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Abstract

This paper studies the impact of environmental quality on the performance of individuals
undertaking cognitively demanding tasks under time pressure. We link measures of indoor
air quality and thermal conditions to the performance of chess players at official tournaments
where players face strong incentives to exert high effort. We use a state-of-the-art chess en-
gine to detect erroneous moves and evaluate the quality of the move by comparing the quality
of a player’s actual moves with the best moves proposed by the chess computer. The results
indicate air pollution (PM2.5) is the deterring factor hindering cognitive performance. We
find that an increase of 10 µg/m3 raises the probability of making an error by 1.5 percentage
points, and increases the magnitude of the errors by 9.4%. The impact of pollution is exac-
erbated by time pressure. When players approach the time control of games, an increase of
10 µg/m3, corresponding to about one standard deviation, increases the probability of mak-
ing a meaningful error by 3.2 percentage points, and errors being 17.3% larger. Our results
have important implications for high-skilled office workers, in particular, for those executing
non-routine cognitive tasks whose share is steadily increasing in developed countries.
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1 Introduction

The reduction of harmful effects of pollution and extreme temperatures on citizens’ health and

well-being is a major driver of environmental regulation in most countries around the world.

Air pollution alone is estimated to be responsible for 9 million premature annual deaths, ac-

cording to 2015 global estimates (Landrigan et al., 2018). Although the health-science literature

has documented the detrimental effects of temperature or pollution on the respiratory and car-

diovascular systems for decades, only recently has started to examine environmental effects on

human brains and cognitive functioning (Underwood, 2017). The effects are substantial and

might well have significant consequences for the human-capital formation of countries. Recent

work documents significant drops in student performance when testing days coincide with high

levels of air pollution (Ebenstein et al., 2016) or extremely high temperatures (Park, 2018).

The economic literature has devoted significant efforts to the estimation of the burden of

hazardous environments on the labor supply. An increasing amount of studies are providing

quasi-experimental estimates of substantial productivity losses associated with extreme tem-

peratures or air pollution. So far, most of the existing evidence is based on routine manual

occupations, such as agriculture workers or pear packers (Zivin and Neidell, 2012; Chang et al.,

2016), where output is easy to measure, for example number of pears collected per hour. Our

understanding of how these hazards affect the performance of workers in cognitive or analytical

professions, where the value added of a worker tends to be much harder to quantify, is still

limited. The initial studies in the field use measures such as quantity rates (e.g., number of calls

handled per hour (Chang et al., 2019)), judges’ decision time (Kahn and Li, 2019) or uptime

(percent of time in a day that a trader is at his desk trading (Meyer and Pagel, 2017)) to esti-

mate changes in the added value of a worker. However, the literature remains silent about how

the final quality of the tasks or decisions undertaken by cognitive workers is affected by adverse

environmental conditions.

This paper examines the causal impact of indoor environmental conditions on the cognitive

performance of adults, using a pure measure of cognitive performance, assessing the changes in

the quality of the tasks and not worker’s availability to execute the task. 1 We use data on the

performance of players in chess part of official tournaments in Germany, a cognitive demanding

setting where subjects are under time pressure and face strong incentives to exert high effort.

The computational nature of chess allows the construction of an objective outcome measure for
1Although most of the existing evidence linking pollution and temperature to worker productivity relies on

outdoor measurements, the average American spends more than 90% of her time indoors. The exposure of building
occupants to extreme temperatures or pollutants is likely to deviate substantially from outdoor levels. In addition
to the intermediation of air conditioning or heating for temperatures, the U.S. Environmental Protection Agency
(EPA) documents significant differences in certain pollutant concentrations between indoors and outdoors. Thus,
we might well expect the environmental conditions of indoor workers to differ from the outdoor measurements.
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cognitive performance by comparing the quality of a player’s actual moves with the best move

proposed by a chess computer program.

Our estimation sample contains performance data from 102 players making about 20,408

moves over a maximum of 14 matches (7 matches per tournament), with 44 players participating

in both tournaments. The players differ in their skill levels ranging from beginners to advanced

players. All players participating in the tournament have strong incentives to exert high effort and

perform well throughout all tournament rounds, because the performance during the tournament

counts for their chess rating score, which is a matter of prestige among chess players and has

implications for future competitions. In addition, the tournament settings provide pecuniary

incentives by awarding monetary prizes. Therefore, we identify the treatment effect by observing

identical individuals playing multiple games under varying indoor environmental conditions.

The environmental measures used in this study come from three web-connected sensors

located in the same room as the players studied, ensuring the accuracy of the exposure data. The

sensors continuously measure the levels of CO2, PM2.5, and temperature for the entire study

period. The games considered in our sample tournaments last about three hours on average,

which is similar to the average exposure in epidemiological studies exploring the effect of CO2

or temperature on cognition (e.g. Satish et al., 2012). Thus, the exposure time of our subjects

is sufficient to uncover an effect of the environmental conditions on their cognitive performance.

The measured levels of CO2 range between 1,000 and over 2,250 ppm, temperature between 22

and 29 degrees Celsius (72 and 84 Fahrenheit), and fine particulate pollution between 12 and

58 µg/m3.

Our identification strategy exploits the fact that players play games over several days, which

enables us to examine the relationship between environmental conditions and cognitive perfor-

mance across the same player’s games. In a first step, we estimate the impact of environmental

quality on the players’ performance in a pooled sample. In our preferred specification, with

player, year (tournament edition), round, and move fixed effects, and a set of control variables,

we find no significant effects of temperature and CO2 on our error measures. For PM2.5, we find

an increase in particulate pollution of 10 µg/m3, about one standard deviation in the sample,

leads to 1.5 percentage points increase in the probability of making a meaningful error, cor-

responding to an increase of 18.8% relative to the sample mean. In addition, we consider the

magnitude of the error and find an increase of 10 µg/m3 leads to 9.4% larger errors. The results

are similar in magnitude to existing estimates within the literature.

In a second step, we split the sample by the number of moves within games (15–20, 21–30,

31–40 and >40 moves) to consider effect heterogeneity with respect to the impact of indoor

environmental conditions on the performance of chess players with and without time pressure.

The tournament rules set a time restriction of 110 minutes for the first 40 moves per player.
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Therefore, decisions taken within the range of 31–40 moves can be assumed to be taken under

relative time pressure, compared to other phases of the game. We find the negative impact

of pollution on performance is exacerbated if decisions need to be taken under time pressure.

Approaching the time control of games (31–40 within a game), an increase of 10 µg/m3 raises

the probability of making a meaningful error by 3.2 percentage points (equivalent to a 29.6%

increase compared to the sample mean), with the errors being 17.3% larger. Again, we find no

effects for temperature and CO2. A sensitivity analysis with respect to selective sample attrition

as well as the implementation of falsification and specification tests support the robustness of

the results.

Given that our results are based on levels of temperature and air quality that are within

a moderate range, our results resemble the exposure of an average office worker in a Western

economy. In addition, we argue our results are based on a cognitive task and therefore are

likely to have strong implications for high-skilled office workers, in particular for those executing

non-routine cognitive tasks. The roles of these tasks are gaining importance in developed labor

markets and are represented in professional, managerial, technical, and creative occupations

(Autor and Price, 2013).

The remainder of our paper is organized as follows. In the next section, we discuss the

literature linking environmental conditions to human health and (cognitive) performance. In

section 3 we provide a description of the game of chess and its use by the scientific literature to

understand human behavior and performance. In this section, we also explain the construction

of our performance measure and the estimation sample. In section 4, we present our empirical

strategy. The results are presented in section 5 and robustness checks are shown in section 6.

section 7 concludes

2 Literature

2.1 Environment and Health

For decades, the health science literature has linked exposure to high levels of air pollution or

extreme temperatures with respiratory and cardiovascular mortality and morbidity. Air pollution

alone is estimated to be responsible for 9 million premature annual deaths, according to 2015

global estimates (Landrigan et al., 2018). Similarly, a recent study based on 74 million deaths

between 1985 and 2012 in 13 countries around the globe estimates that 7.7% of mortality was

attributable to temperature exposures (Gasparrini et al., 2015). The health cost of hazardous

environments goes beyond mortality. Quasi-experimental evidence shows how exposure to air

pollution leads to an increase in direct medical costs, such as increases in hospitalizations and

pharmaceutical expenses by individuals (Schlenker and Walker, 2016; Deschenes et al., 2017).
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The health effects of air pollution have been the scope of the analysis of numerous studies

over the past decades. A wealth of evidence suggests exposure to air pollution has detrimental

consequences for human health, even at moderate levels. The inhalation of ozone or particu-

late matter has been associated with mortality and hospital admissions due to cardiopulmonary

health problems (Brunekreef and Holgate, 2002). The respiratory system is the primary target

of air pollutants. Epidemiological studies document associations between the presence of air

pollutants and respiratory health morbidity, such as exacerbation of asthma or declines in lung

function (for a review, see Rückerl et al., 2011). Cardiovascular systems are also vulnerable to

airborne particles. For instance, exposure to high levels of ultra fine particles has been associ-

ated with the advent of ischemic heart disease or elevated blood pressure (Pope et al., 2004;

Bhatnagar, 2006).

