2 are not driven by other pollutants.

We also analyze how the marginal effects of pollution vary by income and pollution

levels. To capture variation in the marginal effects of SO2 along these dimensions,

we augment equations (1) and (2) with an interaction of the SO2 variable and each

county’s 1970 poverty rate, per-capita income, or average SO2 levels. To calculate

each county’s average pollution level, we average residuals from a regression of daily

SO2 levels in 1972–1988 on month and year fixed effects. Because each interaction

includes daily SO2, the resulting variables are also endogenous. We thus instrument

for them using our state-specific wind direction instruments.

While our heterogeneity analysis will correctly estimate how the causal marginal

effects of SO2 varies with each heterogeneity dimension of interest, it would be im-

proper to attribute causality to the latter variable. For example, while we can es-

timate how the marginal effects of SO2 vary with income, we cannot conclude that

the variation is caused by income differences as opposed to merely correlated with

them. This is because we have quasi-experimental variation in daily SO2 changes,

but not in the dimensions of heterogeneity that we study. Other unobservables that
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are correlated with average pollution levels or with income, such as the general health

of the population or the quality of hospitals and other local infrastructure, may ul-

timately be responsible for producing any observed heterogeneity. Nonetheless, such

heterogeneity is informative about the incidence of various pollution control policies,

at least in partial equilibrium.

4 Results

4.1 Effects of changes in short-run SO2 exposure on mortality

Table 2 reports OLS and IV estimates of the relationship between sulfur dioxide (SO2)

and 3-day mortality for different age groups. While most of the OLS estimates are

statistically significant (Panel A), they are on average about ten times smaller in

magnitude than the corresponding IV estimates (Panel B). The IV estimates indicate

that a one part-per-billion increase in SO2 increases 3-day all-age mortality by 0.14 per

million (0.20 percent of the mean). Infants and the elderly are most susceptible, both

in absolute and relative terms, although our estimates for infants are only marginally

significant. The mortality of those under 1 year of age increases by 0.16 per million

(0.16 percent of the mean), while the mortality rate of those 65 and older increases by

1.02 per million (0.22 percent of the mean). Those between the ages of 1 and 64 see

a much smaller, but still significant, increase of 0.04 per million. However, because

their average mortality rate is low, the relative pollution risk (0.16 percent of the

mean) is exactly the same as it is for infants. In our preliminary estimates for the

time period 1972–2015, 3-day all-age mortality increases by 0.21 deaths per million.

Infant mortality increases by 0.24 deaths per million, mortality for 1–64 year olds

increases by 0.06 per million, while mortality for those aged 65 and older increases
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by 1.3 per million. These infant mortality results are significant at the 5% level. All

other estimates are significant at the 1% level.

Table 3 shows the OLS and IV estimates by cause of death. Again, the IV esti-

mates are nearly an order of magnitude larger than OLS. The IV estimates in Panel B

suggest that about half of the overall increase in mortality in Table 2 is attributable to

cardiovascular causes (0.075 deaths per million). The next largest increase is among

categories classified as “other” (0.036 deaths per million), followed by cancer (0.026

deaths per million). Because it is impossible to develop and die from cancer in such

a short time period, this result suggests that SO2 is more likely to kill individuals

whose bodies are already weakened by other conditions. Finally, we find a small but

significant increase in external deaths (0.008 per million). While we lack detailed

data to probe this result further, it could be due to behavioral responses to pollution

(e.g., Currie et al., 2009; Neidell, 2009; Moretti and Neidell, 2011) or due to negative

effects of pollution on cognitive function (e.g., Crüts et al., 2008; Fonken et al., 2011;

Bishop, Ketcham and Kuminoff, 2017), which could lead to a small increase in the

likelihood of death.

Next, we gauge the extent to which our findings could be driven by other pol-

lutants by sequentially instrumenting for additional ones. To ensure comparability,

we limit our sample to observations that have pollution readings for SO2, nitrogen

dioxide (NO2), ozone (O3), and carbon monoxide (CO). The results for all-age all-

cause mortality are shown in Table 4. Note that because the pollutants have different

average concentrations and standard deviations, and CO is expressed in parts per

million, the different coefficients are not directly comparable to each other. However,

the emerging pattern is that the effects of SO2 are consistently significant and large.

