
The Impact of Air Pollution on Labor Supply in China ∗

Mingxuan Fan† and Corbett Grainger

Department of Agricultural and Applied Economics, University of Wisconsin-Madison

April 29, 2019

Abstract

In this paper, we study the relationship between air pollution, i.e. fine particulate
matter (PM2.5), and labor hours worked in China. We use restricted individual-level
panel data, from the China Family Panel Survey, and match it with sub-district level
remote-sensing pollution estimates. Our individual fixed effects estimates indicate that,
among the population aged 16-75, an increase of 1 µg/m3 in PM2.5 reduces an indi-
vidual’s average hours worked by 29 minutes per week. Evaluated at the mean in our
data, a one percent increase in annual average PM2.5 concentrations decreases hours
worked by about one percent. This suggests that chronic pollution exposure has a
significant impact on labor supply decisions.
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1 Introduction

Due to its rapid economic growth and corresponding increase in fossil fuel use, air pollution,

especially fine particulate matter (PM2.5), has become a major concern in China. The annual

average population-weighted PM2.5 level in Chinese cities was 61 µg/m3 in 2015, three times

as high as the global population-weighted mean (Zhang and Cao, 2015), with fewer than 1%

of the Chinese cities met the air quality guidelines issued by the World Health Organization

(Zhang and Crooks, 2012). Though estimates of the magnitude vary, fine particulates have

been shown to have a significant impact on mortality and morbidity (GBD 2015). There

are many recent papers establishing a causal link between pollution and health effects or

mortality (c.f. Schlenker and Walker, 2015; Graff Zivin and Neidell, 2013), including papers

focusing explicitly on mortality or morbidity in China (Chen et al., 2013). Pollution has also

been shown to impact a variety of other outcomes, including school attendance (Currie et al.,

2009), cognition (Bishop, Ketcham and Kuminoff, 2018), and early exposure has been tied to

longer-run earnings (Isen, Rossin-Slater and Walker, 2017). Furthermore, there is a growing

literature showing how individuals respond to pollution through defensive expenditures (Ito

and Zhang, 2016; Deschenes, Greenstone and Shapiro, 2017; Sun, Kahn and Zheng, 2017).

It is plausible that chronic pollution exposure could affect labor supply decisions, but most

evidence to date focuses on productivity (e.g. Graff Zivin and Neidell, 2012; Chang et al.,

2016a; Chang et al., 2016b; He, Liu and Salvo, 2016) or short-run impacts of pollution shocks

on labor supply (e.g. Hanna and Oliva, 2015; Aragón, Miranda and Oliva, 2017). Despite the

severity of the PM2.5 levels and the large population that is affected, little is known regarding

the effect of chronic PM2.5 concentrations on labor supply. In this paper, we use restricted
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individual-level panel data from China, paired with remote-sensing pollution estimates, to

estimate the impact of PM2.5 on hours worked.

To estimate the impact of fine particulate matter on labor supply, a major challenge

is controlling properly for confounding factors. For example, economic growth affects both

pollution levels and labor demand. In this study, we take advantage of the panel structure

of the data and estimate an individual fixed effects model to control for individual time-

invariant characteristics, including heterogeneous responses to pollution. Unlike previous

studies, we focus on longer-term exposure and use a representative survey with individuals

from all segments of the population. We have restricted-access data, which allows us to

flexibly control for macroeconomic conditions and factors such as regional differences in

seasonality. Moreover, the restricted access data allow us to assign pollution concentrations

to individuals with remote sensing estimates of pollution. This allows us to circumvent many

of the measurement issues associated with using traditional ambient pollution monitoring

data, particularly in China.

We contribute to the empirical research on the impact of PM2.5 on labor supply in the

several ways: first, we explore the impact of long term (annual) exposure to air pollution,

which complements research that relies on short-run (weekly or daily) fluctuations of pol-

lution; second, by using Chinese data, we are looking at a population exposed to a very

high annual mean PM2.5 level, the impact of which is unknown in the literature; third, our

study is not limited to a specific industry or city/region, as we are using a nationally rep-

resentative sample with both agricultural and non-agricultural workers; finally, we are able

to match individuals to air pollution exposure at the sub-district level, the smallest census

unit in China, which is a significant improvement in the accuracy of pollution assignment
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over existing studies using data from in situ pollution monitors with sparse coverage.

We find a large impact of particulate matter on hours worked. Our preferred fixed

effects estimates show that a 1 µg/m3 increase in PM2.5 reduces the hours worked by 29

minutes per week for an average worker. Evaluated at the mean, this suggests that a one

percent increase in annual average PM2.5 concentrations decreases hours worked by about

one percent. Extrapolating and ignoring general equilibrium considerations, if cities were

to comply with China’s new National Ambient Air Quality Standards (2012 NAAQS) hours

worked by an average individual would increase by three and half hours per week.

The rest of the paper is organized as follows: section 2 provides background on air

pollution and its regulation in China; section 3 and 4 present the data and empirical strategy,

respectively; section 5 presents the findings; and section 6 concludes.