In addition, evidence on the mortality and morbidity attributable to hot and cold tempera-

tures is increasing. The damaging effects of extreme temperatures generate important burdens for

the cardiovascular and respiratory health systems. Epidemiological studies document significant

links between temperatures and cardiovascular diseases such as atherosclerosis or pulmonary

heart disease (Xiaofang et al., 2012). Global estimates indicate the existence of a significant bur-

den of temperature on human health. Gasparrini et al. (2015) estimate the exposure to warm and

(specially) cold temperatures is responsible for 7.71% of the total 74,225,200 deaths considered

in the study. Although these estimates are mainly driven by exposure to sustained exposure to

cold or warm temperatures, a recent wave of studies document substantial peaks in mortality

associated with the advent of extremely warm and cold days (Barreca et al., 2016; Deschênes

and Greenstone, 2011; Deschenes and Moretti, 2009).

Children and older adults tend to be the most vulnerable to air pollution or extreme tem-

peratures. However, these hazards also have important implications for the working population;

the economic literature has documented significant drops in the labor supply associated with

both, temperatures and air pollution. The exposure to adverse environmental conditions has

detrimental effects on the total time that workers supply. Hanna and Oliva (2015) shows, fol-

lowing the closure of a large refinery in Mexico City, an increase of 1.3 worker hours per week in

the area surrounding the refinery. Similarly, (Aragón et al., 2017) document the negative impact

of moderate increases in fine particles (PM2.5) on hours worked by people in Lima. Similarly,

evidence from the US shows extremely warm days lead to a reduction in working hours, spe-

cially in industries with high exposure to outdoor climate conditions, such as the construction or

forestry industry (Graff Zivin and Neidell, 2014). The authors find that on days with maximum

temperatures above 30℃, workers in these industries reduce the time allocated to labor by one

hour.
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2.2 Environment and Cognition

Increasing evidence supports the hypothesis that environmental factors affect the human brain

and cognition. The health science literature has provided convincing evidence on the detrimental

links between poor air quality or thermal conditions and brain health and cognition. The eco-

nomics literature suggest the cognitive impairment linked to these factors ultimately hampers

academic achievement and human-capital formation.

A growing body of evidence in the area of epidemiology and toxicology suggests exposure

to air pollution can harm the brain and hinder cognition via different channels. The inhalation

of particles smaller than 200 nanometers can reach the brain, causing inflammatory reactions

and ultimately impairing cognition (Underwood, 2017; Kumar, 2018). In adults, exposure to air

pollution has been associated with depression, mood disorders, and ischemic strokes due to artery

atherosclerosis or small vessel occlusion (Calderon-Garciduenas et al., 2015). Epidemiological

studies have related long-term exposure to air pollution to the risk of dementia and cognitive

decline in adult populations (Power et al., 2016). Finally, exposure to air pollutants such as

carbon monoxide have been associated with a drop in the capacity of hemoglobin to transport

oxygen, reducing oxygen availability to the brain and hindering concentration (Bernstein et al.,

2004).

The consequences of pollution on cognition might be substantial even in the short term.

Evidence from high-stake examinations in Israel shows the same student performs worse when

the ambient levels of PM2.5 are higher during the exam day (Ebenstein et al., 2016). This finding

is consistent with recent evidence linking the level of indoor PM10 to test scores of thousands

of university students across multiple subjects in London. (Roth, 2018). Roth explores within-

student variation in test performance under different levels of fine particles in the classrooms.

The author finds significant substantial drops in grades when individuals take the exam in

high-pollution days. The damaging effects of air pollution on human cognition seem to intensify

with age. Zhang, Xin, Xi Chen and Zhang (2018) explore the effect of PM2.5 on survey-based

test scores in verbal and numerical cognitive tasks in a representative sample of the Chinese

population. The authors find the negative effects of pollution become more pronounced with age

(specially for men).

Indoors, the main indicator used in the literature to measure the air quality in a room is the

level of carbon dioxide (CO2). Humans are the main source of CO2, which is produced when

breathing. The levels of CO2 in a room are mainly determined by the number of occupants and

the ventilation rate in the room (rate at which the indoor air is exchanged with outdoor air).

The inhalation of high levels of CO2 has been linked to fysiological and physiological symptoms

such as dizziness, headache, or fatigue (Stankovic et al., 2016). Experimental evidence from the
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lab shows exposure to moderate levels of CO2 impairs cognitive functioning of humans. In these

studies, a group of individuals are asked to stay in a room where the levels of CO2 have been

artificially manipulated for several hours, and undertake a series of cognitive tests. The results of

the studies indicate that even at moderate levels of CO2 (e.g. 1,500 ppm), individuals performed

significantly worse in cognitive tasks (Satish et al., 2012; Allen et al., 2016). In both studies, the

experimentally induced high levels of CO2 in the room mainly affect the cognitive domain of

strategic thinking. A quasi-experimental study exploring the impact of a renovation program of

ventilation systems in a sample of 65 US school buildings documents significant improvements

in standardized test scores and passing rates (Stafford, 2015).

Finally, the literature also provides strong evidence on how exposure to extreme tempera-

tures impairs cognitive function of humans. Recent experimental evidence based on functional

magnetic resonance imaging (fMRI) shows alterations of brain blood flow upon exposure to

heat stress (Liu et al., 2013). These alterations tend to impair individuals’ ability to undertake

complex tasks. In addition, the authors test a series of behavioral measures and find that high

temperatures (50℃) impairs the executive function of individuals, but not the alerting and ori-

enting functions. The results from a meta-analysis of the literature suggests heat stress affects

only complex (cognitive) tasks, such as working-memory tasks, sustained attention, or tracking

(Taylor et al., 2015). On the other hand, the cognitive studies in the area tend to show no

significant effects of heat stress on simple cognitive tasks, such simple arithmetic tasks. Finally,

a recent observational study using a series of cognitive tests suggest the reaction time of indi-

viduals increases with exposure to high temperatures. Cedeño Laurent et al. (2018) show that

during a heat wave, participants that lived in air-conditioned houses have a 13% lower reaction

time than their peers living in houses without air conditioning.

The impact of heat stress on cognition also translates into a reduction in test scores. Graff

Zivin et al. (2018) analyze the effect of weather on cognitive performance of children using

cognitive-assessment data from the National Longitudinal Survey of Youth. The authors find

that daily changes in temperatures lead to substantial decreases in cognitive performance on

math beyond 26 degrees Celsius, taking 21 degrees Celsius as the reference point. Given the

voluntary character of the tests used as outcome in the study, the reduction in test scores is not

purely the result of reduced cognitive performance, but a combination of a drop in cognitive

abilities of participants and effort. Park (2018) links the scores of high-stake examinations in

NYC to the ambient temperatures on the test day. Using the within student variation in exam

temperatures across tests, Park finds that hot temperatures during exams results in reduced

exam scores. Also, that this transitory shock in temperatures has long-term consequences, as

reflected by the significant reduction in the likelihood of passing a subject at the end of the

academic year. Recent evidence from a large sample of US exam scores shows high temperatures
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have been also associated with an impairment of learning (Goodman et al., 2018).

Cognitive ability has been considered an important factor in understanding how people per-

form and learn in strategic decision-making (for a review, see Rustichini, 2015). In a sample of

1,000 trainees, Burks et al. (2009) find that cognitive skills are a good predictor of strategic

behavior. In particular, the authors find that individuals with high cognitive skills have signif-

icantly more accurate predictions of the behavior of the participants in a Prisioner’s Dilemma

game. In their seminal work, Gill and Prowse (2016) test in a large experiment whether cognitive

ability influences individuals’ ability to play a Nash equilibrium in a repeated game. The au-

thors find that the individuals with higher cognitive skills perform better at the strategic game.

In particular, in a p beauty contest game, more cognitively able participants choose strategies

closer to the Nash equilibrium and learned faster than less cognitively able individuals.

2.3 Environment and Worker Performance

The harming effects of extreme weather conditions and pollution on labor supply go beyond

drops in total working hours. Evidence from the manufacturing sector shows significant drops

in the productivity of factories in periods with high pollution or high temperatures (Zhang,

Xin, Xi Chen and Zhang, 2018; Fu et al., 2017). Similarly, a recent series of studies using daily

productivity measures provides additional evidence on the harming effects of environmental

conditions on workers’ ability to exert high productivity levels. The studies focusing on manual

routine occupations, such as agriculture workers or pear packers, show a reduction in performance

of workers when exposed to high levels of pollution (Zivin and Neidell, 2012; Chang et al., 2016).