A natural question is how long the decedents in our sample would have survived

if they were not killed by acute pollution exposure. The answer has first-order policy
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implications: society may value saving someone who otherwise would live for only five

more days differently than saving someone who would live for ten years. The idea that

acute pollution exposure may primarily affect individuals who would have died soon

anyway is called “mortality displacement” or “harvesting”. To see whether short-run

mortality displacement is a concern in our setting, we extend the time window over

which we consider mortality, up to 21 days after the change in pollution exposure. To

ensure that we are still capturing the impact of a one-time increase in SO2, we control

for the appropriate number of weather and instrument leads: four leads plus contem-

poraneous controls for 5-day mortality, six leads plus contemporaneous controls for

7-day mortality, and so on.

The results are shown in Figure 5. If short-term mortality displacement were an

issue in our setting, we would expect the estimated mortality effects to decline over

time, potentially all the way to zero. Instead, they are monotonically increasing from

0.15 deaths per million over three days to 0.26 deaths per million over ten days. The

estimates appear to converge at this point, with minimal changes in the estimated

mortality effects at 14 or 21 days. This convergence suggests that 10-day estimates

are sufficient to capture the long-run effects of acute pollution exposure.

4.2 Robustness

We now demonstrate the robustness of our results to various modifications of our main

estimating equation. A key identifying assumption in our analysis is that changes in

wind direction are unrelated to mortality except through their effects on pollution

levels. This identifying assumption is violated if wind direction is correlated with

certain weather patterns that affected mortality (e.g., high-temperature days) or with

seasonal phenomena that are also correlated with mortality (e.g., summer months).
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While this identifying assumption is impossible to assess directly, we can probe it

indirectly by testing the sensitivity of our estimates to different ways of controlling

for temperature, precipitation, and wind speed, and to different fixed effects.

Table 5 shows how the estimated effect of SO2 on all-age all-cause mortality as

we vary the fixed effects and the weather controls. In column (1), we do not generate

interactions between temperature, precipitation, and wind speed indicators, instead

including them separately. In column (2), we drop the weather controls entirely, and

in column (3) we omit minimum temperature and wind speed. Regardless of the

specification, our estimates are very similar. In columns (4)-(6), we vary the fixed

effects. Replacing our county, month-by-year, and state-by-month fixed effects with

county-by-year and state-by-month (column (4)), county and state-by-month-by-year

(column (5)), or county-by-month-by-year fixed effects (column (6)) does not have a

meaningful impact on our results.8 Thus, we are not concerned that omitted variables

along these dimensions are biasing our IV estimates.

We have demonstrated that wind direction is a strong predictor of pollution con-

centrations and that our first-stage F-statistic is large. For the sake of completeness,

we also re-estimate the IV specifications in Tables 2 and 3 using Limited Information

Maximum Likelihood (LIML), which is median unbiased even in the presence of weak

instruments. Our results, shown in Table 6, are nearly identical to our main results,

suggesting that our results do not suffer from weak instrument bias.

Relatedly, we generate random wind directions to see if the way we construct our

instruments is susceptible to spurious correlation. We leave the other controls as in

Equation (2) and use these placebo wind directions as instruments for SO2. The

results, shown in Table 7, are completely insignificant. Importantly, the first stage
8We have also estimated specifications that include only county and year fixed effects and a few

other variations. These produce very similar results and are not shown for the sake of brevity.
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F-statistics are very low, demonstrating that our strong first stage is not spurious.

In Online Appendix Table A1, we show that are results are likewise insensitive

to controlling for only one instrument lag and to excluding the instrument lags al-

together. Finally, we also demonstrate the robustness of our mortality estimates to

varying the number of wind direction bins, increasing them from four to six, nine, or

twenty-four (Online Appendix Table A2).

4.3 Heterogeneity analysis

Heterogeneity analysis is frequently used to understand underlying mechanisms and

to identify groups that are most affected. For example, low-income individuals are

less likely to have access to high quality healthcare than high-income individuals

and may thus be more susceptible to pollution, all else equal. Table 8 shows the

relationship between the marginal effect of SO2 and an area’s wealth, as measured

by the average income in 1970 (panel A) or by the percentage of residents who are

below the poverty line in 1970 (Panel B). The all-age mortality results in column (1)

are striking: areas with lower per capita incomes or a higher proportion of residents

below the poverty line are less susceptible to increases in sulfur dioxide. Specifically,

a one-percent increase in per capita income increases the marginal effect of one part

of SO2 per billion by 0.32 deaths per million people, which is more than twice of the

average effect in Table 2. A one percentage point increase in the percent of people

above the poverty line raises the marginal effect of SO2 by 0.009 deaths per million,

which corresponds to 0.101 deaths per million per standard deviation in the percent

of people above the poverty line.