2 Fine Particulate Matter in China

Fine particulate matter, or PM2.5, is an air pollutant that consists of tiny airborne particles

less than 2.5 micrometers in aerodynamic diameter. In urban areas in China, the main

sources of PM2.5 are electric power plants, industrial facilities, automobiles, and heating,

while in rural areas it is primarily due to biomass burning, agricultural dust and from

windblown sources outside the region. According to official data, the annual mean PM2.5

concentration across the 338 monitored cities was 50 µg/m3 in 2016 (MEP, 2016), much

higher than the 35 µg/m3 standard set by 2012 NAAQS and the 10 µg/m3 standard set by

the World Health Organization (WHO, 2005). We note that rural areas in China contain

very few in situ ambient air pollution monitors.
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PM2.5 has been shown to be an extremely harmful pollutant. Due to its size, it can

penetrate the respiratory system and reach deep into the lungs and circulatory system. Its

light weight also allows it to remain suspended in the air for prolonged periods. Because

these particles are so small, conventional masks and air filters are not as effective in miti-

gating the impact of PM2.5 on human health. A large literature finds that PM2.5 causes and

intensifies cardiovascular and respiratory diseases, especially in elderly, infants, and persons

with existing health conditions, although others are susceptible to less serious health effects

such as transient increases in respiratory symptoms, decreased lung function, or other phys-

iologic changes (Dockery, 2001; Pope, 2000). Chronic exposure studies suggest relatively

broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate

pollution, resulting in substantive estimates of population average loss of life expectancy in

highly polluted environments (Pope, 2000).

Prior to 2012, there was no formal regulation of PM2.5 in China. The 2012 National

Ambient Air Quality Standard (NAAQS) started the monitoring and reporting of PM2.5 and

at the same time set stringent standards for other pollutants such as PM10. The standard for

the annual mean PM2.5 is set at 35 µg/m3 and the 24-hour mean at 75 µg/m3, much higher

than the WHO standards of 10 µg/m3 and 25 µg/m3 for the annual and 24-hour mean,

respectively (WHO, 2005). The implementation of the new standards takes a staged ap-

proach, with the first phase implemented in 2012 covering 66 cities including municipalities,

provincial capitals, provincial level cities, major cities in Jing-Jin-Ji region1, Yangzi River

Delta, and Pearl River Delta; the second phase implemented in 2013 covered 116 additional

cities; and the third phase implemented in 2014 added another 177 cities. By the end of

1Also known as the national capital region comprising Beijing,Tianjin, and Hebei Province.
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2014, all prefecture-level cities were regulated by 2012 NAAQS.2

As of 2017, there were 1,436 air pollution monitors across the country and the real-time

air quality index was being published by China National Environmental Monitoring Center.3

Figure 1 illustrates the spatial distribution of monitors in three Chinese cities. As shown in

the figure, monitor coverage is sparse, even in densely populated cities.

3 Data

3.1 Labor supply

The main dataset we use is the restricted-use micro-data from the China Family Panel

Studies (CFPS), which follows more than 33,000 adults in 635 sub-districts through the

year 2010, 2012, and 2014 (Xie and Hu, 2014). The panel structure of the data allows us

to partial out individual-specific time-invariant unobserved characteristics. The survey also

provides rich information on individual, household, and community characteristics, as well

as the sub-district in which each surveyed family resides.

Our main variable of interest is hours worked, which is reported at the individual level for

each member of the surveyed household. We construct the average hours worked per week

in the year prior to the interview. For agricultural labor hours, we use the average hours

worked per week when an individual is involved in family agriculture; for non-agricultural

labor hours, we use the number of hours worked across all current non-agricultural jobs. We

do not include those who have both agricultural and non-agricultural jobs for two reasons:

2As a robustness check, we consider a 2SLS model leveraging the staged implementation of these standards
in Section 5.3.

3Refer to http://www.cnemc.cn/sssj/ for more information.
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first, it is difficult to accurately assign air pollution levels to such individuals given the lack of

information on whether their agricultural and non-agricultural jobs are in the same location;

second, due to the lack of information on the timing of family agriculture, we do not know

whether an individual has jobs in both sectors concurrently or not, and it is not possible to

determine the total hours worked for such individuals.

3.2 Air pollution

For air pollution, we use satellite-derived PM2.5 estimates developed by van Donkelaar et al.

(2016) that are produced by combining Aerosol Optical Depth (AOD) retrievals from the

NASA MODIS, MISR, and SeaWIFS instruments with the GEOS-Chem chemical transport

model, and subsequently calibrated to regional ground-based observations of both total and

compositional mass using Geographically Weighted Regression (GWR).4

The data consist of estimated annual mean PM2.5 concentrations from 2009 to 2014 at the

global scale with a grid cell resolution of 0.01°×0.01°, which corresponds to roughly a square

kilometer. We aggregate these estimates at sub-districts level using location information

provided by the 2010 Township Population Census.5

There has been an increase in number of studies in economics utilizing satellite-derived

pollution estimates, especially in countries like China (Chen, Oliva and Zhang, 2017; Fu and

Zhang, 2017; and Freeman et al., 2019). We use satellite-derived pollution estimates as an

alternative to monitor data for several reasons. First of all, monitor level data, especially

PM2.5, is only partially available for our study period, although an extensive monitor network

4The calibration is done at the global scale and not for China exclusively. Monitoring PM2.5 was not
mandatory in China before 2012.