These drops in productivity are also present in highly skilled, highly trained workers physical

workers. Lichter et al. (2017) analyze the changes in the performance of professional soccer

players associated with pollution in a sample of German first-league matches. The results show

that variations in pollution across matches lead to changes in performance in soccer players. In

particular, the number of passes per game that each player executes is reduced when the match

takes place on a high-pollution day.

Physically demanding occupations are rely considerably on the respiratory and cardiovascular

health of workers, which are heavily impaired by pollution and temperature. However, the results

from a new series of studies suggest the productivity of office workers is not exempt from these

hazards. Chang et al. (2016) explore how air pollution affects daily worker productivity of two

call centers in China. The results indicate the number of daily calls handled by a worker decreases

linearly with the level of local air pollution. The drops in daily productivity are not driven by

the ability of the employees to handle the calls, but from an increase in the amount of time

spent on breaks. Similarly, Meyer and Pagel (2017) link the daily trading activity of 103,000

private investors in Germany to contemporaneous levels of air pollution. The authors find that
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when investors are working on high-pollution days, they sit down less at their workplace, log

in less often, and trade less in their brokerage accounts. Finally, a recent study examines the

exposure to pollution and extreme temperates of 135,924 judges in 9.7 million criminal and civil

cases (Kahn and Li, 2019). The authors show that exposure to high-pollution days leads to an

increase in their total decision deliberation time period per case.

The evidence exploring the impact of extreme temperatures on worker performance relies

mainly on call centers and lab studies where participants are asked to undertake several simulated

office tasks (e.g., text processing). In a meta-review of the empirical literature, Seppänen et al.

(2006); Seppänen and Fisk (2004) find the performance of participants tend to follow an inverted

U-shape curve with the maximum at 21-24 degrees Celsius. Based on the meta-analysis of the

studies, the authors estimate a 8.90% drop in individual performance associated with exposures

to temperatures beyond 30 degrees Celsius The current evidence on how (indoor) environmental

conditions (e.g., CO2 or temperature) affect the productivity of adult office workers is generally

based on simulated office tasks that might well differ from real office settings. Individuals might

undertake a series of behavioral responses (e.g., turn on a fan) to reduce the disutility produced

by exerting high effort in high-temperature or highly polluted environments (Heal and Park,

2016). One of the likely reactions to adverse environments is the reduction of effort. As described

above, evidence suggests a reduction in working hours or an increase in the time taken for breaks

during the working days associated with pollution. Against this background, the estimates of

the harming effects of extreme temperatures or poor air quality on performance from the lab

studies where participants are not compensated by outcomes (but just by participating in the

experiment) are likely to be a combination of a drop in pure cognitive performance and effort.

In sum, an increasing number of quasi-experimental studies provide evidence on the harming

effects of pollution or temperature on worker productivity. Most of the current evidence relies

on samples of manual routine jobs, such as agricultural or manufacturing workers. These occu-

pations are usually physically demanding and therefore rely more heavily on the cardiovascular

and respiratory systems than the tasks undertaken by office workers. The existing evidence on

workers’ productivity in cognitive professions uses piece rates or uptime as outcome variables

(e.g., number of units produced or frequency and duration of times logged into a work station),

but it is silent about the quality (or value) of the tasks undertaken by the subjects. The lab

studies in the field complement the current field studies by looking at office-simulated tasks.

However, the lack of incentives of participants makes differentiating between how much of the

drop in performance comes from the drop in the ability of individuals to execute the task and

how much from the drop in the effort in executing the task difficult.

This study deviates from the existing studies by exploring the effect of environmental condi-

tions on cognitively demanding tasks in a setting where performance is remunerated, and thus

8



the participants have clear incentives to exert high effort. In addition, this study is the first to

investigate the impact on the quality of the produced outcome (cognitive performance) and not

workers’ availability to execute the task.

3 Chess Tournaments: Background and Data

In this paper, we use data from chess tournaments to study the impact of indoor environmental

conditions on cognitive performance. Chess is a two-player strategic board game in which players

alternately make moves with pieces on the chess board.2 A player wins the game if (i) the

player checkmates the opponent’s king, (ii) the opponent resigns, or (iii) – in a game with time

restrictions – the player runs out of time. In addition, the players can agree upon a draw at any

time during the game.

Chess is a very complex, strategic, and computational activity, and has been heavily deployed

by cognitive psychologists for investigating different strategic and cognitive aspects of human

thinking, such as perception, memory, and problem solving (e.g. Charness, 1992). Burgoyne et al.

(2016) provide empirical proof for the relationship between chess skills and general cognitive skills

such as fluid reasoning, comprehension knowledge, short-term memory, and processing speed. In

recent years, economists started using chess to analyze human behavior due its computational

nature and the cognitive power of chess players (see, e.g., Palacios-Huerta and Volij, 2009; Gerdes

and Gränsmark, 2010; Levitt et al., 2011; Backhus et al., 2016).

The data used in this paper come from two amateur chess tournaments in Germany. We

received access to data on players’ characteristics as well as the list of all moves of each individual

tournament game. Throughout the tournaments, we measured indoor environmental conditions

at the venue.

3.1 Tournament setup and chess rating score

The tournaments were organized by an amateur chess club in a major city in West Germany

in May–June 2017 and April–May 2018 as the club’s main event of the year.3 Each tournament

comprises seven rounds over an eight-week period with each round taking place on a Monday

night starting at 6:00pm local time and lasting until the last game is over.4 Figure A.1 in

the Appendix illustrates the timing of the tournaments. Registration for the tournament was

open to any amateur chess player on a first-come, first-served basis conditional on paying the

participation fee of 30 euros. The total number of participants was limited to about 80 players per
2For details on the game of chess see the chess handbook as provided by the World Chess Federation (FIDE):

https://www.fide.com/fide/handbook.html?id=171view=article.
3 Further activities are participation in regional championship competitions, smaller-scale internal tournaments

and regular training meetings.
4 The weekly tournament rounds were paused for one week due to the public holidays Whit Monday (in 2017)

and Easter Monday (in 2018).
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tournament.5 The tournament format follows the ”Swiss system,” a non-eliminating tournament

format commonly applied in chess competitions. In each round, players gain one point for a win,

0.5 for a draw, and zero for a defeat. The winner of the tournament is the player with the

highest aggregate points earned in all rounds. The assignment of fixtures is based on players’

pre-tournament chess rating scores indicating their strength as well as their performance during

the tournament.6

In general, chess rating scores are calculated based on the performance in games against

other players. Winning (losing) a game results in an improvement (a decline) in the rating

score, whereby the change in the rating score is larger in absolute terms for ”unexpected”

outcomes, for example, when a player with a much higher score than the opponent loses the

game. The rating score applied for the assignment of fixtures in the tournaments is the German

chess federation’s rating score DWZ (Deutsche Wertungszahl).7 This score is equivalent to the

international Elo rating system as used by the world chess federation FIDE, also for assigning

titles like ”International Master” or ”Grandmaster.” We use the internationally acknowledged

term Elo rating score instead of DWZ in the remainder of the paper.

After each tournament in our sample, all game outcomes are submitted to the chess federation

for a recalculation of players’ rating scores based on their results.8 Hence, all players participating

in the tournaments have an incentive to perform well throughout all tournament rounds in order

to improve their rating score, which is a matter of prestige among chess players and which

determines fixtures in future competitions. In addition, pecuniary incentives are offered. The

winner of the tournament receives a cash prize of 400 euros. The participants ranked 2nd to

4th receive prizes of 300, 150, and 100 euros respectively, and extra prizes are awarded for the

best-ranked players among the youth, the senior, and the female players (70 euros each), as well

as for the best team (60 euros).
5 Most participants are from the same city or from the surrounding region.
6Before the first round, all players are ranked based on their rating score. The ranking is then divided into

the upper and lower half of the score distribution. In the first round, the highest-ranked player of the upper half
(i.e., the player with the highest score overall) plays against the highest-ranked player of the bottom half (i.e.,
the player just below the median score) and so on. After round one, fixtures are assigned in the same way, but
separately among the groups of players equal on points earned during the tournament. This implies that, by
construction, the difference in rating scores between opponents is relatively high in the first round and typically
becomes smaller in subsequent rounds because players with a higher score are more likely to win, especially when
the difference is large.

7 The DWZ rating system works as follows: Chess player i is assigned a cardinal rating score Zi,g reflecting the
player’s strength before game g against opponent j. The outcome of game g determines the change in the score
between games g and g + 1 according to the following formula: Zi,g+1 = Zi,g + αi,g[yi,g − E(yi,g|∆Zij,g)], where
the actual outcome for player i in game g is yi,g ∈ {1, 0.5, 0} for win, draw, or defeat, ereas the expected outcome is
defined as E(yi,g|∆Zij,g) = 1

1+10(−∆Zij,g/400) based on the difference between players’ scores, ∆Zij,g = Zi,g−Zj,g,
as well as a factor αi,g depending on player i’s score level, experience, and age. See https://www.schachbund.
de/dwz.html for details.