Both of these results are driven by the oldest age group (column (4) of Table

8). A one-percent increase in per capita income is associated with a 2.88 deaths-per-
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million increase in the marginal effect of SO2 for those 65 and older. Similarly, a one

percentage point (standard deviation) increase in the share above the poverty line

raises the marginal effect of SO2 by 0.13 (1.46) deaths per million elderly. Thus, the

average estimates in Table 2 mask substantial income heterogeneity.

It is often assumed that the pollution-health relationship is convex, with marginal

damages from pollution increasing with pollution levels. One way in which hetero-

geneity analysis can shed light on that is by looking at the marginal effects of SO2 in

places with relatively high versus relatively low pollution levels. Table 9 shows how

the marginal effects of SO2 change with higher pollution levels. Here, we again ob-

tain counterintuitive results: the marginal effects of SO2 on mortality are falling with

SO2 (column (1)). Specifically, a one part-per-billion (standard deviation) increase

in average SO2 concentrations is associated with a decline in the marginal effect of

SO2 of 0.013 deaths per million (0.075 deaths per million).

We see similar patterns in the two oldest age groups where the interaction terms

are significant at above the ten percent level (columns (3) and (4)). The magnitude

is especially large for individuals aged 65 and older, with a one-standard-deviation

increase in average SO2 levels being associated with a 0.60 deaths per million decline

in the marginal effect of SO2. If interpreted causally, these estimates imply that the

pollution-mortality relationship is concave.

For infants (column (2)), higher average SO2 levels are associated with an increase

in the marginal effect of SO2 of about 0.045 deaths per million (0.26 in terms of the

standard deviation of mean SO2). This estimate is only marginally significant and

the future addition of newer data should help establish whether it is spurious or not.

Next, we consider heterogeneity by SO2 and by income jointly (Table 10). Our

estimates for how the marginal effects of SO2 change with income levels largely cease

to be significant (an exception is the gradient with respect to percent above the
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poverty line for ages 65 and older). However, the point estimates are positive, and

we are hopeful that with the addition of more data, we will obtain smaller standard

errors. The gradient of the marginal effects of SO2 with respect to average SO2 levels

looks very similar to when we do not control for income.

Of course, it is only appropriate to interpret these results as being caused by

poverty rates or SO2 levels if there is no omitted variable that is correlated with (a)

poverty rates, average incomes, or average pollution levels and (b) the marginal effect

of SO2 on mortality. In Online Appendix Tables A3 and A4, we regress poverty rates

and SO2 on various county characteristics and show that this is unlikely to be the case.

For example, poorer counties also have lower average SO2 levels, a lower population

density, a higher share of black, young (<1 year), and old (>64 years) residents

in 1970 and, unsurprisingly, a lower per-capita income. Counties with higher SO2

levels have lower poverty rates but also lower per capita income. They have a higher

population density, higher shares of young and old residents, but a lower share of

black residents. Each of these variables is significantly and independently correlated

with the heterogeneity dimension of interest and it is likely that many of them are

also correlated with the marginal damages caused by SO2.

Despite the fact that the correlations between the marginal effects of SO2, income,

and average pollution levels may not reflect a causal relationship, they still have

important implications for how the mortality benefits of pollution reduction efforts are

distributed. In particular, they show that there may be a tradeoff between efficiency

and equity, as targeting richer and less polluted areas would produce the largest

mortality reductions but also exacerbate existing inequality.
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4.4 Implications of the results

Between 1972 and 1988, population-weighted SO2 concentrations fell by about 10

parts per billion (Figure 1). We can use our results to estimate the mortality reduc-

tion benefits of this decrease in air pollution. In our calculation, we conservatively

assume that each life lost to sulfur dioxide corresponds to one life-year lost, i.e., that

individuals killed by SO2 would have only lived for one additional year in the absence

of this shock.9 This assumption also makes it easy for interested readers to re-scale

our estimates by their preferred quantity of life-years lost. We focus on the sample

of counties with SO2 monitors, as this is the population for which our estimates are

directly relevant. However, this restriction also means that our estimates are likely

to be a lower bound.