5There are a total of 42,403 sub-districts in the 2010 population census.
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has been established post 2012. Second, there have been concerns regarding the validity of

monitor data in China. Ghanem and Zhang (2014) find evidence of manipulation in 50%

of the reported pollution levels that led to a discontinuity at the cut-off. Third, although

real-time monitor reading could significantly reduce the potential manipulation through re-

porting, there have been cases of direct tampering of monitors in order to reduce reported

pollution, by physically altering the monitor or by spraying water through the surround-

ing air to decrease concentrations locally (c.f. The Telegraph, Oct 26, 2016). Fourth, even

with the recently established monitoring network, the pollution monitors are still sparsely

distributed and rarely cover the rural areas. Figure 1 presents an example of the concen-

tration of monitors in urban areas. The topmost panel shows the distribution of monitors

in the city of Chongqing6, one of China’s biggest cities, where the 17 air pollution monitors

are concentrated in the six central districts, leaving other 32 districts/counties without any

monitor coverage. Using monitor data would require the assumption that the districts with-

out monitors, mostly rural areas, have the same exposure level as the urban center located

hundreds of miles away, which is highly implausible.7

3.3 Matching labor and pollution data

With access to restricted data from CFPS, we are able to match air pollution to individuals

at the sub-district level, the smallest unit of census block in China. Using survey year and

6According to Chongqing Municipal Government, the city has a population of more than 30 million and
an area of 82,400 square kilometer. The other two panels in the figure illustrate monitor distribution in
Beijing and Shanghai, with a population of 21.54 million and 26.32 million and an area of 16,808, and 6,340
km2, respectively.

7Figure A.1 in the Appendix presents the distribution and large variation of annual mean PM2.5 across
sub-districts in Chongqing in 2014, with a minimum of 22 µg/m3 and a maximum of 61 µg/m3. In addition
to concerns about sparse coverage, we also note that there could be concerns about endogenous monitor
siting(Grainger, Schreiber and Chang, 2018).
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month information8, we calculate the weighted average of pollution 12 month prior to the

interview. For an individual living in sub-district j interviewed in year t and month m, the

pollution level assigned is

Pollutionjtm = Pollutionjt ∗m/12 + Pollutionj(t−1) ∗ (12 −m)/12.

We assume a person works and lives in the same sub-districts. To the extent that a

worker may commute to nearby sub-districts, we do not expect their pollution exposure

to differ significantly due to the high spatial correlation of pollution estimates. It is of

course possible that individuals may commute longer distances, but it is unlikely that these

commuting patterns are somehow systematic so as to cause bias in our estimates.

3.4 Descriptive statistics

In the baseline analysis of the effect of PM2.5 on hours worked, we include only the individuals

between 16 and 75 years of age who are interviewed in at least two of the three surveys

and have no missing information in interview timing, person-specific identifier, sub-district

identifier, hours worked, or key demographic characteristics.9 We do not include the post-

migration observations of individuals who have moved across sub-districts. Due to the lack

of information on the timing of the move, we are unable to assign the pollution exposure

accurately to these observations. The resulting sample size for our baseline analysis is 25,472

8Table A.1 in Appendix presents the survey schedule and the number of individuals surveyed in each
month.

9Interview timing includes interview month and year. Key demographic characteristics include age,
gender, education, marital status, whether the person has a dependent younger than 7 years of age or older
than 75 years of year, self-rated health, and whether the person works in agricultural or non-agricultural
sector.
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observations for 11,388 individuals.

Table 1 Panel A displays the sample statistics including hours worked, annual mean

PM2.5, and key demographic characteristics for the full sample as well as those who work in

agriculture and non-agricultural sector separately.

The average hours worked per week is 42.5, and those in non-agricultural sectors work

almost 20 hours longer than those employed only in agriculture. Figures 2 and 3 show the

distribution of hours worked and the within-person changes in the hours worked respectively.

As shown in Figure 3, the distribution of the within-person changes in hours worked is

centered around zero, with a standard deviation of 23.85 as reported in Table 1 Panel B

column (1).

The average annual PM2.5 for the sample is 44 µg/m3. Non-agricultural workers face

higher pollution with a PM2.5 level of 49 µg/m3 compared to 42 µg/m3 for those who work

in agriculture. Figure 4 presents the distribution of PM2.5 and the within-person changes in

PM2.5 with a mean of zero and a standard deviation of 5.12 as shown in Table 1 Panel B.

Table 2 reports the inter-quartile range of PM2.5.

4 Empirical strategy

Given the panel data from the CFPS and remote sensing estimates of air pollution at the

sub-district level, we are interested in the impact of PM2.5 on hours worked. Specifically, we

estimate a regression of the following form in the baseline model:

Hoursijcptm = βPollutionjt + γXijcptm + αi + λpm + δct + εijcptm (1)
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where Hoursijcptm is the average hours worked per week for an individual i located in sub-

district j county c province p interviewed in monthm year t; Pollutionjt is the mean pollution

level in sub-district j year t; Xijcptm represents time-variant individual characteristics and

αi represents time-invariant individual characteristics; λpm is the province-by-month fixed

effects; δct is the county by survey-year fixed effect; and εijcptm represents all other unobserved

determinants for labor supply.

Estimating the impact of air pollution on hours worked has several challenges. First,

individuals have heterogeneous responses to air pollution. For example, workers with varied

health conditions are likely to be affected differently; those who are more concerned about

air pollution are likely to respond more through avoidance behavior; individuals with flexible

work hours would respond differently from those with fixed work hours. To this effect, we

focus on within-person differences in the exposure to air pollution by using an individual

fixed effects model. Second, there are unobserved factors that affect both air pollution and

the outcome variables, especially macro-economic conditions such as recession and structural

changes in the economy. To control for such unobserved factors, we include county-by-year

fixed effects to flexibly control for common county-level shocks. Third, seasonal variations

could also cause spurious correlation between labor supply and air pollution, especially for

sectors that are sensitive to climate and weather events, such as agriculture and construction.

As counties with close geographical proximity are likely to share similar climate, we include

province-by-month fixed effects to account for seasonality that can vary by region.
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5 Results

5.1 PM2.5 and labor force participation and unemployment

Before we estimate the main effect of PM2.5 on hours worked, we first formally test for

response on the extensive margin i.e. the effect of PM2.5 concentrations on labor force

participation and unemployment. Using whether an individual is in the labor force and

whether an individual is employed as outcome variables, we estimate equation (1).10

The results in Table 3 show that PM2.5 has no significant effect on labor force participation

(column (1)) or unemployment (column (2)), and magnitude of the point estimates are

economically small. The sign of the point estimates could indicate that an increase in PM2.5

is linked to increased economic activities, therefore results in higher labor force participation

and lower unemployment.