8The club has to pay a fee for the recalculation of participating players’ scores, which is less expensive for the
German DWZ score than for the international Elo score, which is why the organizers decided to ”only” apply the
DWZ score.
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3.2 Move-performance measures

We measure the performance of players in each tournament round based on the quality of

players’ moves within the game. A chess game g comprises Mg moves, with two plies per move

m ∈ {1, . . . ,Mg}, where the player with the white pieces moves first. For any given stage of

the game, the relative (dis)advantage for each player is evaluated by the so-called pawn metric

Cgm based on the remaining pieces and their position on the board. Although it plays no formal

role in the game, the pawn metric is useful to players and is essential to evaluate positions in

chess software.9 The sign of this metric indicates which player is in the better position (i.e., is

more likely to win the game) with Cgm > 0 (Cgm < 0), indicating advantage for white (black).

For example, a pawn metric of −1 is interpreted as the player with the black pieces having an

advantage equivalent to one extra pawn on the board relative to the opponent.

For each tournament game, we have information on the evolution of the game based on

players’ hand-written notation (see Figure A.2 in the appendix for an example), which has been

digitized by the tournament organizers.10 We use a chess engine to assess the quality of each

move in the tournaments. In theory, for each move, a particular move option optimizes the pawn

metric given the situation on the chess board. Figuring out the best possible move is essentially

a computational task for the human player. Therefore, we compare the pawn metric resulting

from player i’s actual move m in game g with the metric that would result from the computer’s

optimally suggested move.11 The pawn-metric difference between the human player and the

computer can be viewed as an error:

Errorigm = |Ccomputer
igm − Cplayer

igm | (1)

In the empirical analysis, we look at player-move specific errors as an outcome variable that

may be affected by disadvantageous environmental conditions to which the players are exposed.

We remove the first 14 moves of each game, which can be assumed to represent the opening game

for which players usually have an established plan and are hence less affected by environmental

conditions (Backhus et al., 2016). Furthermore, Expression (1) can take negative values when, at

a given point in the game, the player makes a move that is evaluated to be better than the one

proposed by the computer. Because we are mainly interested in the errors associated with the
9The metric values the remaining pieces on the board relative to a pawn, determining how valuable a piece

is strategically. For example, knights and bishops are typically valued three times a pawn while the queen is
valued at nine times a pawn. In addition, the value of a piece on the board differs depending on its position. See
https://chess.fandom.com/wiki/Centipawn for details.

10 Both players are obliged to document the evolution of moves and have to hand in the hand-written notation
to the tournament organizer immediately after the game is completed. This notation is then submitted to the
chess federation for the recalculation of players’ rating scores.

11In this study, we use the chess engine Stockfish 9 64-bits with a current Elo rating score of 3548 (http:
//ccrl.chessdom.com/ccrl/404/). The highest Elo rating score by a human is 2882, achieved in 2014 by the
current chess world champion Magnus Carlsen.

11
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environmental conditions, and therefore the positive side of the error distribution, we redefine

negative cases as zero (0.7 % of the sample). Panel A in Figure 1 displays the relationship between

the average error per player and her ELO rating score, showing a clear negative relationship

between the two. A statistically significant and negative correlation also exists between a player’s

ELO rating score and her mean error (ρ = −0.54, p− value = 0.00).

[Insert Figure 1 about here]

In addition to the continuous error measure, we explore the probability of an individual

making a meaningful error based on the annotations of the chess engine. Chess engines are

able to classify a certain move as a ”meaningful error” based on the status of the game, the

skill of the player, and the magnitude of the Errorigm. In particular, chess engines annotate a

move m as ”meaningful error” if the engine considers move m to be poor and should not be

played weakening the chances of the player to consolidate her position or win the game. Given

her skill level (ELO rating score), the player should be able to realize the move should not be

played. The chess engine annotates two types of meaningful errors: (1) strategic mistakes and (2)

tactical mistakes or blunders. The annotation of a move considered a strategic mistake describes

a move that results in a loss of tempo or material for the player. These errors are considered

strategic and not tactical. Blunders are severe errors that overlook a tactic from the opponent

and usually result in an immediate loss in position, with a substantial drop in the chances of the

player winning or drawing the game. The chess engine detects and annotates these errors. Panel

B in Figure 1 displays the relationship between the average number of moves annotated as errors

per player and the player’s ELO rating score, showing a clear negative relationship between the

two. The correlation between the average number of annotated meaningful errors per player (the

sum of strategic mistakes and blunders) and her ELO rating score is -0.62 (p-value=0.00).

3.3 Time control

In each game, players face a time constraint (time control): Each player is allotted 90 minutes

for the first 40 moves plus 30 seconds per completed move, resulting in a total time budget of

110 minutes for the first 40 moves. The time limit is allotted to each player individually and

enforced by chess clocks. In each round, the tournament organizer announces the start for all

games taking place in the same venue at the same time. If a player does not complete 40 moves

within the time limit, he loses the game.

This measure gives each player a time budget to allocate to each move in the game, implying

players are likely be under time pressure when they approach the 40th move and the time budget

is reaching zero. To prevent losing the game altogether, a player then has to make move decisions

more quickly, potentially within seconds, which makes them more prone to making lower-quality
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moves. Figure 2 shows the distribution of the total number of moves for all the games in our

sample. The histogram shows peaks in the number of games finished around the move constraint

(40 moves), suggesting that the imposed time constraint is binding, increasing the probability

of ending a game right after the 40th move.

[Insert Figure 2 about here]

The assessment of quality at the move level allows for construction of our error measures

throughout the game. In the empirical analysis, we exploit this feature of the tournament set-up

to test whether the indoor environmental conditions during a game increases the effect of air

quality or temperature on the probability of making errors when approaching the last move of

the time control (move 40).

3.4 Measurement of indoor environmental conditions

During both editions of the tournament, the organizers granted us permission to measure indoor

environmental conditions throughout all tournament rounds inside the venue, a large church

community hall in a residential area. The players were informed that the measurement was

being undertaken for scientific purposes. However, the players were not informed about the

exact purpose of the study, namely, studying the effect of indoor environmental conditions on

chess players’ performance.12

Our measures of air quality (carbon dioxide, CO2, and fine particulate matter, PM2.5)

and temperature were gathered from three real-time web-connected sensors located inside the

tournament venue (see Figure A.3 in the appendix for an example).13 The sensors measure the

parameters of interest every minute and upload the measurements to a cloud server where the

researchers can access the data in real time.

Figure 3 shows the distribution of the three parameters of interest over the seven rounds

across the two editions of the tournament (2017 and 2018). The levels of CO2 range between

1,000 and over 2,250 ppm. These levels are above critical thresholds presented in the literature

as detrimental for human cognition, for example, 1,000 or 1,500 ppm (Allen et al., 2016). The

temperature levels during the tournament are between 22 and 29 degrees Celsius. Although

these temperature levels are moderate, they are far from the temperature levels the literature

considers as optimal for performance, namely, 21–24 degrees Celsius (Seppänen et al., 2006).

Finally, the average level in our sample for PM2.5 is 25.9 µg/m3, similar to the European target

of 25µg/m3 set by the European Environmental Agency (EEA, 2018).
12 Just before the start of the first rounds, the main organizer of the tournaments informed all players about

the presence of the sensors and that they should not be touched. In addition, we put signs next to each sensor
explaining that the device was measuring indoor environmental conditions and should not be moved.

13 We used two Foobot sensors and one Netatmo indoor sensor.
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[Insert Figure 3 about here]

Note that important differences exists in the measurements of these parameters for the

same rounds between the two years. In addition, no clear trend appears in the changes of the

parameters between the years, but the changes in temperature or air quality between years are

seemingly random. These differences are crucial for our estimation strategy, based on within-

player and round variation of errors.

3.5 Descriptive statistics

Our data follow 102 players over a maximum of 14 matches. A total of 44 players participate

in the two editions of the tournament. Table 1 shows summary statistics for player skills and

demographic characteristics of the participants. Our sample is mainly composed of adult men

who were, on averag,e 54 years old, with a wide range of levels of expertise. The least experienced

player has only two official matches in her records and the most experienced player played 273

matches. The players also differ in their skills levels, according to the Elo rating score attached

to their records. The Elo rating score of the most skilled player was more than twice as large as

the Elo rating score of the least skilled player. In addition, Figure 4 shows the entire distribution

of the Elo rating score of the players in the observed tournaments, and compares the scores with

the official ranks within the chess association (FIDE). As the figure shows, we observe a wide

range of skill levels ranging from beginners (novices) to advanced players (FIDE masters). In

addition, the figure shows the Elo score of the chess engine Stockfish clearly dominating any

human player.