Figure 6 shows the estimated decreases in the annual number of deaths as a result

of these pollution reductions, as well as the corresponding economic benefits, assuming

that one life-year is worth $100,000 and that one life-year is lost per death. Because

no mortality reduction is truly permanent, these estimates should be interpreted as

the number of deaths delayed by at least one year (by exactly one year if each death

corresponds to one life-year lost). As pollution concentrations are falling, the benefits

are growing: our estimates imply that if SO2 levels had remained at their 1972 levels,

there would have been about 66,000 more deaths per year in 1987–1988, producing

economic losses of $6.6 billion per year. While 66,000 additional deaths may seem

like a large number, it should be compared to the overall number of deaths per year

in the US, which during the 1980s total 1.1-1.2 million per year in the sample of

counties covered by SO2 monitors.10 Adding up the annual estimates, we conclude
9Deryugina et al. (2018) estimate that the typical elderly individual killed by PM 2.5 has a

counterfactual life expectancy of 3.6 years. Because our sample is on average much younger, assuming
a counterfactual life expectancy of one year is thus very likely to be conservative.

10If we assume that counties not covered by SO2 monitors experience the same average reduction
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that the 1972–1988 reductions in SO2 reduced the total number of deaths over this

time period by 780,000, corresponding to economic gains of $78 billion.

5 Conclusion

Accurate estimates of the effect of pollution exposure on health and mortality are vital

for making informed policy decisions. Yet, reliable causal estimates remain scarce,

especially for the non-infant population. We use daily average wind direction as an

instrument for short-run changes in sulfur dioxide to estimate its causal effect on

nationwide mortality over two decades. Our results show that naive OLS estimates

are significantly biased, and that mortality among all age groups rises significantly

over the three days following a one-day increase in SO2.

We exploit our large sample size to estimate how the causal effect of sulfur dioxide

varies by income and by a county’s average pollution levels. Surprisingly, we find

that the marginal impacts of SO2 are larger in richer and less polluted counties.

This finding suggests a tradeoff between efficiency and equity, as targeting richer and

less polluted areas would produce the largest mortality reductions yet also make the

burdens of pollution less equal.

An important caveat is that the correlation between the marginal effects of pol-

lution, income, and average pollution levels may have changed over time. We have

begun analysis that will allow us to incorporate data from 1989–2015 in the next

revision of this paper. We also plan to investigate whether these relationships have

changed in recent years.

in SO2 concentrations, we would conclude that by 1988 there were almost 100,000 fewer deaths per
year (out of 1.5 million deaths total), with annual benefits of almost $10 billion.
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Figures

Figure 1: Air pollution and number of monitored counties, by year
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(c) NO2
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(d) O3
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Notes: This figure displays average daily pollution levels from 1972–2015 for all US counties with
operational pollution monitors, along with the fraction of the US population covered by those coun-
ties. Data are obtained from the the EPA Air Quality database. Pollution data for CO, NO2, and
O3 end in 2014.

26



Figure 2: A lot of air pollution originates from distant sources, especially in the East

(a) PM 2.5 (b) Sulfates

Notes: This figure, reproduced from EPA (2004), shows that a large fraction of measured PM 2.5
and sulfates does not originate from local sources. Sulfates, which are an important component of
PM 2.5, are formed from the atmospheric transformation of sulfur dioxide.
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Figure 3: The relationship between wind direction and SO2 concentrations

Notes: The left graphs plot coefficients from two regressions of sulfur dioxide on wind direction in
10-degree angle bins, using the samples of monitors displayed by the two maps on the right. The
regressions include flexible controls for weather conditions, described in equation (1), county, state-
by-month, and month-by-year fixed effects. The x-axis shows the direction from which the wind
is blowing ("N" = North, "NE" = Northeast, "E" = East, and so on), while the y-axis shows the
corresponding changes in SO2, in parts per billion, and the 95 percent confidence interval. Standard
errors are robust to heteroskedasticity.
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Figure 4: Trends in United States mortality rates, 1972-1988

(a) By age group
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(b) By cause of death
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Notes: These two figures report annual mortality rates from 1972-1988. These rates are calculated
using mortality data from the National Vital Statistics and population data from SEER.