After controlling for major economic shocks using county-by-year fixed effect and captur-

ing both time-invariant and time-variant individual characteristics, we do not find evidence

of an effect of annual PM2.5 concentrations on labor supply on the extensive margin.

5.2 PM2.5 and hours worked

Table 4 shows the estimates of equation (1) with hours worked as the outcome variable. The

baseline regression result in Table 4 column (4) shows that with a 1 µg/m3 increase in PM2.5,

10The sample restrictions for the labor force participation and unemployment models are the same as the
baseline model for hours worked except for the restriction on non-missing value for dependent variable, which
is model specific. Among the 49,624 observation in the labor force participation model, 44% are not in the
labor force. Among the 27,924 observations in the unemployment model, about 9% are unemployed or did
not report hours worked.
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hours worked decrease by 0.48 hours per week and this estimate is significant at 5% level.11

The estimates do not change significantly with the inclusion of extreme values (column (5)).

These effects are large and suggest that changes in air pollution have a large effect on a

person’s labor supply choices. The average PM2.5 in our sample is roughly 44 µg/m3, and

the average number of hours worked in the sample is about 42 hours, so in percentage terms

this corresponds to an elasticity of nearly negative one.

We expect that there could be heterogeneity in the effect of pollution on hours worked,

so we test this in several ways. First, Figure 5 shows the effect of PM2.5 by quartile of PM2.5.

Second, the effect of PM2.5 on hours worked may vary by individual characteristics. To test

for heterogeneous effects, we interact PM2.5 with indicator variables for male, lower than

primary school education, having dependent, bad health, and agricultural sector as well as

for age below 35, between 35 and 55, or above 55. Figure 6 presents the heterogeneous effect

of PM2.5 on hours worked. We do not observe significant differences of the effect across

demographic categories, though we note that these tests have low power and we have not

adjusted standard errors for multiple hypothesis testing.12

5.3 Robustness checks

In our baseline model, we included county-by-year fixed effects to account for the common

factors that may affect air pollution and labor hours at the same time. However, there are

11The estimates with alternative specifications (including natural logs) are shown in Table A.2 in the
Appendix.

12We note, though, that contrary to Aragón, Miranda and Oliva (2017), our estimates show no significant
difference in the impact of PM2.5 on the individuals with dependents, whose health may be affected by air
pollution. This may be due to differences in family structure in China compared to in Latin America. In
China, caretaking of dependents is more commonly done by the child’s grandparents, who are out of the
workforce.

13



concerns that some factors may affect air quality in a smaller geographical area. For example,

traffic regulations in a county may affect the ambient air quality in areas with heavy traffic,

while reduced emissions from a factory may affect the surrounding area. However both

measures could have implications for labor supply. If this is the case, our estimates may

suffer from attenuation bias. It is worth noting that such pollution reduction measures are

likely to affect more than just the regulated area and the spill-over effects are likely to be

stronger within a county due to close geographical proximity.

Some studies, such as Chang et al. (2016b) and Fu and Zhang (2017), have raised concern

on reverse causality of economic outcomes on pollution exposure. We do not consider reverse

causality a serious threat in our study as an increase in hours worked by an individual is less

likely to cause drastic changes in ambient air quality, although we acknowledge the potential

general equilibrium effect when the population as a whole, especially those in pollution

generating sectors, increase their working hours, the pollution level will also likely go up. In

our data, less than 25% of the sample works in heavy polluting industries such as mining,

manufacturing, electricity production, construction and transportation. If increase in hours

worked by these workers resulted in increased pollution, our estimates are likely to be biased

upwards.

There is also measurement error in satellite-derived pollution estimates, and for fine par-

ticulates ground level pollution tends to be under-predicted by remote sensing on extremely

polluted days. However, the issue is more severe for short-term estimates, such as hourly

or daily, and is less prominent when we use the annual mean pollution estimates. Unlike

studies that uses monitor based pollution data, the “Berkson” error, which happens when

a group average exposure level is assigned to individuals with certain same characteristics,
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is smaller in our study. However, we still face the issue that the exposure level measured at

residence could be different from that at work place.

The previous literature has addressed some of the above concerns of endogeneity using an

instrumental variables approach. In this section, we use the 2012 NAAQS as an instrument13

to obtain plausibly-exogenous variation in PM2.5 concentrations. The 2012 NAAQS, aimed

at reducing ambient air pollution, was implemented in three stages (described in detail in

Section 2.2) and is likely to lead to differentiated timing in the pollution reduction across

cities.14

We estimate the following two-stage least squares (2SLS) model:

Pollutionijcptm = π1NAAQSct + γ1Xijcptm + α1i + λ1pm + δ1pt + ε1ijcptm (2)

Hoursijcptm = π2 ˆPollutionijctm + γ2Xijcptm + α2i + λ2pm + δ2pt + ε2ijcptm (3)

where in the first-stage (equation (2)), we estimate the PM2.5 levels facing an individual i

living in province p, county c, sub-district j, in year t, and month m as a function of whether

the NAAQS has been implemented in county c year t. We control for individual fixed effects,

province by interview month fixed effects, and covariates. As the policy varies by county and

year, we are unable to include county-by-year fixed effects in this model, therefore we include

province-by-year fixed effects to flexibly control for macroeconomic shocks at the province

13The authors are aware of alternative instruments such as thermal inversion(Fu and Zhang, 2017; Chen,
Oliva and Zhang, 2017). However, due to the limited access to the restricted version fo CFPS data, we are
unable to the merge these instruments with our dataset.

