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Abstract

We investigate the unequal effects of air pollution on health outcomes and costs by linking daily
pollutant concentration levels to information on the universe of hospitalizations in all major Italian
municipalities. By exploiting daily episodes of all public transportation strikes occurred between
2013 and 2015 as an instrumental variable for pollutant concentrations, we find that higher values of
particle pollution (P M10 and P M2.5) induced by strikes cause a rise in urgent respiratory hospital
admissions, with a larger penalty for the young, the oldest and the least educated We also estimate
direct monetary costs, showing not only that air pollution increases the medical spending for a higher
number of hospitalizations, but it also increases their complexity, hence their costs. In terms of
total costs, we show that individuals of different ages in combination with different exposures to
air pollution may face similar health costs. Our study provides large evidence of environmental
inequality, suggesting that effective mitigation policies not only have to account for air pollution as
a technological issue, but also as a socio-economic phenomenon with largely heterogeneous effects.
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1 Introduction

Air pollution represents a global and increasing concern, contributing to serious illnesses, premature

deaths and productivity loss, especially in urban areas (Deryugina et al., 2016, Isen et al., 2017, Salvo

et al., 2018, Schlenker and Walker, 2015, Zivin and Neidell, 2018, among others). While the consequences

of air pollution per se are well documented, much less is known about their distributional impacts. Indeed,

both lethal and non-lethal effects are likely to depend on the socio-economic status (SES) of individuals

(Lavaine, 2015, Neidell, 2004), raising the issue of environmental inequality. If poor air quality hits

individuals differently, public policies aimed at mitigating the impact of air pollution should incorporate

such differentials in order to optimally compensate individuals for their damages.

In this paper we provide causal estimates of the differential effect of particulate matter - one of the

most diffused and harmful air pollutant, on the number of hospitalizations (extensive margin) and related

total costs, and on average unit costs (intensive margin), offering a large-scale analysis relative to all

major Italian cities for the period 2013-2015. Indeed, hospitalizations resulting from higher air pollution

concentrations might be more likely to occur and more complex to deal with. While the distinction

between extensive and intensive margin is of relevant policy interest, so far the literature has limited to

quantifying only the former. We fill this gap by providing an exact quantification of the hospitalization

costs for pulmonary diseases caused by sudden increases of both PM10 and PM2.5, exploring the effects

heterogeneity through the lenses of age, educational attainment and migration status.

State-of-the-art environmental data employed in this study allow to capture a more reliable air pol-

lution dispersion over a homogeneous and granular grid of the whole Italian territory, circumventing the

non-random distribution over space and time, and the "births" and "deaths" of monitoring stations. We

link these data to an administrative hospital discharge dataset including the universe of Italian daily

hospital admissions and their costs in both public and private structures. Our research thus benefits

from a homogeneous three-year daily pollution-hospitalizations match for all the Italian municipalities.

The endogeneity issue due to non-random pollution exposure are carefully addressed by framing the

analysis in an instrumental variable (IV) approach. Precisely, we leverage episodes of public transporta-

tion (PT) strikes, which unexpectedly generate traffic congestion and increase air pollution levels on

specific day-municipality combinations. PT strikes represent a unique application, as the at-risk pop-

ulation is potentially very large. Moreover, the universalistic nature of the Italian healthcare system

offers a favorable setting for this type of analysis, as individuals face negligible barriers in accessing the

healthcare.

Our results show that increases in particle pollution, instrumented by PT strikes, lead to more urgent

hospital admissions. In particular, when vis-à-vis comparing exposure treatment to both PM10 and

PM2.5, we find much larger effects for finer particulate: one standard deviation increase in PM10 causes
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an additional 0.53 hospital admissions per 100 thousand residents, while a similar increase in PM2.5

causes 0.88. An important finding of our study is that the penalty of air pollution exposure is particularly

pronounced for the young and the least educated. Moreover, we find evidence of disparities for pollution-

induced hospitalizations relative to migrants coming from low income countries. Taken together, our

findings of unbalanced impacts of air pollution point to the existence of large environmental inequality

as those who do not contribute the most to air pollution formation are the most affected. This suggests

that not only air pollution is a technological issue, but it also constitutes a socio-economic challenge due

to limited adaptive or affordable capacity of the most vulnerable population groups.

We then examine to what extent traffic-born adverse air quality affects the hospitalization costs for

each disease considered. We find that one additional microgram per cubic meter of PM10 (PM2.5) in-

creases the average unit cost for asthma admissions by 133 euro (223 euro), which represents an excess

expenditure of 8.1% (13.6%) relative to a standard hospitalization cost for this disease. Hence, together

with a higher probability of being hospitalized, exposure to particulate matter also increases the com-

plexity, namely the costs, of each related admission for asthma. We also find impact for higher PM10

concentrations on COPD costs, where a one additional microgram per cubic meter causes a rise in the

admission unit costs of 45 euro, representing a 1.8% increase compared to the average total cost of 2,488

euro per admission. On the contrary, no effects are found for PM2.5 on COPD unit costs.

Overall, considering both extensive and intensive margins, we estimate that a daily increase of one

microgram/cubic meter in PM10 (PM2.5) is associated with an additional 180 euro (303 euro) per 100

thousand individuals, representing 32% (49%) of the average daily expenditure on respiratory urgent

admissions. In the case of PM10 (PM2.5) this cost ranges between 340 euro (573 euro) for the young,

and 621 euro (1,036) for the elderly patients. We summarize these results through a heat map which

shows how populations with different age structures in combination with different PM exposures generate

similar health costs. For instance, a modest increase of 6 microgram per cubic meter of PM10 among

individuals aged between 15 and 24 is responsible for a similar excess expenditure as the one for 40-50

year olds in response to a 15 microgram increase.

Based on these results, we derive back-of-the-envelope calculations of total daily monetary costs

relative to one standard deviation increase in PM for the 17.8 million residents of the 111 municipalities

considered, which amount to 331,843 euro for PM10, and 498,541 euro for PM2.5, representing 0.37%

and 0.55% of the total daily health expenditure in Italy.

The remainder of the paper is organized as follows. In section 2 we provide an overview of the effects

of air pollution, describe the institutional background and the issue of environmental disparity. section 3

describes the data sources and the dataset construction. section 4 and section 5 presents, respectively,

the estimation strategy and the econometric results. Finally, section 6 discusses the implications of our
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findings and concludes. Appendix includes additional research material and the robustness checks.

2 Adverse effects of particulate matter

Among different types of air pollutants, most of the evidence of health effects relate to particulate matter

(PM), ozone (O3) and nitrogen dioxide (NO2). However, due to its ability to easily penetrate into the

lungs and blood streams unfiltered, PM is considered "the most pernicious form of air pollution" (Chay

et al., 2003). PM embraces pollution particles of different sizes and compositions directly emitted into

the atmosphere that when inhaled can cause cardiovascular and pulmonary diseases, and premature death

(WHO, 2013). PM10 consists in particles less than 10 micrometers (µm) in aerodynamic diameter, while

PM2.5 consists of particles of even smaller diameter (less than 2.5 µm). PM2.5 can penetrate more

deeply into the lungs, where it can stimulate inflammation and produce more harmful effects compared

to PM10. Both PM10 and PM2.5 originate from natural and anthropogenic sources, even though most

particle pollution derives from fuel combustion from motor vehicles, diesel in particular (EEA, 2016).

Although air pollution represents a "public bad", it does not affect everyone to the same extent. On

the contrary, the unequal distribution of the impacts of air pollution closely reflects the socio-demographic

differences within the society. A pioneering study by Neidell (2004), who studied the differential impact

of air pollution on child hospitalizations, has introduced the ‘double jeopardy’ hypothesis, according to

which low SES individuals are "not only exposed to higher levels of pollution but also are more harmed by

similar amounts of pollution" [page 1228]. Hence, individual characteristics, such as education, income,

employment status, age or initial health conditions, may determine how sensitive individuals are to air

pollution health hazards. This implies that while wealthier individuals can partially compensate for the

negative effects of bad air quality in a medium and long run perspective (Halliday et al., 2015, Isen

et al., 2017, McCubbin and Delucchi, 1999, Sun et al., 2017), the elderly, children, those experiencing

material disadvantage and those in bad health are not only more vulnerable to air pollution, but also less

responsible for air pollution formation (Adler and van Ommeren, 2016, Cournane et al., 2017, Forastiere

et al., 2007a, Germani et al., 2014, Lavaine, 2015, among others).

Some epidemiological studies also point to differential impacts for different ethnic groups in US, with

larger effects for Whites and Hispanics (Ostro et al., 2006) and for African Americans (Apelberg et al.,

2005, Bell and Dominici, 2008). A recent study of New Jersey residents found that the risk of dying early

from long-term exposure to particle pollution was higher in communities with larger African-American

populations (Wang et al., 2016). In Europe, the growing inflow migration from low-income countries, in

particular from Africa, is increasing the share of at-risk people, as migrants from low-income countries

are often among the most marginalized. If there is a socio-economic gradient in the way air pollution hits

individuals, policy makers need a precise calculation of these exposure differentials and compensation gap
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in order to effectively design policy responses able to mitigate the environmental inequalities.