[Insert Table 1 and Figure 4 about here]

Focusing on the game-specific characteristics (Panel B in Table 1), we can see that games in

our sample last around three hours on average. This length is similar to the average exposure

time in epidemiological studies exploring the effect of CO2 or temperature on cognition (e.g.

Satish et al., 2012). In our study, the average game duration is sufficiently long to expect the

exposure time of participants is sufficient to uncover an effect of the environmental conditions on

their cognitive abilities. The average length of the games in our sample is around the 40-moves

threshold (see Figure 2 for the full distribution of moves). About 20% of games finished in a

draw.

Finally, the distribution of our outcome measures is shown in Panel C of Table 1. A total of

8% of the moves are annotated as meaningful errors. Moreover, 42% of the moves are considered

suboptimal (positive error), with an average error rate of 1.43 pawns. Panel D in Table 1 shows

the distribution of the indoor-environmental-quality variables within the estimation sample.
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4 Empirical Model

Our goal is to estimate the effect of environmental conditions on the quality of the decisions

undertaken by chess players. Our study setting has a number of features that allow us to identify

the effect of environmental stressors on cognitive performance. First, players are executing the

same (cognitive) tasks repeatedly in the same venue, the same day of the week, and at the same

time of the day. In addition, the selection of opponents for each of the games is exogenously

determined by the tournament organizer, following official rules in chess. Thus, participants have

no control over the environmental conditions that they are exposed to during their games nor

the opponents they play in a given round.

Second, we have objective measures of individual cognitive performance. In particular, we are

able to evaluate each move in our sample of games. The chess engine is able to detect meaningful

errors in the moves undertaken by the players. In addition, we build a continuous measure of the

magnitude of the error. In fact, we can compute an optimum quality of the move, defined as the

maximum (pawn) advantage that a player could reach if she would undertake the best possible

move. In addition, we compute the advantage reached with the actual move of the player. The

difference between the two is one of our main outcomes (see equation 1). The evaluation of the

move quality is specific to the player’s move and is not influenced in any way by the opponent.

Third, the high frequency of our outcome measures allows for the decomposition of the

impact of environmental measures over different stages of the game. In particular, it allows us

to test for differences in the magnitude of the impact as the time budget of players disappears

over the course of the game.

Finally, all players in our sample face strong incentives to exert high effort and make optimal

decisions, because the performance in each game of the tournaments counts for their chess

rating score. Therefore, the incentive structure in our setting deviates from the structure in

non-incentivized lab experiments or survey-based studies in which participants’ payoffs are not

determined by their performance in the proposed tasks. By contrast, our participants are highly

motivated to perform to the best of their abilities.

We follow a fixed-effect strategy and estimate the following linear probability model:

Yijtrm = α+ δIEQtr + βXijt + ηi + γt + λr + θm + Vijtrm (2)

where Yijtrm is the outcome variable measured in a game between player i and opponent

j at move m, round r, and year t. We consider two main outcome variables to capture the

frequency and the magnitude of errors, namely, MeaningfulErrorijtrm and ln(Errorijtrm).

MeaningfulErrorijtrm is defined as a binary variable taking the value of 1 if move m, in round

r, in year t, undertaken by player i against opponent j is annotated as a meaningful error. We

consider meaningful errors those moves annotated by the chess engine as strategic mistakes and
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blunders (see section 3.2). We focus on annotated errors, instead of using the Prob(error > 0),

because not every positive error has a significant meaning for the game. For instance, some

errors are minor without real consequences for the remainder of the game, or sometimes players

create positive errors on purpose when they follow a risky strategy or try to force errors in the

opponent. ln(Errorijtrm) describes the natural magnitude of the error for individual i, playing

against opponent j in year t, round r and move m , describing the difference in the pawn metric

between the computer’s proposal and the player’s move (see equation 1 for a detailed description

of the variable).

We include a set of time-varying controls, describing the differences in skills between op-

ponents in a given game, the points earned over the tournament by the player, and the initial

advantage of the player before executing the move, pawn metric Cplayer
igm−1. We describe the dif-

ferences in skills between the opponents with the variable EloDiffijt that denotes the player-

opponent difference in terms of the ELO rating score to control for initial performance differences

among the two players, measured at the beginning of the tournament. We include the variable

EloDiffijt as well as its squared term as controls. ηi, γt, λr, and θm are individual, year, round

and move fixed effects, respectively. The parameter of interest is denoted by δ, which measures

the impact of prevailing indoor environmental quality IEQtr on the outcome variable. In such a

setting, the main identifying assumption is that pollution, temperature, and CO2 are assigned

as good as randomly after including the rich set of fixed effects. Thus, we identify the parameter

of interest by observing identical individuals playing against different opponents under varying

indoor environmental conditions across tournament editions (years) of the same round of the

tournament.

IEQtr includes three available indoor environmental measures: (i) CO2 concentration, (ii)

temperature, and (iii) fine particulate matter (PM2.5). All measures are included as the mean

value of the prevailing conditions as measured during the second hour of the tournament rounds

(N=14). Figure A.4 in the Appendix shows the distribution of the measures during the tour-

naments rounds. Whereas temperature and PM2.5 are relatively stable during the tournament

rounds, CO2 concentration varies with the number of people in the room,namely, increasing (de-

creasing) at the start (end) of the tournament. Therefore, we decided to take the mean within

the second hour of the tournament (as indicated by the dashed lines in Figure A.4) to avoid

lower values at the beginning/end of the tournament polluting the measure.14 Finally, the error

term Vijtrm is clustered at the game level to allow for arbitrary correlation within the games in

our sample.
14The replacement of our main regressors by the daily maximum values of these parameters does not change

the results in sign and magnitude; see section 6.1.
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5 Results

We present the results on the impact of environmental conditions on the performance of chess

players in two stages: In a first step, the results based on the pooled sample are presented in

section 5.1, where we estimate equation (2) using all moves in the games of the sample. In the

second step, we split the sample into subsamples based on the status of a game, namely, the

move number, in order to investigate effect heterogeneity with respect to time pressure. Players

have a total of 110 minutes for the first 40 moves, inducing higher time pressure once they

approach the 40th move than at the beginning of the match. The results for different moves

levels are presented in section 5.2.

5.1 Pooled Estimation

Table 2 presents the estimated coefficients associated with environmental parameters in equation

(2) using all moves in our sample. Panel A presents the estimation results using the probability

of making a meaningful error as the outcome variable, and Panel B shows the results for the

magnitude of the error (ln(error)). The columns in each of the panels display the estimates for a

different set of fixed effects, starting with no fixed effects, and then stepwise including individual,

year, round, and move-number fixed effects. All regressions include all environmental variables

together with the set of control variables.

[Insert Table 2 about here]

Panel A in Table 2 shows the estimated coefficients δ̂ for the environmental parameters based

on the regression as shown in equation (2). The outcome variable MeaningfulErrorijtrm takes

the value of 1 if the move is annotated as a meaningful error, and zero otherwise. With the most

conservative specification (5) including the full set of fixed effects, we find no evidence for an

effect of temperature or the concentration of CO2 in the room. The results indicate only the level

of PM2.5 affects the probability of making a meaningful error. The significance and magnitude

of the estimate even increases with the inclusion of additional fixed effects. The results of our

main specification (5) indicate a 10 µg/m3 increase in PM2.5 raises the probability of a player

making a meaningful error by 1.5 percentage points in a given move of a game. This effect is

equivalent to an 18.8% increase given the average probability of making a meaningful error in

our sample of 8.0% (see Panel C in Table 1).

In Panel B in Table 2, we present the analysis of the magnitude of those errors, based on the

estimation results of equation (2). The results are similar to Panel A. Although we do not find

any significant effects for CO2 and temperature, the results show a significant impact of fine

particles (PM2.5) on the magnitude of the error. For our main specification (5), we find that a

10 µg/m3 increase in PM2.5 leads to a 9.4% increase in our error measure.
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5.2 Effect Heterogeneity with Respect to Time Pressure

The time-control regulations of the tournament rules induce time pressure , requiring players to

make the first 40 moves within 110 minutes of the game; otherwise, they lose the game. In this

section, we estimate equation (2) for four different subsamples of move intervals within games,

namely, 15–20 (24% of the sample), 21–30 (34%), 31–40 (22%), and >40 moves (20%). Decisions

taken within the range of 31–40 moves can be assumed to be taken under relative time pressure,

compared to the other categories given the low expected time left to execute the required 40

moves to stay in the game. In our sample, 44.4% percent of the games last more than 40 moves.

[Insert Figure 5 about here]

Figure 5 shows the estimated parameters with respect to the probability of making a mean-

ingful error (Panel A) and the magnitude of the error (Panel B). All regressions contain individ-

ual, year, round, and move fixed effects, all environmental measures, and the full set of control

variables: (i) the difference in the ELO rating score between the player and the opponent (as

well as its squared term), (ii) the number of points achieved during the tournament, and (iii)

the actual status of the game before the move, namely, the pawn metric of the previous move

by the opponent (Copponent
jtrm−1 ). The dots represent point estimates and the black (gray) bars show

the 90% (95%) confidence intervals based on standard errors clustered at the game level.