14We do not expect the policy to have any direct impact on the hours worked in the short run as the
performance evaluation for government officials still places significant weight on economic growth. Therefore,
it is unlikely that cities will take radical measures immediately to reduce emissions risking economic slow
down. It is also unlikely that industries will relocate to areas with less stringent pollution regulation as the
difference in regulations is temporary due to the short 3-year roll-out of the 2012 NAAQS.
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level. In the second-stage (equation (3)), we estimate the effect of the predicted pollution

exposure on hours worked.

Table 5 column (2) panel B presents the first stage estimate of our preferred specification

(equation(6)) and it shows that the implementation of NAAQS 2012 led to a reduction of

PM2.5 by about 0.99 µg/m3. Though the effect size is small, it is statistically significant.

The F-statistics testing for weak instrument test indicate a strong first stage.

The second stage of the 2SLS model shows that a 1 µg/m3 reduction in PM2.5 leads

to an increase of hours worked by 1.6 hours, as shown in Table 5 column (2) panel A

and the effect size is much larger than the fixed effects estimate. The alternative 2SLS

specification including only year effects are shown in Table 5 column (4), where a one unit

increase in annual PM2.5 leads to a decrease in hours worked by 1.24 hours per week. Fixed

effects models are presented in Table 5 as the estimates from 2SLS models are not directly

comparable with our baseline results in Table 4 due to the change in the level of fixed effects

included to control macroeconomic shocks. Table 5 column (1) presents the fixed effects

model estimates with province-by-year fixed effects while column (3) presents the estimates

from fixed effects model with year fixed effects.

6 Conclusion

Although the exposure to PM2.5 is very high in developing countries like China, very little is

known on how the long-term exposure to such high level of PM2.5 affects labor supply. The

use of remote sensing pollution estimates enables us to use more reliable PM2.5 estimates

at a finer scale and greater geographical coverage, while the restricted individual-level panel
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data from CFPS allows us to match individual to exposure level by sub-districts. Our study

expands beyond a single urban area with limited coverage of pollution monitors or a single

farm/factory. A recent paper by Aragón, Miranda and Oliva (2017) shows that short-term

exposure to PM2.5 affects hours worked only for the households with susceptible individuals.

They find that a 1 µg/m3 increase in PM2.5 decreases the hours worked by 12 minutes

(0.19 hour), and if PM2.5 exceeds 35 µg/m3, the hours worked reduce by 6.8 hours. In our

study, the annual mean PM2.5 concentration at the national level is similar to the weekly

mean in Lima as in Aragón, Miranda and Oliva (2017), with more than 70% of the sample

facing PM2.5 level higher than 35 µg/m3 and the mean PM2.5 around 45 µg/m3. We find

that the long-term exposure has a significant impact on hours worked. In our fixed effects

specification, we estimate that a 1 µg/m3 increase in PM2.5 can lead to a reduction of labor

hours by 29 minutes (0.48 hours) per week.

There are several caveats worth noting. First, we observe an individual’s home address

and assign pollution levels accordingly. For workers who commute long distances to work, this

assignment could introduce substantial measurement error. If differences between pollution

at the residence and workplace is not somehow systematic, the measurement error would be

classical, but the data do not allow us to test this. Second, our measurement of pollution

using remote sensing is likely an underestimate, as saturation is generally observed in the

estimates for higher pollution levels. We note that our instrumental variables estimates are

roughly twice as large as our baseline fixed effects estimates, which is consistent with this

type of measurement error. Third, an individual could respond to higher pollution levels by

sorting to a location with lower pollution levels. In Appendix B we discuss this possibility

in the context of our data. Finally, as our measure of hours worked is self-reported, there

17



could be concerns about recall bias. As discussed in Appendix C, we note that measurement

error in our dependent variable is not likely correlated with other explanatory variables and

is unlikely to cause bias in the estimation.

The economy wide impact of a reduction in ambient pollution could be substantial,

though extrapolating would require strong assumptions. According to the 2010 Population

Census, China has a working population of 715 million. If we take the estimate of 29

minutes from our fixed effects model, a 1 µg/m3 reduction in PM2.5 can lead to 2415 more

hours worked per person per year and more than 17 billion more hours supplied economy-

wide. Further, by complying with China’s new NAAQS for annual mean PM2.5 of 35 µg/m3,

we would observe the labor hours to increase by three and half hours per worker per week

and potentially an economy-wide increase of 125 billion hours in labor supply per year. In

addition to affecting labor hours directly, over the longer run one would expect changes in

PM2.5 levels to also have general equilibrium impacts that would in turn affect labor supply.

For example, a change in the pollution levels may result in residential sorting, although not

shown in our data set, that has been documented elsewhere in the literature. It may also

affect occupational choices, which may, in turn, affect hours worked. These effects on labor

hours are not taken into account in this paper and will require careful attention in future

research.