Recently, a group of studies have investigated the effect of air pollution on healthcare utilization,

focusing on NO2, CO and PM . Schlenker and Walker (2015) estimate the impact of CO on hospital

admissions for communities living in 12 US airport zones, showing that an additional standard deviation

in the pollutant concentrations leads to a 17% increase in respiratory admissions. Based on a simple back-

of-the-envelope calculation, the authors estimate a corresponding 540 thousand dollar costs for 6 million

people living in the airport zones. Halliday et al. (2015) show that a one standard deviation increase in

particulates from volcanic eruptions (vog), leads to a 23-36% increase in expenditures on emergency visits,

though the comparability of vog and regular particulate pollution might limit the external validity of the

estimated effects. More recently, Deryugina et al. (2016) demonstrate that lower PM2.5 concentrations

experienced during the period 1999-2001 led to decrease the number of elderly deaths by 55,000 per year

and the number of life-years lost by 150,000 per year, for a corresponding monetary benefit of $15 billion

per year. All these studies find strong adverse effects of air pollution on access to healthcare, even though

the specific geographical location and subsamples of the population analyzed may represent a limit to the

external validity of the results. Moreover, none of these studies provide a detailed analysis of healthcare

costs due to medical treatment of different complexity, which represent a valuable evidence from a policy

perspective.

3 Data

We combine administrative data on the universe of hospital admissions for the period from 2013 to

2015 aligned with pollution concentrations data and information on public transportation strikes at day-

municipality level. We rely on the finest territorial disaggregation of the Italian territory relative to 2010,

represented by 8,090 municipalities, even though our core analysis is carried out on data relative to all the

111 province capitals cities (see Figure B1 in Appendix B). For each of the 1,095 days between 2013-2015

and 111 administrative municipalities, we consider a balanced panel consisting of 121,545 observations.

This section describes the data, with additional details included in Appendix A (Table A1).1

1In January 2010 there were 8,090 Italian municipalities (corresponding to Local Administrative Units according to
the European classification of territorial units), which were the building blocks of Italian provinces corresponding to the
NUTS 3 level of the Eurostat classification. Each province is administratively governed by a municipality. Following several
administrative reorganizations, the number of municipalities dropped down to 7,954 in 2018, with both the number of
provinces and their capitali cities undergoing organizational changes: Italian provinces changed from 107 to 110, and overall
during the period between 2010 and 2018 they were headed by 111 municipalities (in some cases the administration moved
to a different municipality, e.g the case of Cesena–Forlí). In our analysis we consider all the 111 municipalities which in any
point in time constituted an administrative city in Italy.
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3.1 Hospital admissions

The Hospital Discharge Data (SDO) of the Italian Ministry of Health constitute our main data source.

They provide information on the universe of hospitalization episodes delivered by public hospitals and

publicly funded private hospitals. The universal provision of health-care in Italy guarantees a favorable

setting for the analysis, where hospitalizations are largely free at point of delivery for all Italian residents.

The records contain demographic data (age, gender, place of birth and residence), clinical information

(diagnoses, procedures performed, in and out hospital transfers, discharges) and hospitalization details

(hospital type and specialty where the patient received treatments).

Considering the aim and the setting of our study, we restrict the data to urgent hospitalization

episodes, disregarding programmed or elective hospital stays. For the same purpose, we further restrict

the cases to hospitalization episodes relative to respiratory diseases based on the primary diagnosis

relative to each hospitalization (codes ICD-92). This choice is more stringent with respect to the analysis

by Schlenker and Walker (2015), who count a patient as suffering from a sickness if either the primary or

one of the secondary diagnosis code lists a respiratory illness under scrutiny. For instance, if an individual

is hospitalized from a leg fracture, being at the same time an asthmatic patient, one might attribute to

air pollution a hospitalization which instead might be causally related to traffic congestion.Yearly, there

are roughly 9.5 million hospital admissions in 8,090 municipalities in Italy, out of which an average of 39%

is of urgent nature (11.2 millions). Within the urgent hospitalizations, 31% are delivered to the residents

of the 111 municipalities considered. A subset of 11.7% of hospitalizations, corresponding to 403,861

hospitalizations, is due to a primary respiratory disease diagnoses, which represent our main outcomes.

In our core analysis, we determine the count of daily admissions by considering only municipalities

of residence and disregarding the municipalities where hospitalizations take place, which in 1.32% cases

do not coincide for the urgent respiratory cases. While Italian residents are free to seek health-care

anywhere in the Italian territory, accessing hospitals away from the municipalities of residence represents

an unlike practice in urgent respiratory cases.3 We thus aggregate the data by day-of-admission and

patient municipality of residence.

In order to gauge heterogeneous effects of pollution exposure, we further perform the aggregation

by five age groups (0-14, 15-24, 25-44, 45-64 and over 65), three educational levels (primary, secondary

and tertiary school attainment) and migrant status as inferred from non-Italian citizenship. We further

distinguish between migrants from low vs. high income countries using country the classification provided

by the The World Bank.4 According to this procedure we obtain daily counts of hospitalizations for the
2ICD-9 codes for Respiratory diseases: Acute respiratory infections (460-466), Other diseases of the upper respiratory

tract (470-478), Pneumonia and influenza (480-488), Chronic obstructive pulmonary disease and allied conditions (490-496),
Pneumoconioses and other lung diseases due to external agents (500-508), Other diseases of respiratory system (510-519)

3For the completeness of our results, we also carry out a complementary analysis where we group patients according to
the municipality of hospitalization, which delivers comparable findings.

4According to World Bank (2014), high income countries have a per-capita gross national income (GNI) for the previous
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entire population as well as for each of the socio-economically relevant subgroup. Our final outcomes are

represented by daily municipality-level admission counts expressed per 100 thousand residents. When

age, education or migration specific groups are considered, the relevant resident population is adjusted

to that particular group.

In quantifying the economic burden of the pollution exposure on direct health expenditure, we calcu-

late individual hospitalization costs. Based on patient primary and secondary diagnosis, surgical inter-

vention, diagnostic and therapeutic procedures, and individual age and sex, an algorithm aggregates each

hospitalization episode into a specific Diagnosis Related Groups (DRGs). DRGs classify hospital patients

into homogenous groups, by assigning to each hospitalization a relative cost and a standard length of

hospital stay.5 Additionally, each DRG includes information on a supplementary cost applied to days

exceeding the standard length. We thus exploit this information to construct individual hospitalization

costs by assigning to each individual a cost relative to the hospitalization DRG, rescaled to account for the

extra hospital stay days. We are thus able to capture a more accurate cost pattern based on the severity

of each hospitalization episode. Following the setup of our analysis, we then aggregate individual costs by

municipality and day of hospitalization, calculating both average unit costs and average per-capita costs.

The two dimensions of the economic burden of hospitalizations, together with the frequencies of hospital

admissions, allow us to quantify the extensive and intensive margins of pollution-induced hospitalizations.

In summary, we consider three main outcomes: the admission count reflects the extensive margin, the

average unit cost reflects the intensive margin, while per-capita admissions costs provide a measure of

the total burden of air pollution.

year > 12, 746$, while for low-middle income countries the GNI is ≤ 12, 746$. For further details see: https://blogs.
worldbank.org/opendata/updated-income-classifications.

5DRG prices are the key parameters through which hospitals are financed by the central administrations.
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Table 1: Descriptive statistics - daily municipality level urgent respiratory admission counts x 100k population (primary
diagnosis)

Mean Std. Dev. Min Max

all ages 2.049 1.308 0 26.357
Ages below 14 2.126 3.526 0 102.249
Ages 15 - 24 0.390 1.661 0 74.349
Ages 25 - 44 0.358 0.949 0 33.25
Ages 45 - 64 0.829 1.351 0 46.587
Ages 65 and above 6.055 4.514 0 105.457
Primary education 3.186 2.116 0 46.164
Secondary education 0.582 1.125 0 28.678
Tertiary education 0.464 1.880 0 85.069
Low income countries 0.301 0.789 0 63.452
High income countries 0.057 0.502 0 53.792
Obs.=121,545; n=111; t=1095

Notes: The numbers refer to an initial sample of 403,861 urgent
respiratory hospital admissions defined in the primary diagnosis
and to a population of 53,333,849 individuals distributed across
111 municipalities over 1095 days. All descriptive statistics are
weighted by the relevant municipality population size. Admission
counts are expressed as the number of hospital admissions per
100,000 residents. In case of each age/education/migration spe-
cific group, the resident population is adjusted to that particular
group.

Table 1 presents descriptive statistics relative to the full sample of individual admissions considered

and to each socio-economic subgroup separately. Since all the results come from aggregation proce-

dures that reduce the relevant variables to rates, we weight observations by the size of the municipality

population, as standard in several related studies (Janke, 2014, Janke et al., 2009, Knittel et al., 2016,

Schlenker and Walker, 2015, among others). We observe an average of two hospitalizations per day,

with this number being the highest for the elderly and for pediatric age individuals. Both the overall

and group-specific counts are extremely variable with standard deviations larger than the means. The

number of admissions among individuals with primary education is disproportionally higher with respect

to the remaining education attainment categories. Finally, the number of admissions is on average lower

for migrants, although citizens of low-income countries are more frequent to undergo a hospitalization

with respect to those coming from high-income countries.