First, we focus on the results concerning the effect of environmental conditions on the prob-

ability of making a meaningful error (Panel A in Figure 5). In line with the results of the pooled

regression, the results indicate CO2 and temperature have no effect on the probability of making

a meaningful error at any stage of the game. However, we detect a clear pattern for the case of

PM2.5. The estimated coefficients increase in size and significance the closer the game gets to

the 40th move. This finding suggests that the effects as displayed in Table 2 are entirely driven

by the moves close to move 40, when the time control takes place. Focusing on the move category

31–40, we find a 10 µg/m3 increase in the levels of PM2.5 in the room leads to an increase in

the probability of making a meaningful error by 3.2 percentage points. This effect is equivalent

to a 29.6% increase given the average probability of making a meaningful error in our sample

(10.8% for moves in this range).

Second, we focus on the impact of environmental conditions on the magnitude of the error.

Panel B in Figure 5 shows the estimated coefficient δ of equation 2 using ln(error) as the

outcome variable. Again, we observe no evidence of a detrimental effect of CO2 concentration

or temperature on the magnitude of the error. However, the estimates associated with PM2.5

show a positive and significant impact immediately before the time control at move 40. In earlier

phases of the game before move 30, the existing variation in environmental conditions in our

sample does not yield any impact on the performance of the chess players. In particular, we
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find that when games are in the move interval between 30 and 40, an increase in 10 µg/m3 is

associated with a 17.3% increase of the error.

In sum, we find the negative impact of fine particles on the performance of chess players

is exacerbated by time pressure. The level of particles affect both, the probability of making

meaningful errors during the game and the magnitude of errors. In our preferred specification,

including the full set of fixed effects, the results from the pooled regression indicates an increase in

10 µg/m3 (similar to one standard deviation in our sample) leads to an increase of 1.5 percentage

points in the probability of making a meaningful error and 9.4% larger errors (relative to the

average error). When we estimate the parameters for the move interval before the time control

(move 30-40), the estimated coefficients double.

5.3 Effect Size in Context

Previous studies find a negative effect of CO2 on the cognitive performance of adults (e.g. Allen

et al., 2016); however, the level at which CO2 impairs cognitive performance and the exact

mechanisms for cognitive impairments remains unclear. In a lab experiment, Allen et al. (2016)

shows that levels beyond 1,500 ppm have a detrimental effect on the performance of 24 adults

in a simulated management task, using 500 ppm as a baseline. Zhang et al. (2015) reduce the

air supply in the chamber to let subjects be exposed to 3,000 ppm of CO2. The authors find a

cognitive impairment in the subjects at 3,000 ppm. The distribution of values of CO2 observed

in our study differs from the distributions in lab experiments. Our baseline (minCO2 = 1, 179

ppm) is twice the 500 ppm value commonly used in the literature as the reference CO2 level.

We find no evidence that higher levels of CO2 are correlated with a higher presence of errors or

the magnitude of the errors within the range of values considered in the analysis.

A number of studies show significant drops in the cognitive performance of humans under

heat stress. In their meta-review of lab studies, Seppänen et al. (2006) find an average loss

in cognitive performance of workers beyond 24 degrees Celsius - relative to the temperatures

between 22 and 24 degrees Celsius. In their field study, Graff Zivin et al. (2018) find a significant

drop in cognitive performance of subjects taking math tests while temperatures are above 26

degrees Celsius, using 22 degrees Celsius as the reference category. Our study spans temperatures

between 22 and 29 degrees Celsius (72 and 84 Fahrenheit), with 40 percent of the rounds with

average temperatures beyond 24 degrees Celsius and 27% of days beyond 26 degrees Celsius.

We find no effects of temperature in a joint regression with CO2 and pollution (measured at the

exact tournament time) on the quality of decisions of highly incentivized subjects.

Evidence on the impact of air pollution on cognitive performance of adults is increasing.

Ebenstein et al. (2016) find that a 10-unit increase in daily PM2.5 (AQI) leads to an increase of

2 percentage points in the probability of failing a high-stakes exam. In our pooled sample, we find
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comparable effects with 10 µg/m3 increase resulting in a 1.5 percentage points increase in the

probability of making a meaningful error. Importantly, when looking at the move interval before

the time control, we find the impact of PM2.5 doubles. An increase of 10 µg/m3 in PM2.5 leads

to a 3.2-percentage points increase in the probability of making meaningful errors. When looking

at continuous variables of performance, we see heterogeneity in the elasticities of pollution on

performance.15 Among manual workers, the highest elasticity is 0.260, estimated in a US sample

of agriculture workers (Zivin and Neidell, 2012). For China, Kahn and Li (2019) estimate the

elasticity of PM2.5 in a sample of highly skilled public workers, finding elasticities between

0.179 and 0.243. In our pooled sample, we find a 0.267 elasticity associated with PM2.5. When

restricting the sample to the move interval before the time control, we observe that the elasticity

increases to 0.484, suggesting the effect of PM2.5 on cognitive performance is exacerbated under

time pressure.

In sum, we find no impact of CO2 and temperature during the tournament rounds on the

quality of tasks of our subjects. The estimated impact of PM2.5 in the full sample of moves

suggests the existence of significant impairments of cognition, at a magnitude similar to the

estimates of the literature. The estimates double in the sample of moves just before the time

control. This observation suggests that when the time available for the execution of the cognitive

tasks is limited, the impact of pollution increases substantially.

6 Sensitivity Analysis

In this section, we present a number of sensitivity tests to check the robustness of our significant

results on pollution (PM2.5).16 In particular, we reestimate the linear probability model as

shown in equation (2), introducing the following modifications: (i) We use the daily maximum

instead of mean value of the environmental parameters during the tournament rounds. (ii) We

restrict the sample by removing games with less than 40 moves, and (iii) use data on outdoor

pollution PM10 and ozone stemming from the closest air-quality stations. (iv) Finally, we provide

a falsification test by additionally including pollution measurements the day before and after

the tournaments rounds.

Figures 6 and 7 summarizes the findings with respect to sensitivity checks (i) – (iii) and

show the estimated coefficients on the pollution parameter. Figure 8 shows the results of the

falsification test. All specifications include the CO2 and temperature levels, the full set of fixed

effects, and control variables as regressors.

[Insert Figure 6, Figure 7 and Figure 8 about here]
15See Kahn and Li (2019) for an excellent overview of the elasticities found in previous studies.
16We provide the results of the sensitivity analysis for temperature and CO2 in Figures A.5 and A.6 in the

appendix, but refrain from discussing them here because we do not find any significant effects on these measures
in the main analysis.
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6.1 Maximum Values

We first test the sensitivity of the results with respect to measurement of the environmental

conditions by using the maximum instead of the mean value of the air-quality measures and

temperature as the treatment. Panel A in Figure 6 presents the results, which are consistent

with our main estimates. The coefficients associated with PM2.5 remain significant and of a

similar magnitude to those presented in the results section (see Figure 5).

6.2 Attrition

In our sample, a number of games do not get to the 40th move, when the time control takes

place. Those games are likely to display differences in the number of errors in the earlier stages of

the games that might lead to the early defeat of one of the players. These games might mislead

our interpretation of the results, which might well be driven by those games finishing before the

40th move, and not by the time pressure induced by the time control per se. In this subsection,

we present the estimation results restricting our sample to those games that reach the move 40.

Panel B in Figure 6 presents the estimation results of the main equations for the sample of

games lasting at least 40 moves. The results suggest the main findings from section 5 are not

driven by the games that finish before the time control is implemented. The estimates associated

with PM2.5 do not change and even slightly increase in magnitude. In the move interval between

30 and 40 moves, a 10 µg/m3 increase in the levels of PM2.5 in the room is associated with

a 4%-points increase in the probability of making a meaningful error and 18.9% larger errors,

compared to 3.2 percentage points and 17% in our unrestricted sample (see section 5.2).

6.3 Outdoor values

The existing studies in the field of environmental economics predominantly rely on outdoor

measures of the environment (except for Roth (2018)). Thus, the existing studies tend to use

data from weather stations (e.g., Park, 2018) or local air-quality stations (e.g., Ebenstein et al.,

2016) to measure the exposure of individuals to certain temperatures or air pollution. In this

subsection, we follow the traditional approach in the literature and replace our main regressors

with outdoor measures. In particular, we replace the temperature and pollution treatments with

the corresponding measures retrieved from an air quality and a weather station close to the

tournament venue (about 3.8 kilometers). The outdoor measures are measured during the same

time interval as the indoor measures, namely, during the second hour of the tournament rounds.