29



Figure 5: The effect of acute SO2 exposure on mortality over different time periods

Notes: Each point represents an estimate and 95% confidence intervals from an IV regression of the
mortality rate over the given number of days on a 1-day change in SO2. Controls include county,
month-by-year, and state-by-month fixed effects, two lags of the instruments, contemporaneous
temperature and precipitation, as well as instrument, temperature, and precipitation leads. The
number of leads in each regression is equal to the number of days minus one.
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Figure 6: Annual mortality reduction benefits of 1972–1988 decreases in SO2

Notes: Estimates are constructed using the all-age IV mortality estimate from Table 2 and annual
population-weighted SO2 concentrations. To construct our estimate of economic gains, we assume
that each death results in a loss of one life-year and that each life-year is worth $100,000. Both the
mortality reductions and economic value of these reductions are per year. Only counties with SO2

monitors are included in this calculation.
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Tables

Table 1: Summary statistics

(1) (2) (3)

Mean
Standard
deviation Observations

Panel A: Pollution

Sulfur dioxide, parts per billion 9.31 12.64 1,861,504
Nitrogen dioxide, parts per billion 22.06 15.79 706,968
Carbon monoxide, parts per million 1.64 1.36 842,841
Ozone, parts per billion 25.53 13.69 666,801

Panel B: Mortality

All-cause, all-age 74.14 50.61 1,861,504
Age 1 and under 98.65 275.69 1,861,504
Age 1-64 25 26.97 1,861,504
Age 65 and older 446.22 301.66 1,861,504
Cardiovascular 36.44 30.61 1,861,504
Cancer 15.66 17.04 1,861,504
Other 16.45 18.59 1,861,504
External 5.59 13.47 1,861,504

Sources: Environmental Protection Agency, National Center for Health Statistics, and National
Cancer Institute. Sample restricted to observations where both mortality and sulfur dioxide are
non-missing.
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Table 2: Daily SO2 concentrations and mortality across age groups

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

Panel A: OLS estimates

SO2, parts per billion 0.015*** 0.013 0.005*** 0.113***
(0.006) (0.019) (0.001) (0.034)

Dep. var. mean 74.034 97.608 24.887 445.161
Effect relative to daily mean, percent 0.020 0.013 0.018 0.025
Observations 1,786,321 1,786,321 1,786,321 1,786,321

Panel B: IV estimates

SO2, parts per billion 0.144*** 0.164* 0.035*** 1.017***
(0.026) (0.099) (0.009) (0.177)

F-statistic 264.933 238.841 261.909 295.755
Dep. var. mean 74.122 98.559 24.983 445.971
Effect relative to daily mean, percent 0.195 0.166 0.140 0.228
Observations 1,837,094 1,837,094 1,837,094 1,837,094

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group specified by the column. All regressions include county, state-by-month and
month-by-year fixed effects, as well as flexible controls for minimum and maximum temperature,
precipitation, and wind speed; and two leads of the weather controls. OLS estimates also include
two leads and two lags of sulfur dioxide; IV estimates also include two leads and two lags of the
instruments. Estimates are weighted by the number of people in the relevant age group.
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Table 3: Daily SO2 concentrations and mortality across causes of death

(1) (2) (3) (4)
Cardiovascular Cancer Other External

Panel A: OLS estimates

SO2, parts per billion 0.008** 0.004*** 0.002 0.001***
(0.004) (0.001) (0.001) (0.001)

Dep. var. mean 36.370 15.654 16.437 5.573
Effect relative to daily mean, percent 0.022 0.024 0.010 0.025
Observations 1,786,321 1,786,321 1,786,321 1,786,321

Panel B: IV estimates

SO2, parts per billion 0.075*** 0.026*** 0.036*** 0.008*
(0.015) (0.005) (0.006) (0.004)

F-statistic 264.933 264.933 264.933 264.933
Dep. var. mean 36.401 15.673 16.458 5.590
Effect relative to daily mean, percent 0.207 0.165 0.217 0.135
Observations 1,837,094 1,837,094 1,837,094 1,837,094

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people from
the cause specified by the column. All regressions include county, state-by-month and
month-by-year fixed effects, as well as flexible controls for minimum and maximum temperature,
precipitation, and wind speed; and two leads of the weather controls. OLS estimates also include
two leads and two lags of sulfur dioxide; IV estimates also include two leads and two lags of the
instruments. Estimates are weighted by the number of people.
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Table 4: Other pollutants and mortality