Our estimates contribute to the empirical literature that evaluates the effect of PM2.5

on human capital and labor supply and have important policy implications for developing

countries with extremely high annual average concentrations. While a few recent studies find

short-run impacts of pollution on labor supply, we find that the impact of chronic exposure is

15Assuming 50 working weeks in a year.
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large and significant. The results suggest that researchers and policymakers should consider

not only productivity impacts, but also labor supply impacts, when considering policies to

decrease average concentrations of pollution.
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Figure 1: Ambient air pollution monitors in three cities

Chongqing

Beijing

Shanghai

Notes: The three maps show the spatial distribution of Chongqing, Beijing and Shanghai. Each
dot represents a PM2.5 monitor’s location in the year 2017. Maps are not of the same scale; the
cities are 82,400, 16,808, and 6,340 km2, respectively.
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Figure 2: Distribution of hours worked
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Note: The graphs show the distribution of hours worked, hours worked in agriculture and non-
agriculture respectively. The vertical lines represent the mean hours worked per week (42 hours),
mean hours worked per week in agriculture (36 hours) and non-agriculture (53 hours).
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Figure 3: Distribution of changes in hours worked
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Note: The graphs show the distribution of the within-person changes in hours worked, hours worked
in agriculture and hours worked in non-agriculture respectively.
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Figure 4: Distribution of PM2.5 and changes in PM2.5
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Note: The upper graph shows the distribution of PM2.5. The two vertical lines, from left to
right, represent China’s new air pollution standard for the annual mean of PM2.5 (35 µg/m3) and
the mean PM2.5 exposure of the sample (42 µg/m3). The lower graph shows the distribution of
within-person changes in PM2.5
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Figure 5: Non-linearity of the effect of PM2.5
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Note: The graph shows the non-linearity of the effect of PM2.5 on hours worked per week by
estimating a model with interactions between a continuous variable of PM2.5 and binary variables
indicating which quartile the initial PM2.5 an individual faces belong to. The squares on the graph
present the point estimates while the bars show 95% confidence intervals. The horizontal dash line
indicates an effect size of zero. The numbers in brackets show the range of PM2.5 in µg/m3 for
each quartile. The model include individual fixed effects, county-by-year fixed effects, interview
month fixed effects and time-varying individual controls such as education, marital status, whether
the individual has dependents, whether the individual has more than one job and whether the
individual works in agricultural or non-agricultural sector.
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Figure 6: Heterogeneous effect on hours worked
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Note: The graph shows the heterogeneous effect of PM2.5 on hours worked per week estimated using
models with interactions between PM2.5 and individual characteristics. The squares on the graph
present the point estimates while the bars show 95% confidence intervals. The vertical dash line
indicates an effect size of zero. All the models include individual fixed effects, county-by-year fixed
effects, interview month fixed effects and time-varying individual controls such as education, marital
status, whether the individual has dependents, whether the individual has more than one job and
whether the individual works in agricultural or non-agricultural sector. Age and age square are
included in all models except the model evaluating the effect by age category, for which we include
age category instead.
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Table 1: Descriptive statistics

(1) (2) (3)
All Agriculture Non-agriculture

Panel A: Sample statistics
Hours worked per week 42.54 35.87 54.73

(20.27) (16.06) (21.47)
PM2.5 44.26 41.91 48.57

(16.33) (16.54) (15.02)
Age 45.90 49.15 39.97

(12.31) (11.88) (10.76)
Gender: male=1 0.50 0.44 0.62

(0.50) (0.50) (0.49)
Education: below primary=1 0.56 0.73 0.25

(0.50) (0.44) (0.44)
Marital status: single=1 0.09 0.07 0.13

(0.29) (0.26) (0.34)
Dependent: yes=1 0.16 0.13 0.21

(0.36) (0.33) (0.41)
Observations 25472 16468 9004

Panel B: Within-person variations
Changes in hours worked -0.08 -1.62 3.20

(23.85) (21.81) (27.40)
Changes in PM2.5 -0.07 -0.26 0.28

(5.12) (4.89) (5.52)

Note: Panel A of this table provides the sample statistics for the key variables for the full
sample (column 1), those who work in family agriculture (column 2) and those who work in
non-agricultural section (column 3). The standard deviations are provided in parentheses
and the sample size at the bottom of the panel. Panel B of this table provides the within-
person variations in hours worked and PM2.5.
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Table 2: Inter-quartile range of PM2.5

(1) (2)
Lower bound Upper bound

Quartile 1 4.00 32.33
Quartile 2 32.50 42.08
Quartile 3 42.16 55.00
Quartile 4 55.08 89.25

Note: The table presents the inter-quartile range of PM2.5.
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Table 3: Impact of air pollution on labor force participation and unemployment

(1) (2)
Labor Force Participation Unemployment

PM2.5 0.007 -0.002
(0.004) (0.004)

Individual fixed effects Yes Yes
Province by interview month fixed effects Yes Yes
City by year fixed effects Yes Yes
N 49624 27924

Notes: The table presents estimates for the impact of PM2.5 on labor force participation
(column 1) and unemployment (column 2). All the models include individual fixed effects,
county-by-year fixed effects, province-month fixed effects and time-varying individual con-
trols such as age, age squared, education, marital status, whether the individual has depen-
dents, whether the individual has more than one job and whether the individual works in
agricultural or non-agricultural sector. The standard errors shown in parentheses are clus-
tered at county level. Statistical significance is denoted by * for p < 0.1, ** for p < 0.05,
*** for p < 0.01.
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Table 4: Impact of air pollution on hours worked: fixed effects model

(1) (2) (3) (4) (5)

PM2.5 0.153* 0.043 -0.418* -0.486** -0.433*
(0.083) (0.094) (0.216) (0.242) (0.234)

Individual fixed effects Yes Yes Yes Yes Yes
Province-by-month fixed effects Yes Yes Yes
County-by-year fixed effects Yes Yes Yes
N 25472 25472 25472 25472 25161