An urgent respiratory admission costs, on average, 2,856 euro, and this amount varies according to

the specific respiratory problem. The cost of an admission related to asthma amounts to 1,648 euro, to

chronic obstructive pulmonary disease (COPD) 2,237 euro and to pneumonia 2,884 euro. In per-capita

terms, hospitalization costs related to urgent respiratory problems amount to 0.06 euro/day per each

resident in the 111 municipalities. To understand the magnitude of this number, one should bear in mind

that the overall Italian healthcare fund amounts to an average of 5 euro per resident/day.6

6Public healthcare fund (FSN) amounts to 110,000 million euro/year for a population of about 60 million.
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Table 2: Descriptive statistics - costs of municipality level urgent respiratory admissions (euro)

Mean Std. Dev. Min Max

Unit cost
Respiratory 2855.857 785.8157 703.04 6054.17
Asthma 1647.695 1345.537 299.50 5898.48
Pneumonia 2884.100 550.4634 1724.17 3373.38
COPD 2237.036 330.4629 299.50 2404.23

Daily cost per resident
Respiratory all ages 0.0564 0.0539 0 0.7459
Obs.=121,545; n=111; t=1095

Notes: The numbers refer to an initial sample of 403,861 urgent res-
piratory hospital admissions defined in the primary diagnosis and to
a population of 53,333,849 individuals distributed across 111 munici-
palities over 1095 days.

3.2 Air pollution concentrations

Air pollution data come from the Copernicus Atmosphere Monitoring Service (CAMS) managed by

ECMWF7. Our core analysis focuses on PM ten micrometers or smaller in aerodynamic diameter (PM10),

being the most applicable to our setting and relevant from a policy perspective. Additionally, throughout

the analysis, we provide in parallel results relative to particulate matter 2.5 micrometers in size or smaller

(PM2.5), which is much less frequently examined in the existing literature and, as a consequence, so far

less considered in the policy debate8.

Automobile fuel combustion creates mainly PM and CO, although to a lesser extent it also contributes

to production of nitrogen oxides, and benzene. While comparable CO and NO2 data are not available

among pollutants analyzed in the dataset at hand, we additionally exploit the information on ozone

(O3), which is responsive to daily transport shock only to a narrow extent and will serve us as a placebo

exercise in our IV setting. Traffic congestion results in fuel combustion with a relative tailpipe emissions

of particulates, but also in the physical act of friction resulting from wheel-to-road contact exacerbated

by frequent acceleration and breaking. As such, not only there are more cars on the roads on heavy traffic

days, but the efficiency of engines in each car is severely reduced through additional brake and gear wear.

All the pollution data derive from a combination of direct observation from satellites, monitoring

stations and reanalysis.9 So far, reanalysis data have received limited attention in economic studies given

the burden associated with data management and storage (among others Dell et al., 2014, Deschênes and

Greenstone, 2007). In relation to air pollution, reanalysis data offer three substantial improvements over
7https://www.ecmwf.int/en/about/media-centre/focus/ecmwf-copernicus-atmosphere-monitoring-service-cams-

applications-and
8For instance, at the time we are writing the European Commission has not set yet the hazard daily concentration limits

for PM2.5. Moreover, an important 2013 WHO report funded by the European Union specifically declares the need for
additional support for the effects of short-term exposure to PM2.5 on both mortality and morbidity (WHO, 2013).

9Reanalysis is a systematic process to estimate data variables across a grid by combining different observational sources
such as monitoring stations, radiosonde, satellite, aircraft, ship reports and other inputs with a climate model. This
unchanging framework provides a dynamically consistent estimate of the climate and pollution states at each time period
and location.
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monitoring stations measures. First, as discussed in Filippini et al. (2017), using monitoring stations

data entails assuming that the dispersion of concentration is homogenous within a given administrative

unit, and this assumption is unlikely to hold especially in the Italian case due to its heterogeneous

landscape and geographical factors that affect pollution dispersion. Therefore, individuals living far from

the monitoring stations are likely to be exposed to pollution levels other than those actually registered,

generating a mismatch between the true pollution level and the assigned one. To obtain information

for locations far from the monitoring stations, several authors interpolate data points using weights of

different nature (Currie and Neidell, 2005, Knittel et al., 2016, Lagravinese et al., 2014, Schlenker and

Walker, 2015, among others). However, interpolating using simple distance weights neglects weather and

geographical factors which play a key role in pollution dispersion. Second, estimates are sensitive to

the approach used to impute pollution at aggregate levels, and given that the measurement error is not

normally distributed, the direction of the bias on estimates is ambiguous (Lleras-Muney, 2010). Third,

the number of monitoring stations is limited and varies over space and time in a non-random order.

Figure B2 in Appendix B plots weekly trends of PM10, averaged over the period 2013-2015, from both

CAMS satellite data and Italian monitoring stations data. The two sources follow a similar trend even

though concentration readings from monitoring stations are higher and more variable. The higher variance

is likely due to fact that monitoring stations provide readings only in the exact place where the station is

placed, without accounting for air pollution dispersion in places next to the reading monitor. Given that

monitoring stations are spread in a non-random order over the territory, the resulting noise is not normally

distributed. On the contrary, being processed on a regular and granular grid, CAMS data account for a

homogenous and accurate dispersion representation of pollutants concentrations with resulting normally

distributed measurement error.

Given that the concentration data are often available at a finer geographical resolution than the

administrative town of individual residence, we assign each pollution grid cell to the corresponding indi-

vidual’s municipality following a spatial join by means of the Geographic Information System. In case of

major urban centers including more than one grid cell, we assign the average of cells’s centroids that fall

in that area. Such a procedure guarantees a homogeneous measure of pollution over space.

Table 3: Descriptive statistics - Air pollutants

Air pollutants (µg/m3) Mean Std. Dev Min Max

PM10 18.628 10.370 1.034 203.630
PM2.5 13.660 9.255 0.603 93.514
O3 59.640 25.359 0.540 150.168
Obs.=121,545; n=111; t=1095

Notes: All descriptive statistics are weighted by municipality pop-
ulation size.
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Table 3 presents descriptive statistics of the analyzed pollutants concentration levels. According to

the WHO air quality standards (WHO, 2006), which establish limits for both PM10 and PM2.5 in terms

of daily means at 50 and 25µg/m3, respectively, 1.2% and 8% of our day/municipality combinations

exceeded these thresholds during the period of analysis. Figure 1 plots weekly averages of particulate

matter and ozone versus a moving average of weekly means of hospital urgent admission rates (Figure B3

in Appendix B shows the relative weekly averages, maximums and minimums). PM10 and PM2.5 follow

a similar pattern of seasonal variation, while the seasonal cycle of O3 is inverse. Moreover, PM10 and

PM2.5 feature a positive correlation with respiratory admissions, with gentle downward slopes between

March and September, followed by rising rates in the run up to winter months. Consistent with the

literature, we find that O3 exhibits only very noisy and weak unconditional associations with particle

pollution (Figure B4 in Appendix B reports the correlation matrix between pollutants). This evidence

comes in support for the single-pollutant setup adopted in this study, as opposed to a multi-pollutant

approach, which is highly unstable when incorporating pollutants that are highly correlated (Dominici

et al., 2010, Halliday et al., 2015).

Figure 1: Weekly Respiratory diseases rate and Air pollutants trends (2013–2015)
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3.3 Public transportation strikes

In order to carry out our IV analysis, we also merge information provided by the Italian strike commis-

sion10 and the Ministry of Infrastructures and Transport in order to construct a public transportation

(PT) strike database. We use information strikes that took place at the municipality level, excluding

national and regional public transportation strikes affecting only to a narrow extent urban and residential

centers. Overall, Italy faced 855 strike episodes in 91 municipalities over the study period, with only a

few of them lasting for more than one day. When considering administrative municipalities only, we are

left with 470 single-day strike episodes distributed across 72 municipalities.

The first three panels of Figure 2 illustrate the distribution of one-day strike activity across years,

months of year and days of week. Strikes tend to take place in all months of the year, with significant

drop in the summer period. They are most likely to occur on Mondays and Fridays, and we observe

a pronounced spike in strike activity in 2015. The fourth panel provides the frequency of strikes with

respect to their duration, showing a clear majority of single-day strikes, with only a few of them lasting

longer than one day. We leave out all multi-day strike episodes, due to their lower effectiveness and

different nature. In fact, as observed by van Exel and Rietveld (2001), long strike episodes are likely to

generate adaptive capacity with possibly adoption of new travel patterns. Table A2 in Appendix A shows

details on all public transportation strikes across administrative towns.

PT strikes affect traffic congestion and pollution levels, and the magnitude of this effect is more

pronounced for bigger municipalities where the resident population is sufficiently dependent on the PT.