(1) (2) (3) (4) (5) (6) (7)

SO2, parts per billion 0.160*** 0.102*** 0.151*** 0.136*** 0.099*** 0.104*** 0.099***
(0.021) (0.030) (0.024) (0.024) (0.031) (0.030) (0.031)

NO2, parts per billion 0.069*** 0.066*** 0.055* 0.045
(0.022) (0.021) (0.029) (0.028)

Ozone, parts per billion 0.031 0.016 0.029
(0.030) (0.027) (0.027)

CO, parts per million 0.819** 0.338 0.491
(0.357) (0.439) (0.467)

F-statistic 103.416 30.926 22.767 33.298 21.420 22.207 14.965
Observations 274,269 274,269 274,269 274,269 274,269 274,269 274,269
Dep. var. mean 26.190 78.573 78.573 78.573 78.573 78.573 78.573

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people. All
regressions include county, state-by-month and month-by-year fixed effects, as well as flexible
controls for minimum and maximum temperature, precipitation, and wind speed; two leads and
two lags of the instruments; and two leads of the weather controls. Estimates are weighted by the
county population.
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Table 5: Robustness of estimates to different fixed effects and weather controls

(1) (2) (3) (4) (5) (6)

SO2, parts per billion 0.150*** 0.120*** 0.152*** 0.143*** 0.141*** 0.140***
(0.024) (0.019) (0.021) (0.024) (0.025) (0.025)

Weather controls separate none

no min.
temp., no

wind
speed full full full

Fixed effects

county,
month-
by-year,
state-by-
month

county,
month-
by-year,
state-by-
month

county,
month-
by-year,
state-by-
month

county-
by-year,
state-by-
month

county,
state-by-
month-
by-year

county-
by-

month-
by-year

F-statistic 289.223 341.382 299.662 317.515 298.572 384.307
Dep. var. mean 74.126 74.126 74.126 74.122 74.121 74.122
Observations 1,838,847 1,838,847 1,838,847 1,837,075 1,837,062 1,836,566

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of 3-day deaths per million people. Controls
and fixed effects are as specified in each column. All specifications include two leads and two lags
of the instruments. Estimates are weighted by the total population.
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Table 6: Daily SO2 concentrations and mortality, LIML estimation

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

SO2, parts per billion 0.145*** 0.165* 0.035*** 1.023***
(0.026) (0.100) (0.009) (0.179)

F-statistic 264.933 238.841 261.909 295.755
Dep. var. mean 74.122 98.559 24.983 445.971
Effect relative to daily mean, percent 0.196 0.167 0.140 0.229
Observations 1,837,094 1,837,094 1,837,094 1,837,094

Cardiovascular Cancer Other External

SO2, parts per billion 0.076*** 0.026*** 0.036*** 0.008*
(0.015) (0.005) (0.006) (0.004)

F-statistic 264.933 264.933 264.933 264.933
Dep. var. mean 36.401 15.673 16.458 5.590
Effect relative to daily mean, percent 0.208 0.165 0.218 0.136
Observations 1,837,094 1,837,094 1,837,094 1,837,094

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group or from the cause of death specified by the column. All regressions include county,
state-by-month and month-by-year fixed effects, as well as flexible controls for minimum and
maximum temperature, precipitation, and wind speed; two leads and two lags of the instruments;
and two leads of the weather controls. Estimates are weighted by the number of people in the
relevant age group.
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Table 7: Placebo daily SO2 concentrations and mortality

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

SO2, parts per billion -0.004 -1.569 0.037 -0.284
(0.179) (1.487) (0.078) (1.277)

F-statistic 2.103 2.230 2.132 1.898
Dep. var. mean 74.034 97.608 24.887 445.161
Effect relative to daily mean, percent -0.005 -1.608 0.147 -0.064
Observations 1,786,321 1,786,321 1,786,321 1,786,321

Cardiovascular Cancer Other External

SO2, parts per billion -0.019 0.043 -0.067 0.039
(0.090) (0.054) (0.088) (0.034)

F-statistic 2.103 2.103 2.103 2.103
Dep. var. mean 36.370 15.654 16.437 5.573
Effect relative to daily mean, percent -0.052 0.275 -0.406 0.695
Observations 1,786,321 1,786,321 1,786,321 1,786,321