However, for pollution, we have to rely on PM10 because PM2.5 is not available for the outdoor

measurement.17

17Unfortunately, the outdoor measurement of PM2.5 is only available as the daily mean for every second day,
so we decided to rely on the PM10 measurement instead.
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Panel C in Figure 6 shows the results when we use the outdoor measure of PM10 instead of

the indoor measure of PM2.5 as the treatment. We find an identical pattern for the coefficients

on outdoor PM10, compared to our main results using indoor PM2.5 (see Figure 5). Within the

category 31-40 moves, the magnitude and significance of the effects do not change. This finding

is mostly attributable by the high correlation between the two pollution measures of 0.76 in our

sample.

Finally, we test whether the effect is due to general pollution or is specific to PM2.5. We

include the average level of ozone in the area during the tournament rounds in the main empirical

model, together with PM2.5 and the rest of the environmental measures (equation (2)). Figure

7 shows the estimated coefficients associated with outdoor levels of PM10 and ozone. Although

the coefficient associated with PM10 remains unchanged, ozone never has a significant effect in

our sample. This finding supports the hypothesis that the estimated impacts of air pollution are

mainly driven by the level of particles.

6.4 Falsification test

Our analysis so far has focused on the effects at the time of the tournament rounds. In this

subsection, we present the results of a falsification test in which we estimate the relationship

between the error measures and average pollution at times other than during the actual tour-

nament rounds. In particular, we estimate a modified version of equation 2, from the pollution

levels on days leading up to and following the tournament round.

We generate this mis-assigned pollution using the levels of PM10 corresponding to the second

hour of the tournament rounds (7:00pm-8:00pm) in the two preceding (t− 2 and t− 1) and two

following days (t + 1 and t + 2). 18 In addition, we include the pollution levels in the early

morning (6:00am-9:00am) of the same day of the tournament round.

Figure 8 shows the results of seven separate regressions (including the pollution during the

time of the tournament round). As anticipated, the observed positive relationship between the

level of pollution and the error measures is strongest when we use the PM10 at the exact time of

the tournament. The rest of the coefficients are not significantly different from zero. This finding

is supportive evidence that our results on the probability and magnitude of errors are driven by

the transitory effect of pollution, rather than by other explanations. The lack of effects of the

lag PM2.5 indicates an absence of lagged health channels driving our performance measures.

The absence of an effect for lead pollution offers further confirmation that our results are not

driven by unobserved confounding factors.
18Given the lack of indoor measurements on the days before and after the tournament rounds, we rely on PM10

levels from the same air-quality station used in section 6.3 (3.8 kilometers away from the tournament venue).
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7 Conclusion

In this paper, we investigate the impact of environmental conditions on human cognition by

examining the performance of chess players at tournaments under different levels of air quality

and temperature. Chess requires players to use their cognitive skills intensively and to decide

strategically. Due to the computational nature of the game of chess, the cognitive performance

of players can be measured very objectively by comparing the quality of a player’s actual moves

with those moves proposed by chess computer. In addition, chess players at tournament have

a strong intrinsic as well as extrinsic motivation to exert high effort. By using this setting,

we contribute to the existing literature on the effects of environmental conditions on human

productivity, which so far have relied on using simulated office tasks in lab settings, and field

studies focusing on routine manual occupations or workers’ availability to execute tasks (or

uptime) in non-routine cognitive occupations.

In addition, most studies are based on outdoor measurements of the environment that are

likely to deviate from the actual environmental conditions (office) workers are exposed to during

the working day. In our study, we were able to install measurement sensors recording the indoor

environmental quality (CO2 concentration, temperature, and PM2.5) to which the players were

exposed during the tournaments.

Our study is based on detailed move-level information collected at two chess tournaments

in Germany. In total, we observe 102 players making 20,408 moves over a maximum of 14

matches (7 matches per tournament). Based on move-level information, we calculate our main

outcome variable – the move-specific error rate – as the difference between the quality score of

the actual move and the “optimal” move as proposed by a chess engine. To estimate the effect

of indoor environmental conditions on the players’ performance, we regress the error rate on the

environmental conditions in the tournament round as well as individual, year, round, and move

fixed effects. Further, we control for the difference in initial skill levels between the player and

her opponent as measured by the ELO rating score, the number of points achieved during the

tournament, and the actual status of the game before the move.

The results consistently indicate pollution harms the players’ performance in cognitive tasks,

whereas we find no effects for temperature and CO2 concentration. The estimation results show

a 10 µg/m3 increase in PM2.5 results in a 1.5-percentage-point increase in the probability of a

player making a meaningful error, with 9.4% larger errors. The results on pollution are similar

in magnitude to existing estimates within the literature. However, the effects double if decisions

are taken under time pressure. We identify the different phases of the game by exploiting a

tournament rule stating that the first 40 moves have to be completed within a total time limit

of 110 minutes. We find a clear pattern showing the performance of players becomes even more
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sensitive to pollution when approaching move 40, when the time control takes place and the

time budget is at its minimum. For the closest move category, 31-40 moves, we find a 10 µg/m3

increase in the levels of PM2.5 in the room leads to a 3.2-percentage-point increase in the

probability of making a meaningful error, and 17.3% larger errors.

Given that our measures of indoor environmental conditions are within a moderate range,

resembling normal conditions humans are usually exposed to during their daily life, we argue

that our findings can be extrapolated to different setups where individuals are required to make

complex decisions or execute cognitive tasks under time pressure. For the labor market, given

the type of cognitive task chess players have to perform (and which we actually measure with

our outcome variable), our results likely have strong implications for the productivity of high-

skilled office workers, in particular, for those executing non-routine cognitive tasks requiring

problem-solving skills. Due to the technological change, the role of these tasks is steadily rising

in developed labor markets and is represented in professional, managerial, technical, and creative

occupations (Autor and Price, 2013).
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Tables and Figures

Table 1: Descriptive statistics

N mean sd min max
(1) (2) (3) (4) (5)

A. Player characteristics
ELO rating score 102 1,681 329.1 950.3 2,289
Number of official matches played 101 80.83 64.12 2 273
Age (in years) 102 53.71 16.63 18 89
Female 102 0.0386 0.192 0 1

B. Game-specific characteristics
Total number of moves 418 38.94 14.70 15 98
Total duration (in minutes) 413 171.50 54.62 43 310
Draw game 418 0.20
Player-opponent difference in

ELO rating score 418 3.51 357.60 -1,265 814
Experience (in #games) 398 67.24 53.36 0 271
Age (in years) 418 18.13 14.24 0 66

C. Move-specific characteristics
Meaningful error 20,408 0.08
Error if > 0 8,600 1.43 4.61 0.01 59.22

D. Environmental measures (round level)a)

CO2 (in ppm) 14 1,549 326.60 1,179 2,393
Temperature (in ℃ ) 14 25.17 2.12 22.10 28.75
PM2.5 (in µg/m3) 14 22.38 9.15 14.03 51.05

a) Environmental measures are mean values of the prevailing conditions as measured during
second hour of the tournament round.
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Table 2: Impact of indoor environmental quality on performance of
chess players

(1) (2) (3) (4) (5)

Panel A: Meaningful error
CO2 (in 100 ppm) 0.000 0.003* 0.003** 0.002 0.001

(0.001) (0.001) (0.001) (0.003) (0.003)
Temperature 0.003 -0.006** -0.008** -0.006 -0.005

(0.003) (0.003) (0.003) (0.005) (0.005)
PM2.5 (in 10 µg/m3) 0.004 0.011** 0.011** 0.013*** 0.015***

(0.005) (0.004) (0.004) (0.005) (0.005)

Observations 20,408 20,408 20,408 20,408 20,408
Adj. R-squared 0.009 0.018 0.018 0.019 0.037

Panel B: Ln(error)
CO2 (in 100 ppm) -0.011 0.006 0.008 0.016 -0.001

(0.013) (0.012) (0.012) (0.021) (0.022)
Temperature 0.045* -0.015 -0.029 -0.043 -0.022

(0.025) (0.024) (0.026) (0.041) (0.043)
PM2.5 (in 10 µg/m3) 0.011 0.051 0.054 0.073* 0.094**

(0.044) (0.036) (0.036) (0.042) (0.045)

Observations 8,600 8,600 8,600 8,600 8,589
Adj. R-squared 0.024 0.050 0.050 0.051 0.113

Player FE NO YES YES YES YES
Tournament FE NO NO YES YES YES
Round FE NO NO NO YES YES
Move FE NO NO NO NO YES

Note: */**/*** indicate statistical significance at the 10%/5%/1% levels. Standard
errors are in parentheses and clustered at the game level. Each panel presents the
regression on different outcomes. The binary outcome variable “meaningful error”
takes the value of 1 if the move is marked as a meaningful error by the chess engine
and zero otherwise. For each panel, each column displays the results of a separate
regression with the combination of fixed effects specified at the bottom of the table.
All regressions presented in the table include all the environmental parameters and
the full set of control variables: (i) difference in the ELO rating score between the
player and the opponent (as well as its squared term), (ii) the number of points
achieved during the tournament, and (iii) the actual status of the game before the
move, namely, the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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Figure 1: Player skills and average move performance