Several studies highlight that PT strikes increase traffic density as well as road congestion as a result of

the induced switch to the use of private cars of PT users (Adler and van Ommeren, 2016, Anderson, 2014,

Bauernschuster et al., 2017, van Exel and Rietveld, 2001, among others). Consequently, with a higher

rate of dependence on PT experienced in administrative municipalities, we expect a greater impact of

strikes on traffic-related particulate levels (Basagaña et al., 2018, Bauernschuster et al., 2017, Chaloulakou

et al., 2005, Meinardi et al., 2008, Pereira et al., 2014). Conversely, in minor municipalities where the PT

serves a narrow share of population, a strike episode is unlikely to cause a sufficient variation in traffic

congestion and consequent pollution.
10Commissione di Garanzia Sciopero https://www.cgsse.it/web/guest/home
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Figure 2: Distribution of strikes across time.

3.4 Local population

Data of the annual local population size come from ISTAT. Table 4 shows descriptive statistics of the

Italian resident population of the 111 municipalities for the 2013-2015 period. The total population of

the municipalities considered for the three-year period amounts to 53,333,849 individuals.

Table 4: Descriptive statistics of the local population

Mean Std. Dev. Min Max Total

All ages 162,199.2 311,888.5 15,176 2,872,021 53,333,849
By age

Ages below 14 21,328.79 42,250.93 1,884 388,795 7,004,458
Ages 15 - 24 15,166.10 28,431.58 1,286 256,054 4,970,174
Ages 25 - 44 42,566.48 84,118.28 3,757 786,239 13,992,349
Ages 45 - 64 45,771.51 88,226.30 4,293 832,142 15,053,025
Ages 65 and above 37,366.34 69,706.40 3,726 620,912 12,313,843

By education levels
% with primary edu 0.60 0.04 0.48 0.69 32,000,309
% with secondary edu 0.30 0.03 0.24 0.35 16,000,155
% with tertiary edu 0.10 0.02 0.07 0.17 5,333,385

Migrants
All ages 32,390.44 78,769.97 642 727,126 10,786,018
Obs.=121,545; n=111; t=1095

The numbers refer to an initial sample of 403,861 urgent respiratory hospital admis-
sions defined in the primary diagnosis and to a population of 53,333,849 individuals
distributed across 111 municipalities over 1095 days.
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3.5 Weather conditions and holiday data

While our data on air pollution concentrations are intrinsically adjusted for weather conditions, we still

want to control for weather factors since adverse respiratory health problems are closely related weather

variability (Deschenes and Moretti, 2009). We thus employ municipality-specific weather data from the

Gridded Agro-Meteorological dataset managed by MARS-AGRI4CAST11. In particular, we use daily

measures of temperature and sum of precipitations expressed, respectively, in Celsius degrees and mm of

rain. This database contains meteorological parameters from weather stations interpolated on a 25x25 km

grid.12 We follow the same procedure applied in air pollution data in order to guarantee a homogeneous

measure of weather over space and time. Descriptive statistics and trends of weather conditions are

reported in Appendix A (Table A3 and Figure B5, respectively).

Furthermore, we employ data enlisting school and public holidays (both at the local and national

level), in order to control for days during which the commuting activity is systematically reduced. The

school holiday data come from The Ministry of Education, Universities and Research, while the public

holiday dates were retrieved from Google search. The holiday data are then combined into municipality-

day dummy variables equal to unity when school/public holidays are in effect.

4 Empirical strategy

4.1 Baseline OLS model

Our main goal is to investigate the causal effect that PM has on urgent respiratory health problems on

the overall population considered as well as on specific socio-economic groups. We begin by estimating a

simple OLS fixed effects model at municipality-day level, which serves as a justification and benchmark

for our quasi-experimental estimates using an IV approach. The baseline fixed-effects model including

the full set of controls is as follows:

Hidwy = α+ βPM idwy + ζWidwy + hidwy + γd + δw + ηy + θi + µidwy (1)

where Hidwy denotes number of respiratory urgent admissions per 100 thousand citizens in city i, day

of the week d, week of the year w and year y, PMidwy is the air pollutant concentration represented

by PM10 or PM2.5. Widwy and hidwy represent, respectively, control variables for weather conditions

(precipitations and average temperature) and a set of dummies indicating school and public holidays.

Moreover, θi, γd, δw, ηy are city, day of week, week of year and year fixed effects in order to account for

differences between municipalities, fluctuations in exposure due to commuting and time spent outdoor
11http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
12Meteorological data are available on a daily basis from 1975 to the last calendar year completed, covering the EU

Member States, neighboring European countries, and the Mediterranean countries.
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during the week and seasonal effects or recurrent episodes of specific epidemics.

A causal interpretation of these estimates relies on the assumption that hospitalizations are not

correlated with any unobserved municipal and time characteristics. In our setting, the most serious

cause of concern is the non-random assignment of air pollution. If individual activity is related to

air quality, there might be different sorting mechanisms, which expose people at places and periods

with systematically different pollution levels. The same sorting mechanisms are likely to correlate with

differences in health and socio-economic status. Indeed, better educated individuals are likely to earn

more and consume more preventive healthcare, other than being more aware and cautious in dealing

with air quality (Almond et al., 2009, Chay and Greenstone, 2005, McCrary and Royer, 2011, among

others). Moreover, regional growth increases air pollution concentration, which also correlates with a

higher income and a better health and healthcare. Evidence of these associations is provided in Figure 3,

which describes unconditional correlations between average municipality income, prevalence of respiratory

diseases and PM10 concentrations. Individuals living in municipalities with higher income are also more

likely to be exposed at higher pollution levels, but at the same time are less likely to suffer from respiratory

disease.

Figure 3: Unconditional correlations between income, respiratory disease and PM10 exposure.

Notes: The figure presents averages for the period between 2013-2015. Income data come from the municipality
level data on income from the Ministry of Economics and Finance, pollution data come again from the Copernicus
Atmosphere Monitoring Service (CAMS) managed by ECMWF, while respiratory disease prevalence data come from
the Health Search (HS) dataset (Mazzaglia et al., 2009) run by a representative sample of general practitioners in
Italy.
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Figure 4: Google trends and interest in atmospheric pollution, PM10, smog and air quality (2012-2017)

Notes: The graph is obtained by Google Trends website accessed in April 2019. We calculate de-
meaned standardized values from the search frequencies in each month and topic as provided by
Google. The query was restricted to Italy and research topics with the following keywords: "inquina-
mento atmosferico", "pm10", "smog", "qualità dell’aria".

On top of these cross-sectional relationships, day-to-day fluctuations in pollution might have different

impact on different groups of individuals due to their avoidance behavior. In this respect, it is worth

noting that the issue of air quality in Italy has not been present in the public domain until recent times.

We are able to infer this by looking at Google trends in terms of Italians’ interest in air pollution,

PM10, smog and air quality, respectively. Figure 4 shows that interest trends before 2016, proxied by

Google searches, are much flatter and negligible in size compared to trends of more recent years. To

the extent Google is able to map the individual search preferences, there are no compelling reasons to

consider significant avoidance pattern in the individuals’ daily activities in response to air pollution levels.

On the contrary, it is more plausible to assume that individuals engaged in the labour market or in a

schooling track are exposed to ambient pollution on a regular basis, with limited possibility to avoid or

downplay their daily obligations, especially in periods of intense economic activity. Following the same

reasoning, more vulnerable groups might decide to avoid exposure in response to mild health problem

they suffer during most polluted periods. In this setting, the OLS fixed-effects estimates are likely to be

severely downward biased relative to the true causal effect. We thus turn to frame our analysis in a quasi

experimental setting.

16



4.2 PT strikes as a quasi-experimental setting

To identify the causal effect of air pollution, we leverage on PT strikes as an IV to capture exogenous

changes in air pollution concentrations. Several studies have analyzed the economic impact of strikes

(Clark, 1996, Gunderson and Melino, 1990, Harrison and Stewart, 1989). Recently, Bauernschuster

et al. (2017) observe that transportation strikes in Germany have sizable effects on traffic congestion,

increasing the levels of pollution, traffic accidents, travel time and emergency room respiratory disease

visits. Moreover, shocks to traffic such as PT strikes, provide instruments for reducing all sources of

attenuation bias due to measurement error (Goldman et al., 2011, Halliday et al., 2015, Künzli and

Tager, 1997, Sheppard et al., 2012).

In Italy PT strikes hit with a relatively high frequency, which does not allow individuals to treat

strikes as days off from their regular daily activities. Moreover, during strike days, a very narrow portion

of PT services is guaranteed in order not to put all the activities in stand-by. During early morning

and late afternoon a very limited number of PT means is active to deliver essential services, but the

major portion or commuters turn to private and rental vehicles, bicycles or walking. A narrow amount of

individuals commute daily outside of their municipalities, especially in the case of administrative towns,

which are more common to receive inflows of workers from minor surrounding towns, rather than generate

workers outflows. According to our calculations based on individual level surveys concerning aspects of

daily living conducted yearly by the Italian National Institute of Statistics, in 2013 only 11% of residents

living in big Italian cities commute daily outside their municipalities of residence, with this number being

driven prevalently by workers with higher education and age comprised between 30 and 45 years. We

make no assumptions about commuting style of non-resident citizens, who conversely are more likely

to commute outside their municipalities (27% on average in 2013). While individuals commuting to

administrative municipalities are also exposed to the environmental conditions of the hosting towns and,

as a consequence, likely to be hospitalized in these towns in case of urgencies, for those individuals we are

not able to convincingly make any assumption about their actual exposure to pollution. For this reason

we disregard hospitalizations delivered to non-residents.