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group of from the cause specified by the column. All regressions include county,
state-by-month and month-by-year fixed effects, as well as flexible controls for minimum and
maximum temperature, precipitation, and wind speed; two leads and two lags of the placebo
instruments; and two leads of the weather controls. Estimates are weighted by the number of
people in the relevant age group.
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Table 8: Heterogeneity in the effect of SO2 by income

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

Panel A: using income per capita as income measure

SO2, parts per billion -2.575*** -1.468 -0.576 -23.309***
(0.987) (8.461) (0.410) (8.663)

SO2 x log(per capita income in 1970) 0.321*** 0.189 0.072 2.877***
(0.117) (1.005) (0.049) (1.030)

F-statistic 85.601 79.212 84.999 92.344
Dep. var. mean 72.519 97.029 24.303 437.659
Observations 1,797,521 1,797,521 1,797,521 1,797,521

Panel B: using percent above poverty line as income measure

SO2, parts per billion -0.714** -3.463 0.178 -10.778***
(0.348) (3.060) (0.168) (3.064)

SO2 x % above poverty line in 1970 0.009** 0.040 -0.002 0.130***
(0.004) (0.034) (0.002) (0.034)

F-statistic 81.771 80.170 81.886 84.712
Dep. var. mean 72.519 97.029 24.303 437.659
Observations 1,797,521 1,797,521 1,797,521 1,797,521

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group specified by the column. All regressions include county, state-by-month and
month-by-year fixed effects, as well as flexible controls for minimum and maximum temperature,
precipitation, and wind speed; two leads and two lags of the instruments; and two leads of the
weather controls. Estimates are weighted by the number of people in the relevant age group.
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Table 9: Heterogeneity in the effect of SO2 by average SO2 levels

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

SO2, parts per billion 0.209*** -0.049 0.058*** 1.585***
(0.034) (0.138) (0.011) (0.237)

SO2 x average SO2 -0.013*** 0.045* -0.005*** -0.105***
(0.004) (0.025) (0.002) (0.026)

F-statistic 85.749 67.285 84.391 99.027
Dep. var. mean 74.122 98.559 24.983 445.971
Observations 1,837,094 1,837,094 1,837,094 1,837,094

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group specified by the column. All regressions include county, state-by-month and
month-by-year fixed effects, as well as flexible controls for minimum and maximum temperature,
precipitation, and wind speed; two leads and two lags of the instruments; and two leads of the
weather controls. Estimates are weighted by the number of people in the relevant age group.
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Table 10: Heterogeneity in the effect of SO2 by average SO2 levels

(1) (2) (3) (4)
All ages <1 y.o. 1-64 y.o. >64 y.o.

Panel A: using income per capita as income measure

SO2, parts per billion -1.378 -5.948 -0.115 -11.804
(1.036) (8.030) (0.435) (8.307)

SO2 x log(per capita income in 1970) 0.184 0.698 0.019 1.560
(0.123) (0.952) (0.052) (0.983)

SO2 x average SO2 -0.010*** 0.045* -0.004** -0.081***
(0.003) (0.026) (0.002) (0.023)

F-statistic 68.652 63.681 68.744 68.398
Dep. var. mean 72.519 97.029 24.303 437.659
Observations 1,797,521 1,797,521 1,797,521 1,797,521

Panel B: using percent above poverty line as income measure

SO2, parts per billion -0.434 -4.225 0.288* -7.880**
(0.389) (2.966) (0.172) (3.100)

SO2 x % above poverty line in 1970 0.007 0.046 -0.003 0.102***
(0.004) (0.033) (0.002) (0.034)

SO2 x average SO2 -0.011*** 0.044 -0.004** -0.080***
(0.003) (0.029) (0.002) (0.021)

F-statistic 65.918 60.427 66.033 66.539
Dep. var. mean 72.519 97.029 24.303 437.659
Observations 1,797,521 1,797,521 1,797,521 1,797,521

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of deaths over 3 days per million people in the
age group specified by the column. All regressions include county, state-by-month and
month-by-year fixed effects, as well as flexible controls for minimum and maximum temperature,
precipitation, and wind speed; two leads and two lags of the instruments; and two leads of the
weather controls. Estimates are weighted by the number of people in the relevant age group.
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Online Appendix