Notes: The table presents estimates for the impact of PM2.5 on hours worked per week. Col-
umn 1 to 3 shows the estimate from the model with individual fixed effects, individual and
county-by-year fixed effects, and individual and province-month fixed effects, respectively.
Column 4 is our preferred baseline model. Column 5 shows the estimate with the inclusion
of those with extreme values of the hours worked. All the models include time-varying indi-
vidual controls such as age, age squared, education, marital status, whether the individual
has dependents, whether the individual has more than one job and whether the individual
works in agricultural or non-agricultural sector. The standard errors shown in parentheses
are clustered at county level. Statistical significance is denoted by * for p < 0.1, ** for p <
0.05, *** for p < 0.01.
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Table 5: Impact of PM2.5 on hours worked: 2SLS

(1) (2) (3) (4)
2SLS FE 2SLS FE

Panel A: Second Stage
PM2.5 -0.229*** -1.601** -0.341*** -1.243***

(0.071) (0.716) (0.058) (0.457)
Kleibergen-Paap F statistics 121.06 166.70

Panel B: First Stage
Instrument -0.987*** -1.157***

(0.090) (0.090)
Individual fixed effects Yes Yes Yes Yes
Province-by-month fixed effects Yes Yes Yes Yes
Province-by-year fixed effects Yes Yes No No
County fixed effects No No Yes Yes
Year fixed effects No No Yes Yes
N 25472 25472 25472 25472

Note: The table provides the estimates of the effect of PM2.5 on hours worked from the 2SLS
models and their corresponding fixed effects models. Column 1 and 2 provide the estimates
from 2SLS model and FE model with province by year fixed effects, respectively while column
3 and 4 present the estimates from the models with year fixed effects. All the models
include individual fixed effects, province-month fixed effects and time-varying individual
controls such as age, age squared, education, marital status, whether the individual has
dependents, whether the individual has more than one job and whether the individual works
in agricultural or non-agricultural sector. The standard errors shown in parentheses are
clustered at individual-level. Statistical significance is denoted by * for p < 0.1, ** for p <
0.05, *** for p < 0.01.
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A Additional figures and tables

Figure A.1: Distribution of 2014 annual mean PM2.5 in Chongqing
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Note: The graph shows the distribution of 2014 annual mean PM2.5 across all sub-districts in
Chongqing.
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Table A.1: Interview year and month

Year of interview
Month 2010 2011 2012 2013 2014 2015 Total

Jan 0 95 0 18 0 249 362
Feb 0 6 0 60 0 13 79
Mar 0 45 0 13 0 32 90
Apr 380 0 0 0 0 2 382
May 1,352 0 0 0 0 18 1,370
Jun 1,586 0 0 0 0 3 1,589
Jul 2,407 0 1,293 0 2,968 0 6,668
Aug 2,442 0 4,618 0 3,505 0 10,565
Sep 90 7 1,116 0 570 0 1,783
Oct 29 0 42 0 528 0 599
Nov 35 0 31 0 250 0 316
Dec 115 0 1,412 0 142 0 1,669

Total 8,436 153 8,512 91 7,963 317 25,472

Note: The table presents the number of interviews conducted by interview year and month.
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Table A.2: Impact of air pollution on hours worked: alternative specifications

(1) (2) (3)
Hours Log Hours Log Hours

Log PM2.5 -21.206* -0.698*
(12.311) (0.391)

PM2.5 -0.018*
(0.009)

Individual fixed effects Yes Yes Yes
Province-by-onth fixed effects Yes Yes Yes
County-by-year fixed effects Yes Yes Yes
N 25472 25472 25472

Note: The table presents the estimates from alternative specifications used in evaluating the
impact of PM2.5 on hours worked. Column 1 uses the log-linear specification and estimates
the effect of 1% increase in PM2.5 on hours worked. Column 2 used the linear-log specification
and estimates the effect of 1 µg/m3 increase of PM2.5 on the hours worked in percentage
terms. Column 3 uses the log-log specification and estimates the effect of 1% increase
in PM2.5 on the hours worked in percentage terms. All the models include individual fixed
effects, county-by-year fixed effects, province-month fixed effects and time-varying individual
controls such as age, age squared, education, marital status, whether the individual has
dependents, whether the individual has more than one job and whether the individual works
in agricultural or non-agricultural sector. The standard errors shown in parentheses are
clustered at county level. Statistical significance is denoted by * for p < 0.1, ** for p < 0.05,
*** for p < 0.01.
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B Sorting

Residential sorting could also be a concern, as individuals with similar unobserved charac-
teristics might re-locate in the same manner according to the pollution levels. Although the
survey tracks individuals as they move, the observations for the survey immediately after
moving were removed from the sample, as information on the exact timing of move is not
available, making an accurate assignment of pollution exposure impossible. However, we do
know the pollution exposure for the year prior to the interview at the new interview loca-
tion, which means we could compare the pollution levels of the sub-districts these individuals
moved from to the ones they moved to. We find that among the total 197 movers, 167 moved
to areas with higher PM2.5 and only 29 moved to areas with lower PM2.5. A summary of the
individual characteristics of the movers is presented in Table B.1. As compared to those who
moved to areas with higher pollution, those who moved to sub-districts with lower pollution
have higher education and more dependents; however due to the small sample size16, these
differences are not statistically significant.

For air pollution led migration to happen, we would expect those who move to have a
higher environmental awareness. In the survey, individuals were asked to rate the severity
of pollution in China from 0 to 10 and the average rating is 6 in our sample. The average
rating by the movers is 6.4, which is not statistically different from the sample mean. In
addition, those who moved to more polluted cities gave an average rating of 6.45 and those
who moved to less polluted cities averaged at 6. Though the sample size for migrant is very
small, we do not observe any difference in environmental awareness in this group and it is
less likely that such a group is moving due to pollution concerns.