Moreover, we do not consider hospitalizations of non-residents, while testing for mobility responses of

residents on strike days. In particular, we test whether individuals living in strike municipalities are more

or less likely to seek hospital admissions outside their town of residence. If traffic congestion is likely

to drive the demand for healthcare away from the affected areas, the administrative towns’ residents

might be willing to access hospitals away from their residence area. In such case, we might face an

underestimation of the treatment exposure, especially for the extensive margin of hospitalizations, since

the actually treated individuals might access healthcare among areas not included in the identification

strategy. However, our results show no evidence in favor of differential hospital mobility during strike
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days in strike towns. All these considerations suggest that our treatment IV variable is unlikely to cause

any sort of endogenous mobility, since the out-of-town flows of residents are negligible and not correlated

with any ad-hoc actions of individuals.

Formally, we specify our two-stage least squares (2SLS) model as follows:

Pidwy = α+ βSTRidwy + γd + δw + ηy + θi + εidwy First stage (2)

Hidwy = α+ λP̂idwy + γd + δw + ηy + θi + µidwy Second stage (3)

where Hidwy denotes the outcome variable, Pidwy is the endogenous air pollutant concentration repre-

sented by PM10 or PM2.5 in our core specification, whereas STRidwy is the strike dummy variable equal

to unity when a strike is in effect and zero otherwise and P̂idwy is the first stage predicted value of Pidwy.

We also include the same set of controls as in our baseline OLS model specification (Equation 1) to ad-

dress potential threats to our identification strategy which may affect air pollution level during strike days

for reasons other than strikes being in effect. All estimates are weighted by municipality population size,

while standard errors are clustered at the municipality level to allow for correlation among municipalities

exposed to similar levels of air pollution concentrations (Cameron and Miller, 2015).13 To support our

identification strategy, in subsection 5.6 we present an extensive set of placebo and falsification tests as

well as alternative model specifications.

5 Results

5.1 OLS estimates

We begin by presenting in Table 5 the OLS estimates of the effects of PM10 on hospitalizations. In column

(1) we report the most parsimonious model specification, with time and municipality fixed effects, which

are augmented in the next three columns with dummies for holidays (column (3)) and weather controls

(columns (2 and 4)).
13We also test alternative weights including the number of hospitalizations at the municipality level. These strategies

lead to similar results, which are available upon request.
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Table 5: OLS estimates on the effect of PM10 on respiratory disease.

(1) (2) (3) (4)
Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

PM10
-0.0007 -0.001 -0.0007 -0.001
[0.0004] [0.0005] [0.0004] [0.0005]

CONTROL (holiday) YES YES
CONTROL (weather) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric tempera-
ture and amount of precipitation). Standard errors (in parentheses) are clustered at the
municipality level. Estimates are weighted by municipality population size.

The OLS estimates show noise and no statistically significant effect of PM10 on hospital admissions.

As explained earlier in Section 4, our baseline model suffers from severe underestimation due to different

sources of bias. This evidence is largely consistent with several studies that deal with causal estimates of

the effect of air pollution on health (Deryugina et al., 2016, Dominici et al., 2003, Goldman et al., 2011,

Halliday et al., 2015, Künzli and Tager, 1997, Sheppard et al., 2012).

5.2 IV estimates

5.2.1 Public transportation strikes and PM10

In order to understand the dynamics between PT strikes and air pollution, we graphically present the

evidence of the first-stage relationship between PM10 and PT strikes in an event study framework14.

We thus augment our empirical strategy presented in Equation 2 with distributed lags and leads terms

constructed according to Figure 5. PT strikes are indexed on time scale τ , defining τ = 0 as the event

date, τ = [−3,−1] as the pre-event window and τ = [+1,+4] as the post-event window, according to the

timeline in Figure 5.

Figure 5: Timeline for the event study

−3 −2 −1 0 +1 +2 +3 +4

Pre-event window
τ

Post-event window

We thus frame the actual timing of each strike on this synthetic timeline, and we estimate the following

reduced-form equation:
14For the sake of brevity, we report only the event study for PM10. For PM2.5 the results are qualitatively similar and

available upon request.
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Pidwy =
4∑

τ=−3|τ 6=−1

βτPTτ + γd + δw + ηy + θi + εidwy (4)

where Pidw denotes the endogenous PM10 concentrations, τ = [−3,+4] represents the time scale, with

τ = 0 corresponding to PT strike days, and γd, δw, ηy and θi are a set of fixed effects as described in

Equation 2 and Equation 3. We impose that τ−1 = 0, as in the presence of fixed effects not all of the τ ’s

are identified. Finally, εidwy is an idiosyncratic error term.

Figure 6: The effects of PT strikes on PM10 in an event study framework.

Notes: The figure presents marginal effect estimates from Equation 4. We regress the daily PM10
concentrations on a PT strikes indexed in event time τ = 0, controlling for municipality fixed effects
and time fixed effect (day-of week, week-of-year and year). The estimates are weighted by municipality
population size. The dashed lines represent 95 percent confidence intervals. Standard errors are
clustered at the municipality level. The results refer to 4,156 observations covering 72 municipalities
for 470 strike events.

During a PT strike day (τ = 0), we observe an average increase of 1.5 µg/m3 in PM10 and a

persistent decline in PM10 in the days following the strike event. These results obtained on the sample of

all municipalities where a strike event takes place (see subsection 3.3), are consistent with the first-stage

results performed on the entire sample of municipalities. In our core IV specification presented in Table 6,

we find that PT strikes lead to an increase in PM10 of 1.20 µg/m3 (column (1)). In qualitative terms, this

is is consistent with the generalized differences-in-differences estimates of Bauernschuster et al. (2017),

who show that strikes have a significant and positive effect on PM10 concentration peaks. Our results

are also robust to alternative model specifications where we control for holidays (column (3) and (4))
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and weather conditions (column (2) and (4))15. These controls might be useful as during rainy days

individuals might modify their daily activities, thus being less affected by strikes (Bauernschuster et al.,

2017). It might also be the case, however, that heavier traffic congestion experienced during sunny strike

days might generate higher pollution concentrations than the ones occurring during rainy strike days16.

Finally, during holiday periods strikes are less likely to occur but pollution levels are slightly higher.

In line with our expectations, when including these controls the magnitude of our first-stage coefficient

estimates for PM10 decreases slightly. In the most demanding specification where both dummies for

holidays (public and school) and weather controls (rain and temperature) are included (column (4)), the

PM10 coefficient decreases to 1.12 µg/m3 but still maintains full statistical significance.

Table 6: First Stage estimates of the effect of PT strikes on PM10 concentration.

First stage

(1) (2) (3) (4)

Panel A. PM10 PM10 PM10 PM10

PT Strike 1.20∗∗∗ 1.17∗∗∗ 1.12∗∗∗ 1.12∗∗∗

[0.30] [0.25] [0.30] [0.25]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
F-stat 28.821 29.123 25.239 26.497
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: All regressions include day-of-week, week-of-year, year and
municipality fixed effects. Additional controls include dummies for
school holidays and public holidays as well as weather controls (at-
mospheric temperature and amount of precipitation). Standard errors
(in parentheses) are clustered at the municipality level. STR is the
strike dummy variable equal to unity when a strike is in effect and zero
otherwise. Estimates are weighted by municipality population size.

5.2.2 Effects of PM10 on respiratory diseases.

Table 7 reports second stage marginal effects (Panel A) and the relative semi-elasticity estimates (Panel

B). Contrary to our baseline OLS model presented in 5.1, our quasi-experimental estimates point to a

positive and statistically significant relationship between PM10 and urgent respiratory disease. Panel

A (column 1) shows that one additional unit of µg/m3 in PM10 causes a 0.05 increase in respiratory

admissions per 100,000 residents. Hence, one standard deviation increase in PM10 is likely to cause a

26% increase in respiratory hospitalizations. The coefficients estimates preserve both magnitude and

statistical significance also in the most demanding specification (column 4), where both dummies for
15The first-stage F-statistics coefficients (calculated using the Cragg-Donald F-test) are well above 10 according to the

rule-of-thumb proposed by Staiger and Stock (1997) and Stock and Yogo (2002).
16Rain has an attenuation effect of particle pollution concentrations due to its ability to clean the air through the

"wash-out" effect (Ardon-Dryer et al., 2015, Guo et al., 2016).
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public and school holidays as well as weather variables are included.