Appendix Figures

Figure A1: The relationship between wind direction and pollution concentrations by
state
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Graphs show coefficients from state-specific regressions of sulfur dioxide on wind direction in 10-
degree angle bins. Regressions include flexible controls for weather conditions, described in equation
(1), county, state-by-month, and month-by-year fixed effects. The x-axis shows the direction from
which the wind is blowing ("N" = North, "NE" = Northeast, "E" = East, and so on), while the
y-axis shows the corresponding changes in SO2, in parts per billion, and the 95 percent confidence
interval. Standard errors are robust to heteroskedasticity.
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Appendix Tables

Table A1: Robustness of estimates to different numbers of instrument lags

(1) (2) (3)
2 lags 1 lag No lags

Panel A: All-cause all-age mortality

SO2, parts per billion 0.144*** 0.151*** 0.149***
(0.016) (0.016) (0.018)

F-statistic 211.833 218.521 237.429
Dep. var. mean 73.897 73.906 73.915
Observations 1,776,618 1,788,048 1,799,476

Panel B: Cardiovascular mortality

SO2, parts per billion 0.074*** 0.076*** 0.076***
(0.010) (0.010) (0.011)

F-statistic 211.833 218.521 237.429
Dep. var. mean 36.246 36.263 36.281
Observations 1,776,618 1,788,048 1,799,476

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Robust standard errors in parentheses.
Dependent variable is number of 3-day deaths per million people. All regressions include county,
state-by-month and month-by-year fixed effects, as well as flexible controls for minimum and max-
imum temperature, precipitation, and wind speed; two leads and two lags of the instruments; and
two leads of the weather controls. Estimates are weighted by the total population.

Table A2: Robustness of estimates to different wind direction bins

(1) (2) (3) (4)

SO2, parts per billion 0.144*** 0.137*** 0.133*** 0.131***
(0.026) (0.024) (0.023) (0.021)

Number of wind direction bins 4 6 9 24

F-statistic 264.933 186.126 128.197 49.594
Dep. var. mean 74.122 74.034 74.034 74.034
Observations 1,837,094 1,786,321 1,786,321 1,786,321

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses)
clustered by county. Dependent variable is number of 3-day deaths per million people. All
regressions include county, state-by-month and month-by-year fixed effects, as well as flexible
controls for minimum and maximum temperature, precipitation, and wind speed; two leads and
two lags of the placebo instruments; and two leads of the weather controls. Estimates are weighted
by the total population.
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Table A3: Correlations between poverty levels and other characteristics

(1) (2) (3) (4)

Mean SO2 levels, 1972-1988 0.35*** 0.13*** 0.14*** 0.15***
(0.04) (0.04) (0.04) (0.02)

Population density (log) 1.48*** 2.49*** 2.18*** 0.34**
(0.16) (0.15) (0.15) (0.16)

% black -0.38*** -0.38*** -0.25***
(0.02) (0.02) (0.02)

% aged below 1 -4.49*** -3.09**
(1.58) (1.24)

% aged 65 and older -0.44*** -0.27***
(0.07) (0.05)

Per capita income (log) 25.24***
(1.32)

Observations 1,003 986 986 986
Adjusted R-squared 0.18 0.46 0.49 0.73

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Robust standard errors in parentheses.
Dependent variable is the percentage of a county’s 1970 population that lived above the poverty
line. All independent variables are as of 1970 unless otherwise indicated.
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Table A4: Correlations between average SO2 concentrations and 1970 characteristics

(1) (2) (3) (4) (5) (6)

% above poverty line 0.23*** 0.17*** 0.10*** 0.20*** 0.11*** 0.21***
(0.02) (0.02) (0.03) (0.04) (0.04) (0.04)

Population density (log) 0.80*** 1.07*** 1.23*** 1.14*** 1.30***
(0.15) (0.21) (0.22) (0.19) (0.21)

% black -0.09*** -0.07*** -0.08*** -0.07***
(0.02) (0.02) (0.02) (0.02)

Per capita income (log) -5.45*** -5.56***
(1.31) (1.31)

% aged below 1 2.28* 2.40*
(1.22) (1.23)

% aged 65 and older 0.11** 0.11**
(0.05) (0.05)

Observations 1,003 1,003 986 986 986 986
Adjusted R-squared 0.11 0.15 0.17 0.18 0.17 0.19

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Robust standard errors in parentheses.
Dependent variable is county’s average SO2 concentration between 1972-1988, adjusted for seasonal
and temporal variation. All independent variables are as of 1970.
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