We also follow the attrition test for fixed effects models suggested by Wooldridge (2010,
chapter 19.9.2) to formally test whether PM2.5 has led to residential sorting. We create an
indicator variable for individuals who moved before they drop out of the sample and add
the indicator variable as a control in the baseline model. Table C.1 column (3) shows that
the indicator variable is not statistically significant, suggesting that attrition bias may not
be a concern. This result is in contradiction to the study by Chen, Oliva and Zhang (2017),
in which air pollution is found to be responsible for large changes in inflows and outflows
of migration in China. However, this may be because their study investigates the effect of
an increasing pollution level at five-year intervals, as migration is likely to respond to air
pollution slowly due to the costly and non-reversible nature of the decision.

16The total number of movers is very small in our sample (less than 1% of the individuals) and this is
partially due to the large amount of missing covariates in the data. Without restricting the sample, we have
about 6% of movers, out of which about 75% moved to areas with higher pollution and 25% moved to areas
with lower pollution.
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Table B.1: Mover Characteristics

(1) (2) (3)
All movers Increased pollution Reduced pollution

Age 39.12 39.56 36.59
(10.80) (11.15) (8.52)

Gender: male=1 0.52 0.53 0.48
(0.50) (0.50) (0.51)

Education: below primary=1 0.28 0.30 0.21
(0.45) (0.46) (0.41)

Marital status: single=1 0.15 0.15 0.14
(0.36) (0.36) (0.35)

dp 0.19 0.19 0.24
(0.40) (0.39) (0.44)

Agricultural sector 0.30 0.31 0.24
(0.46) (0.46) (0.44)

Observations 197 167 29

Note: This table provides the statistics for mover characteristics. Column 1 summarizes
the characteristics for all moves while column 2 and 3 summarize the characteristics for
movers who moved to sub-districts with higher and lower PM2.5 respectively. The standard
deviations are provided in parentheses and number of moves at the bottom of the table.
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Table B.2: Attrition Bias

(1)
Attrition Bias

PM2.5 -0.480**
(0.242)

Moved in the next wave 0.860
(1.825)

Individual fixed effects Yes
Province by interview month fixed effects Yes
City by year fixed effects Yes
N 25472

Note: The table presents the estimates from attrition bias test by including the indicator
variable of moved in the next wave. It includes individual fixed effects, county-year fixed
effects, province-month fixed effects and time-varying individual controls such as age, age
squared, education, marital status, whether the individual has dependents, whether the
individual has more than one job and whether the individual works in agricultural or non-
agricultural sector. The standard errors shown in parentheses are clustered at county level.
Statistical significance is denoted by * for p < 0.1, ** for p < 0.05, *** for p < 0.01.
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C Recall bias in hours worked

One common concern regarding self-reported working hours is the potential recall bias. Al-
though the concern is very relevant, it is less likely to cause biased estimation, as along as
the measurement error is not correlated with other explanatory variables, given that hours
worked is the dependent variable of this study. However, recall bias or measurement error
in hours worked do reduce the precision of our estimation, causing large standard errors and
less power in identifying heterogeneous effect of pollution.

In our study, one potential cause of recall bias is the timing of interview. Although all
the respondents are asked to recall the hours worked during the year prior to the interview,
whether the interview is conducted during the busy- or off-season could significantly affect
the hours reported. Figure C.1 shows the average hours reported by interview month, and
we do observe some month-to-month variation. We note that the majority of the interviews
were conducted in July and August, and the standard deviations for other months are large.
We do not have perfect information on the busy/off season for each individual, but we take
into account the seasonal variability in reporting by including province by interview month
fixed effects.

Poor memory or cognitive function might be another source of inaccurate reporting in
hours worked. To address this concern, we obtain the memory test score from a word recall
test in the second wave (2012/2013) of CFPS.17 We take the total score from the immediate
word recall and delayed word recall to generate a memory score ranging from 0 to 20. As
shown in Figure C.2, we observe that as the scores increase, the number of hours worked
increases and so are the changes in hours worked. Simply assuming that higher memory
score is an indicator for better cognitive function and ability to recall, we limit the sample
to those with good memory, a score above median (8 out of 20), and we find a increase in
the effect of PM2.5 on hours worked from 0.48 hours in the baseline model to 0.63 hours as
shown in Table C.1 column (1). However, this increase could be driven by the nature of jobs
rather than ability to recall and it is also worth noting that cognitive function itself could
be affected by pollution exposure.

17No similar tests were conducted in the 2010 and 2014 surveys. By using the test score from the 2012
survey, we assume no major changes in cognitive function the two years before and after the test.
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Figure C.1: Labor hours by month of interview
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Note: The graph shows the average hours worked per week and the number of respondents by
interview month.
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Figure C.2: Hours worked and changes in hours worked by word recall scores
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Note: The upper graph shows the average hours worked per week by word recall score and the
lower graph shows the changes in hours reported by word recall score.
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Table C.1: Recall Bias

(1)
Good Memory

PM2.5 -0.630**
(0.280)

Individual fixed effects Yes
Province by interview month fixed effects Yes
City by year fixed effects Yes
N 14826

Note: The table presents the estimates for the sample with only above median word test
scores. It includes individual fixed effects, county-year fixed effects, province-month fixed
effects and time-varying individual controls such as age, age squared, education, marital
status, whether the individual has dependents, whether the individual has more than one
job and whether the individual works in agricultural or non-agricultural sector. The standard
errors shown in parentheses are clustered at county level. Statistical significance is denoted
by * for p < 0.1, ** for p < 0.05, *** for p < 0.01.
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