Our results are in line with recent evidence on causal effect of pollution on health problems (Halliday

et al., 2015, Knittel et al., 2016, Schlenker and Walker, 2015, e.g.), but larger in magnitude with respect to

less precise identification strategies. Among the studies providing causal estimates of particle pollution,

perhaps the most comparable is the one by Halliday et al. (2015), who find that a unit increase in

PM10 causes a 5.7% increase in ER admissions, which in our case amounts to 2.6%. Such a difference

is likely to result from the fact that Halliday et al. (2015) analyze the impact of volcanic pollution

particulate, while our estimates relate to smog. The authors offer a broad discussion on possible differences

between pollution originating from various sources and regions, concluding that direct comparisons of

relative toxicity of PM are likely to depend on other general characteristics of the local industrial activity,

temperatures, concomitant air pollutants and other factors. Although less comparable, the study by Ward

(2015) finds that a one standard deviation increase in PM concentrations causes a 4% increase in children

hospitalization. A direct comparison of our results with other studies is difficult given that we address

contemporaneous health problems, while most literature focuses on mortality, which is the most severe

manifestation of health issues, at least in terms of day-to-day air pollution fluctuations.

Table 7: IV estimates of the effect of PM10 on respiratory disease (all patients)

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0527∗∗∗ 0.0536∗∗∗ 0.0523∗∗∗ 0.0523∗∗∗

[0.0174] [0.0162] [0.0190] [0.0172]
Panel B - Semi-elasticities:

PM10
0.0257∗∗∗ 0.0262∗∗∗ 0.0255∗∗∗ 0.0255∗∗∗

[0.00846] [0.00789] [0.00921] [0.00836]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes: The coefficients indicate effects for 100,000 residents.All regressions include day-of-week,
week-of-year, year and municipality fixed effects. Additional controls include dummies for school
holidays and public holidays as well as weather controls (atmospheric temperature and amount of
precipitation). Standard errors (in parentheses) are clustered at the municipality level. Estimates
are weighted by municipality population size.

5.3 Heterogeneous effects of PM10 on respiratory diseases.

The results discussed so far refer to the overall population, without accounting for the fact that there are

important sources of heterogeneity in how exposure to air pollution shocks affects the individual health.

As discussed earlier, it is well documented that the adverse health effects of air pollution are stronger

for the very young and the elderly. Childhood and adolescence are periods of rapid growth during which

organ systems are particularly susceptible to health shocks (Beatty and Shimshack, 2014, Mudway et al.,
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2018, Schwartz, 2004). In elderly people, co-existing chronic diseases together with a cumulative exposure

to air pollution, determine increased susceptibility, increased hospitalization and risk of mortality (Janke

et al., 2009, Simoni et al., 2015).

In this section we extend the analysis by testing the hypothesis that air pollution generates different

impacts also for disadvantaged socio-economic groups. If a lower education and a lower income generate

a weaker health endowment, any additional health shock suffered by disadvantaged individuals is likely

to give rise to greater health damages (Forastiere et al., 2007b, Neidell, 2004, O’Neill et al., 2003, among

others). Quantification of such differentials is important from the policy perspective, as in universalistic

healthcare systems adopted by many European countries, the financial burden of air pollution damages

is directly transferred to the public finance with a larger burden for healthcare costs. We thus isolate

distinct portions of population, based on their age group, migration status and education attainment,

evaluating if the relative health penalties deriving from similar exposure to air pollution are intrinsically

different. In order to quantify these differences in relation to PM10, we aggregate hospital admissions

into 5 age-specific bins, and create distinct outcome measures, i.e. the count of admissions for 100,000

residents in each age group. Table 8 presents second-stage results for five age subgroups separately

following Equation 3, weighted by size of municipality population for each age group.

Table 8: IV estimates of the effect of PM10 on respiratory diseases in different age groups.
Respiratory Respiratory Respiratory Respiratory

(1) (2) (3) (4)
Panel A: ages below 14

PM10
0.0416 0.0424 0.0489 0.0490
[0.0699] [0.0698] [0.0744] [0.0725]

Panel B: ages 15 - 24

PM10
0.0716∗ 0.0723∗ 0.0740 0.0729∗

[0.0415] [0.0380] [0.0454] [0.0400]
Panel C: ages 25 - 44

PM10
0.0289∗∗ 0.0296∗∗ 0.0304∗ 0.0305∗∗

[0.0143] [0.0138] [0.0157] [0.0147]
Panel D: ages 45 - 64

PM10
-0.00727 -0.00744 -0.0108 -0.0109
[0.0152] [0.0154] [0.0162] [0.0160]

Panel E: ages 65 and above

PM10
0.167∗∗∗ 0.170∗∗∗ 0.165∗∗∗ 0.165∗∗∗

[0.0496] [0.0491] [0.0532] [0.0512]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric tempera-
ture and amount of precipitation). Standard errors (in parentheses) are clustered at the
municipality level. Estimates are weighted by municipality population size by age group.

In Figure 7 we also present the results shown in Table 8 accounting for the variability of the estimates

due to the different number of ages that form each age group. We do so by calculating the within effect

23



of pollution for a given group, following Halliday et al. (2015): Effects/(no. of ages in group)×1000,

where higher numbers indicate larger effects. We observe an increase of 0.17 admissions (statistically

significant at 1%) in the number of urgent respiratory cases for the elderly (individuals aged 65 and

older) for 1 µg/m3 increase in PM10. If this coefficient is scaled up to standard deviations (s.d.), the

effect amounts to an additional 1.8 daily admission for one s.d. increase in PM10. Interestingly, we find

significant and positive effects also in young adults, with a one s.d. increase in PM10 being responsible

for an additional 0.75 increase in urgent admissions. The adjusted estimates in Figure 7 show that young

adults are disproportionately affected by particle pollution, with the penalization per year of age being

larger than the one for the elderly. A possible explanation channel for the magnitude of this result is

likely to be related to lifestyle patterns of the young. As earlier discussed, according to official statistics

(Istat, 2013), 73.1% of Italian individuals aged between 15 and 24 engaged daily in commuting with

public transportation or walking. If one accounts for the additional amount of time spent outdoors in

relation to other daily activities, the exposure to air pollution concentrations for this particular age group

is larger and persistent.

Figure 7: IV estimates of the effect of PM10 in different age groups.

Notes: The within effect of PM10 for a given age group are calculated following Halliday et al. (2015):
effects/(no. of ages in group)×1000. Confidence intervals are set to 95%.

While heterogeneous response to adverse health shocks have been more frequently studied in the

existing literature, there are other mechanisms related to individual vulnerability that might be interesting

from the policy perspective. Socio-economic disadvantage, as represented by education or income, has long

been linked to higher infant mortality, shorter lives, higher smoking and obesity rates, propagating overall
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health inequality (Forastiere et al., 2007b, O’Neill et al., 2003, among others). To the extent environmental

aspects are potentially affected by public policy, the related health inequalities represent consequences of

differences largely beyond the individual control (Neidell, 2004, among others). In order to offer a deeper

understanding of the unequal health response to air pollution, we also estimate the effects in relation to

SES proxied by educational attainment. Our estimates in Table 9 point to a particularly pronounced

effect of PM10 on urgent admissions among individuals with primary education attainment, where a

one s.d. increase in PM10 leads to one additional increase in the number of respiratory hospitalizations

(statistically significant at 1%). The same estimates are weaker in both statistical significance and

magnitude in the case of secondary attainment. Among individuals with tertiary education, the additional

PM10 concentrations induced by public PT strikes are no longer responsible for any increase in urgent

respiratory cases. Under the assumption that our IV estimates are no longer biased by avoidance behavior

(see Section 4), the mechanisms driving these differential results are plausibly linked to an overall better

health status of individuals with the highest education level, which downplays the adverse effects of daily

fluctuations in PM10 concentrations.

Table 9: IV estimates of the effect of PM10 on respiratory disease by educational attainment.
Respiratory Respiratory Respiratory Respiratory

(1) (2) (3) (4)
Panel A: Primary educ. lev.

PM10
0.0937∗∗∗ 0.0946∗∗∗ 0.0948∗∗ 0.0938∗∗∗

[0.0357] [0.0327] [0.0394] [0.0349]
Panel B: Secondary educ. lev.

PM10
0.0318∗∗ 0.0328∗∗ 0.0323∗∗ 0.0326∗∗

[0.0141] [0.0142] [0.0152] [0.0150]
Panel C: Tertiary educ. lev.

PM10
-0.00245 -0.00255 -0.00526 -0.00527
[0.0302] [0.0312] [0.0326] [0.0330]

CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the munici-
pality level. Estimates are weighted by municipality population size by age group.

Finally, we address the disparities in the adverse impact of air pollution on health for migrants. The

results are shown in Table 10 and point to no significant effects of PM10 on urgent respiratory problems

when considering for foreign citizens coming from countries with middle and high income according to the

World Bank classification (see Section 3). However, migrants included in these categories are substantially

different in terms of socio-demographic and economic characteristics from those coming from low income

countries, who often represents most marginalized individuals. We thus provide a more in-depth view
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focusing on the sole group of African migrants who mainly come from Morocco, Egypt, Nigeria, Senegal

and Tunisia, who represent the vast majority of low income migrants in Italy. Even though only weakly

statistically significant, this particular group of nationalities seems to be adversely affected by PM10,

with one additional s.d. of PM10 causing 0.30 additional admissions. When interpreting this result,

it is important to underline that the average number of hospitalizations for migrants is much lower

and amounts to only 1.5% of total admissions. The pollution penalization is thus disproportionally

larger for migrants as if scaled up to one standard deviation, PM10 doubles their hospitalization rate.