Panel A. Average error and player ELO rating score

Panel B. Average number of meaningful errors and player ELO rating score)

Note: Each dot in the figures represents a player, the figures display the average error of a player (Panel A) or the average
number of annotated errors (Panel B) in the vertical axis, and the average ELO rating score of the player over the two
tournaments in the sample. The error measure is defined in equation 1. The annotated errors are defined as the sum of moves
labeled as mistakes (’?’) and blunders (’??’). The Pearson correlation between the error measure and the ELO rating score is
-0.54 (p-value=0.00). The Pearson correlation between the average number of annotated errors and the ELO rating score is
-0.62 (p-value=0.00). The correlation between the player average of two move-performance measures is 0.72 (p-value=0.00).
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Figure 2: Distribution of total number of moves per game

Figure 3: Indoor environmental conditions as measured on the days at the tournaments

Note: The figures show the distribution of CO2 concentration, temperature, and fine particulate matters (PM2.5) are
measured during the days (rounds) at the chess tournaments.
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Figure 4: Distribution of players’ Elo rating score
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Note: The players’ Elo score is calculated by adding 100 to the players’ DWZ score in order to make the scores comparable
to the FIDE system.
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Figure 5: Impact of indoor environmental quality on performance of chess players by move level

Panel A: Meaningful error Panel B: Ln(error)

CO2 concentration (in 100 ppm)

Temperature

PM2.5 (in 10 µg/m3)

Note: The figure shows the estimated coefficient of joint regressions including all the environmental measures. We divided the
total sample of moves into subsamples with respect to the number of moves within a game (horizontal axis). The vertical,
dashed red line indicates the occurrence of the time restriction during the game. Each panel presents the regression on different
outcomes. The binary outcome variable “meaningful error” takes the value of 1 if the move is marked as a meaningful error
by the chess engine, and zero otherwise. Dots represent point estimates. Black (gray) bars show the 90% (95%) confidence
intervals based on standard errors clustered at the game level. All regressions include individual, year, round, and move fixed
effects, as well as the full set of control variables: (i) difference in the ELO rating score between the player and the opponent
(as well as its squared term), (ii) the number of points achieved during the tournament, and (iii) the actual status of the game
before the move, namely., the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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Figure 6: Robustness of the effect on PM2.5

Meaningful error Ln(error)

Panel A: Daily maximum value of air quality as treatment

Panel B: Only games with ≥ 40 moves per player

Panel C: Outdoor PM10 (in 10 µg/m3)

Note: The figure shows the results of the sensitivity analysis testing the robustness of the effect on PM2.5. We show the
estimated coefficient of joint regressions including all the environmental measures. We divided the total sample of moves into
subsamples with respect to the number of moves within a game (horizontal axis). The vertical, dashed red line indicates the
occurrence of the time restriction during the game. Each panel presents the regression on different outcomes. The binary
outcome variable “meaningful error” takes the value of 1 if the move is marked as a meaningful error by the chess engine, and
zero otherwise. Dots represent point estimates. Black (gray) bars show the 90% (95%) confidence intervals based on standard
errors clustered at the game level. All regressions include individual, year, round, and move fixed effects, as well as the full set
of control variables: (i) difference in the ELO rating score between the player and the opponent (as well as its squared term),
(ii) the number of points achieved during the tournament, and (iii) the actual status of the game before the move, namely,
the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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Figure 7: Robustness Check Inclusion of Ozone

Meaningful error Ln(error)

Note: We show the estimated coefficient of joint regressions including all the environmental measures. We divided the total
sample of moves into subsamples with respect to the number of moves within a game (horizontal axis). The vertical, dashed
red line indicates the occurrence of the time restriction during the game. Each panel presents the regression on different
outcomes. The binary outcome variable “meaningful error” takes the value of 1 if the move is marked as a meaningful error
by the chess engine, and zero otherwise. Dots represent point estimates. Black (gray) bars show the 90% (95%) confidence
intervals based on standard errors clustered at the game level. All regressions include individual, year, round, and move fixed
effects, as well as the full set of control variables: (i) difference in the ELO rating score between the player and the opponent
(as well as its squared term), (ii) the number of points achieved during the tournament, and (iii) the actual status of the game
before the move, namely, the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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Figure 8: Falsification Test

Meaninful error

Ln(Error)

Note: */**/*** indicate statistical significance at the 10%/5%/1% levels. We show the estimated
coefficient of separate regressions. We divided the total sample of moves into subsamples with
respect to the number of moves within a game (horizontal axis). The binary outcome variable
”meaningful error” takes the value of 1 if the move is marked as a meaningful error by the chess
engine and zero otherwise. Dots represent point estimates. Gray bars show the 95% confidence
intervals based on standard errors clustered at the game level. All regressions include individual,
year, round, and move fixed effects, as well as the full set of control variables: (i) difference in
the ELO rating score between the player and the opponent (as well as its squared term), (ii) the
number of points achieved during the tournament, and (iii) the actual status of the game before
the move, namely., the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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A Appendix

Figure A.1: Timing and setting of the chess tournaments

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Holiday

Holiday

Holiday

2017

2018

2019

April May June

Note: This diagram illustrates the timing and setting of the observed tourna-
ments. Each tournament consists of seven rounds, played every Monday, 6:00pm
(local time).
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Figure A.2: Example of players’ hand-written game notation

 

Note: This picture shows an example of the hand-written documentation as filled in during each
game within the chess tournament. The documentation has been digitized by the tournament
organizers.
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Figure A.3: Example for sensor location

Note: This picture illustrates the placement of one sensor measuring the indoor environmental
quality. In total, three sensors were placed across the room on separate tables.

Figure A.4: Distribution of indoor-environmental-quality measures during the tournament
rounds
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Note: The solid black lines indicate the distribution of the environmental measures during the seven rounds within a
tournament. The calculation of the mean values of the environmental measures as used in the regression analysis are
calculated based on observations during the second hour of the tournament rounds, as indicated by the dashed lines.
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Figure A.5: Robustness of the effect on temperature

Meaningful error Ln(error)

Panel A: Daily maximum value of temperature and air quality as treatment

Panel B: Only games with ≥ 40 moves per player

Note: The figure shows the results of the sensitivity analysis testing the robustness of the effect on PM2.5. We show the
estimated coefficient of joint regressions including all the environmental measures. We divided the total sample of moves into
subsamples with respect to the number of moves within a game (horizontal axis). The vertical, dashed red line indicates the
occurrence of the time restriction during the game. Each panel presents the regression on different outcomes. The binary
outcome variable “meaningful error” takes the value of 1 if the move is marked as a meaningful error by the chess engine, and
zero otherwise. Dots represent point estimates. Black (gray) bars show the 90% (95%) confidence intervals based on standard
errors clustered at the game level. All regressions include individual, year, round, and move fixed effects, as well as the full set
of control variables: (i) difference in the ELO rating score between the player and the opponent (as well as its squared term),
(ii) the number of points achieved during the tournament, and (iii) the actual status of the game before the move, namely,
the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).
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Figure A.6: Robustness of the effect on CO2

Meaningful error Ln(error)

Panel A: Daily maximum value of temperature and air quality as treatment

Panel B: Only games with ≥ 40 moves per player

Note: The figure shows the results of the sensitivity analysis testing the robustness of the effect on PM2.5. We show the
estimated coefficient of joint regressions including all the environmental measures. We divided the total sample of moves into
subsamples with respect to the number of moves within a game (horizontal axis). The vertical, dashed red line indicates the
occurrence of the time restriction during the game. Each panel presents the regression on different outcomes. The binary
outcome variable “meaningful error” takes of the value of 1 if the move is marked as a meaningful error by the chess engine,
and zero otherwise. Dots represent point estimates. Black (gray) bars show the 90% (95%) confidence intervals based on
standard errors clustered at the game level. All regressions include individual, year, round, and move fixed effects, as well as
the full set of control variables: (i) difference in the ELO rating score between the player and the opponent (as well as its
squared term), (ii) the number of points achieved during the tournament, and (iii) the actual status of the game before the
move, namely., the pawn metric of the previous move by the opponent (Copponent

jtrm−1 ).

41


	Introduction
	Literature
	Environment and Health
	Environment and Cognition
	Environment and Worker Performance

	Chess Tournaments: Background and Data
	Tournament setup and chess rating score
	Move-performance measures
	Time control
	Measurement of indoor environmental conditions
	Descriptive statistics

	Empirical Model
	Results
	Pooled Estimation
	Effect Heterogeneity with Respect to Time Pressure
	Effect Size in Context

	Sensitivity Analysis
	Maximum Values
	Attrition
	Outdoor values
	Falsification test

	Conclusion
	Appendix