Nonetheless, a potential caveat of this evidence is that access barriers to healthcare utilization for a large

group of migrants is limited. Due to normative regulations, full healthcare coverage in Italy is granted

to foreign citizens upon registration to the national healthcare service (SSN), which is not guaranteed

without a formal residency. Since these foreign citizens live often in informal rentals or under illegal

subletting, they face difficulties in obtaining the residency status which provides access also to a healthcare

coverage. As a result, hospital admissions of migrants that we observe in the data might represent a severe

underestimation of the actual healthcare demand. Indeed, the left out unobserved healthcare needs of

irregular migrants might be much more pronounced with respect to the portion of migrant population

that we detect. We thus argue that our estimates can be interpreted as a lower bound of the true causal

effect and, at the same time, we caution against taking this result as conclusive and definitive.

Table 10: IV estimates of the effect of PM10 on respiratory diseases for migrants from different groups of origin countries.
Respiratory Respiratory Respiratory Respiratory

(1) (2) (3) (4)
Panel A: High income Countries

PM10
0.00279 0.00282 0.00312 0.00313
[0.00978] [0.0102] [0.0105] [0.0108]

Panel B: Low-middle income Countries

PM10
0.0159 0.0165 0.0156 0.0158
[0.0178] [0.0186] [0.0190] [0.0195]

Panel C: African countries

PM10
0.0261∗ 0.0271∗ 0.0274∗ 0.0278∗

[0.0145] [0.0150] [0.0154] [0.0157]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes: The coefficients indicate effects for 100,000 residents.All regressions include day-of-week, week-
of-year, year and municipality fixed effects. Additional controls include dummies for school holidays
and public holidays as well as weather controls (atmospheric temperature and amount of precipitation).
Standard errors (in parentheses) are clustered at the municipality level. Estimates are weighted by
municipality population size by age group.

5.4 Results for PM2.5

The existing literature discussing the causal link between particulate matter and health mainly focuses on

PM10. From the policy perspective, PM10 represents a more widespread measure of particle pollution,
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with precise indications in terms of daily/annual limits. Nevertheless, finer particulate matter such as

PM2.5 is found to be particularly harmful from the clinical perspective due to its deeper penetration

into organs. Exploiting the information in our air pollution data, we benchmark the results obtained for

PM10 with the respective estimates for PM2.5. The main results are presented in Figure 8 and Figure 9,

while we additionally show the full set of estimates for PM2.5 in Table A4 in Appendix A.

Figure 8: IV estimates of the marginal effects of PM10 and PM2.5 on respiratory diseases by age groups.

Figure 9: IV estimates of the marginal effects of PM10 and PM2.5 on respiratory diseases by educational attainment.

We find that the adverse health effects of PM2.5 are stronger with respect to the ones of PM10,
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with one additional unit of PM2.5 causing a raise of 0.09 respiratory urgent admissions, which amounts

to 5.44% increase. This is in line with the results by Halliday et al. (2015), who consider volcanic

fine particulate matter and find an increase of 7%. Again, our results are heterogeneous across age

and education attainment groups, in all cases being roughly 40% higher with respect to PM10 effects.

Moreover, even though not fully comparable, our estimated effects for the elderly are consistent with

those by Deryugina et al. (2016), who find that each additional unit of PM2.5 causes an increase in

hospital admissions by 2.3 each million of population, while our calculation points to a 2.8 increase for

the same age group17.

5.5 Health costs of air pollution

In this last part of the analysis we focus on the quantification of costs relative to the strike-induced

increases in PM concentrations. Costs are the ultimate policy parameter and the recent literature have

increasingly focused on their quantification. Using variation in daily airport congestion Schlenker and

Walker (2015) estimate the health costs associated with air pollution exposure for communities sur-

rounding twelve large airports in California. They use diagnosis-specific reimbursement rates offered to

hospitals through Medicare, finding that a one standard deviation increase in daily pollution leads to an

additional $540 thousand per day in hospitalization costs for respiratory and heart related admissions

of individuals within 10 km of one of the twelve largest airports. Focusing on the elderly in the United

States, Deryugina et al. (2016) estimate the causal effect of daily PM2.5 on three-day hospitalization rates

and associated total medical spending. They find that a one µg/m3 increase in daily PM2.5 causes an

increase in emergency room (ER) inpatient spending of approximately $16 thousand per million benefi-

ciaries relative to a mean of $16.8 million. Finally, Halliday et al. (2015) estimate the impact of increased

SO2 and PM induced by volcanic eruptions in the state of Hawaii using the total amount charged for

patient care as a measure of healthcare cost. Their results show that a one standard deviation increase

in particulate pollution leads to a 23-36% increase in expenditures on ER visits for pulmonary-related

outcomes. These studies quantify the overall cost for the underlying populations (total costs), but none of

them addresses the treatment complexity. We expand the analysis of the health consequences of pollution

by measuring hospitalization complexity proxied by average unit costs, which represents an important

policy parameter in order to design optimal environmental and health policies.

Table 11 shows the impact of PM10 and PM2.5 separately, for four outcomes referring to average

unit cost of an urgent hospital admission with the primary diagnosis related to any respiratory problem,

asthma, pneumonia and COPD. While we find no statistically significant effects of PM on the complexity

in the overall group of respiratory problems, in the case of hospitalization admissions for asthma and
17Last coefficient estimate in Figure 8 is scaled up to 1 million instead of 100,000.
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COPD, one additional µg/m3 of PM10 increases the relative unit cost by 133 euro, which represents 8.1%

of the average unit cost of asthma episodes. The same increase in PM2.5 raises by 13.6% the complexity

of an urgent admission for asthma, corresponding to additional 223 euro. This set of results lead to

conclude that exposure to PM is not only responsible for increased hospitalizations, but it also increases

the complexity of asthma related admissions, with associated excess expenditures. We find no effect on

the complexity of urgent admissions for pneumonia. In this respect, the clinical literature, has frequently

underlined the association between long-term exposure to air pollution and pneumonia, but evidence on

the contemporaneous effects is scarce (Ji et al., 2017). On the contrary, we find a detrimental impact

of PM10 concentrations on COPD costs, with a one µg/m3 increase causing a rise of admission costs

by additional 45 euro, representing a 1.8% increase relative to an average total cost of 2,488 euro per

admission. We find no evidence of adverse effects of PM2.5 on COPD unit costs. The heterogeneous

evidence across various admission types is closely related to what the clinical literature points to (DeVries

et al., 2016, GBD et al., 2017). Our results on the impact of PM on the admission complexity suggest that

previous studies analyzing the sole amount of hospitalizations are likely to underestimated the impact of

particle pollution.

Table 11: IV estimates of the effect of PM10 and PM2.5 on average unit costs for hospital admissions for four distinct
respiratory problems.

Unit Cost Unit Cost Unit Cost Unit Cost
(Respiratory) (Asthma) (Pneumonia) (COPD)

PM10
12.66 133.0∗ 3.878 44.73∗

[12.81] [74.96] [27.24] [22.76]

PM2.5
21.24 223.1∗ 6.506 75.05
[24.39] [119.5] [46.62] [46.33]

TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes : The coefficients indicate daily expenditures (euro) x 100,000 residents.All
regressions include day-of-week, week-of-year, year and municipality fixed effects. Ad-
ditional controls include dummies for school holidays and public holidays as well as
weather controls (atmospheric temperature and amount of precipitation). Standard
errors (in parentheses) are clustered at the municipality level. Estimates are weighted
by municipality population size by age group.
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Table 12: IV estimates of the effect of PM10 and PM2.5 on total health expenditure costs for respiratory hospital
admissions.

Cost Cost Cost Cost
(1) (2) (3) (4

Panel A - Marginal effects:

PM10
180.6∗∗∗ 184.0∗∗∗ 180.5∗∗∗ 180.8∗∗∗

[61.19] [57.14] [66.63] [60.40]
Panel B - Marginal effects :

PM2.5
303.0∗∗∗ 312.4∗∗∗ 329.0∗∗ 335.5∗∗

[105.8] [110.3] [127.0] [128.6]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes : The coefficients indicate daily expenditures (euro) x 100,000 resi-
dents.All regressions include day-of-week, week-of-year, year and municipality
fixed effects. Additional controls include dummies for school holidays and pub-
lic holidays as well as weather controls (atmospheric temperature and amount
of precipitation). Standard errors (in parentheses) are clustered at the munic-
ipality level. Estimates are weighted by municipality population size by age
group.

Finally, considering both extensive and intensive margins, we estimate the effect of particulate matter

on total healthcare costs. Table 12 shows that a daily increase of one µg/m3 in PM10 (PM2.5) is associated

with an additional 180 euro (303 euro) per 100,000 individuals. If scaled up to the respective s.d., these

figures correspond to 32% and 49% of the average daily expenditure on respiratory urgent admissions,

respectively for PM10 and PM2.5. Again, in Table 12 we deliver the same set of results according to

age group, showing that the cost resulting from air pollution is unequally distributed across various age

groups. These results are in line with the implications concerning the extensive margin presented in

Table 8. We find that a daily increase of one µg/m3 in PM10 is responsible for additional 340 euro each

100,000 individuals between 15 and 24 years old. The same increase in PM2.5 concentrations amounts to

a penalty of 573 euro. The results are of a slightly weaker order of magnitude for individuals between 25

and 64 years of age, even though still statistically significant. The coefficients relative to the elderly are

the largest in magnitude, with one additional µg/m3 of PM10 (PM2.5) causing an increase of 621 euro

(1,036 euro) each 100,000 individuals.
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Table 13: IV estimates of the effect of PM10 and PM2.5 on total health costs for respiratory hospital admissions by age
class.

Respiratory Respiratory Respiratory Respiratory Respiratory
(0-14) (15-24) (25-44) (45-64) (65-100)

PM10
73.72 339.6∗∗ 112.3∗ 127.6∗ 621.2∗∗∗

[104.2] [149.2] [62.48] [76.91] [194.9]

PM2.5
123.4 572.7∗∗ 188.0∗∗ 216.3∗ 1036.0∗∗∗

[152.0] [245.9] [90.67] [125.8] [392.2]
TIME FE YES YES YES YES YES
MUNICIPALITIES FE YES YES YES YES YES
N 121,545 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
Notes: The coefficients indicate daily expenditures (euro) x 100,000 residents. All regressions include
day-of-week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature and
amount of precipitation). Standard errors (in parentheses) are clustered at the municipality level.
Estimates are weighted by municipality population size by age group.

In order to appreciate the heterogeneity of the total costs relative to urgent respiratory hospital

admissions resulting from PM10, in Figure 10 we plot excess hospital expenditures relative to a one

s.d. increase in PM10 at the municipality level. Precisely, for each municipality we obtain predictions

from the age-specific model estimates (Table 13), computed at one standard deviation of PM10 and

demographic structure as observed in 2015. We smooth out the predictions on a regular grid of each

age/s.d. combination. The figure is structured as a heat map, where red tones signal higher excess

expenditure levels18. The overall reading of the figure shows how different ages, in combination with

different PM10 concentrations, deliver similar health costs. For instance, a modest six µg/m3 increase

in PM10 among individuals aged between 15 and 24 is responsible for a similar excess expenditure as

the one among individuals 40-50-year-olds exposed to a 15 microgram increase. The highest cost is

accumulated for young adults at pronounced increases of PM10, and for the elderly. In relative terms,

the extra healthcare costs of air pollution for the very young are extremely high and amount to 33%

each one additional µg/m3 increase; for the elderly the same cost differential amounts to 4% only, and is

related to high average costs relative to urgent respiratory admissions in this age group.
18The predictions are based on semi-elasticities of total urgent respiratory hospital costs with respect to PM10 concen-

trations. We compute predictions at each municipality specific standard deviation in PM10 concentrations. We then apply
the estimates to age specific averages of total costs and expand them according to the demographic structure of the 111
municipalities. We smooth out the estimates across ages applying a moving average to the coefficient estimates. Each
age/s.d. combination is then assigned to a color relative to the specific level in excess expenditure.
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Figure 10: Heat map of excess hospitalization costs for urgent respiratory problems by age and PM10 level.

Based on these results, we carry out back-of-the-envelope calculations of total daily monetary costs

of PM for the 17.8 million residents of the 111 municipalities considered, which amount to 332,000 euro

for one s.d. increase in PM10, and 499,000 for the relative increase in PM2.5. These numbers represent,

respectively, 0.37% and 0.55% of the total public health expenditure in Italy. Overall, our quantification

of health cost burden still represents a lower bound of the total health costs, not accounting for the long

run, cumulative effect of pollution on health. Moreover, day-to-day fluctuations in hospital admissions

do not account for individuals who experience less severe health issues in relation to pollution, and limit

themselves to see their primary care physician or stay home sick. Still, the amount of costs relative

to hospital care is a policy relevant parameter, as health expenditures devoted to hospital admissions

represent roughly 60% of the national healthcare budget in Italy and are the least cost-effective health-care

service.

5.6 Robustness checks

In addition to the main set of estimates, we conduct a number of sensitivity checks to warrant the

robustness of our empirical findings. We develop a number of parallel tests, where we first switch the

treatment type, then the outcomes and finally, the treatment assignment. Subsequently, we alter our
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identification strategy by addressing multi-day strike episodes, municipality level demand for public

transportation and a larger estimation sample which includes all the Italian municipalities. Moreover, in

order to validate the use of pollution reanalysis data, we benchmark our analysis with estimates based

on PM measures coming from monitoring stations. We also check the sensitivity of our analysis to

alternative weighting schemes. In addition, we correct our findings to account for testing multiple null

hypotheses simultaneously. Finally, we run our IV estimates in a Poisson regression setting. All these

tests consistently point to a correct identification strategy and provide validation to our main results.

Falsification of treatment - O3 as a placebo pollutant

An important check of our identification strategy consists in exploiting pollutants that are not likely to

be significantly affected by day-to-day fluctuations in traffic. We thus consider potential effects of strikes

on O3 as a placebo pollutant. As mentioned above, O3 is indirectly generated by emission sources but

it derives from a series of chemical reactions between substances present in the atmosphere (precursors)

which are largely present in urban areas. However, we provide several motivations that allow us to use O3

as a placebo. First, O3 levels are strongly dependent on sunlight and ambient temperature, with higher

O3 concentrations following strong seasonal patterns (see Figure B3). This means that, even in presence

of a traffic shock, weather factors can strongly affect the formation of O3. Second, this pollutant has a life-

span of several days and, consequently, higher ozone concentrations can be found in regions distant from

precursor emission sources due to the effect of wind. Third, several chemical O3 destruction mechanisms

existing in cities are absent from rural areas (Saitanis, 2003). Consequently, O3 concentrations are often

lower in urban areas - where high levels of precursors are emitted from vehicles, as in rural areas (Pires

et al., 2012). Finally, O3 levels are low during the morning, when most of the effects of strike takes places,

and peaks during the afternoon. We thus estimate our baseline specification by substituting PM with

O3. The results are presented in Table A5 in Appendix C and show that the effect of strike on O3 is not

statistically significant.

Falsification of outcome - Placebo diseases

We also investigate the effect of pollution on other diseases that are not likely to be affected by air

pollution. Out of the classification of Major Diagnostic Categories (MDCs), we include those that are the

most likely to satisfy the exclusion restrictions of our IV strategy. We focus on Diseases and Disorders

of the Nervous System, Diseases and Disorders of the Musculoskeletal System and Connective Tissue

and Diseases and Disorders of the Endocrine, Nutritional and Metabolic System. The IV estimates are

reported in Table A6 in Appendix C and do not provide any statistically significant results.

Falsification of IV assignment - Placebo strikes in non-affected municipalities

We conduct a falsification test where we randomly move the strike episodes across municipalities. After
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assigning strikes to municipalities that did not witness strikes on that days, we rerun our baseline model

estimation. The results are presented in Table A7 in Appendix C, showing no significant effects on PM10

in these non-affected cities.

Multi-day strikes and adapting response

Following Bauernschuster et al. (2017), we also test the effects of strikes with a duration of more than one

day across provincial county municipalities. We thus substitute our IV of one-day strikes with multi-day

strike dummy variable. As shown in Table A8 in Appendix C, the first stage effect of multi-day strikes

on pollution is weaker relative to the single-day strikes (0.94 instead of 1.20, both statistically significant

at 1%). As anticipated, this result is in line with the hypothesis of attitudinal change in travel patterns

after the first day of strike, since individuals are likely to adapt their response strategy to persistent PT

stops, hence at the margin, generating less additional PM relative to the first day. The second stage

results suggest, however, that the effect of air pollution on urgent respiratory admissions is larger (0.0651

vis-à-vis 0.0527). This difference might be driven by the cumulative deviation from average levels of

pollution, where a prolonged increase of 1 µg/m3 in PM10 is likely to generate larger adverse effects on

health if persisting over several days.

Estimates taking into account the per capita demand of PT

We also validate the robustness of our empirical strategy considering municipality-level per capita demand

of PT. The per-capita demand is measured by the number of passengers carried by PT yearly per resident

population. We construct an indicator dummy variable equal to unity for top ten municipalities in terms

of their dependance on PT (DPTidwy). We exploit this variable in a dual way. We first interact the

strike dummy with high PT demand dummy variable (STRidwy × DPTidwy) and estimate our model

specification in the usual sample of municipalities (Table A9 in Appendix C). Second, we restrict our

analysis to the 10 municipalities with the highest PT demand and within the sample we estimate the

effect of PM10 on respiratory urgent admissions (Table A10 in Appendix C). The first stage estimates

show larger magnitude in both exercises, suggesting that the effect of STR on pollution is proportional to

the PT network usage. The second stage results suggest that the effect of one additional µg/m3 of PM10

is slightly lower for larger PT networks. The result is likely to be driven by a number of confounding

factors. For instance, larger PT networks, ceteris paribus, are likely to be associated with lower levels

of PM from vehicle exhaust. In cumulative terms, one µg/m3 of PM10 is likely to generate a narrower

health penalty. It is however difficult to provide a precise mechanism that explains this differential.

Estimates on all Italian municipalities

In contrast to the above presented robustness check, we now offer an alternative to our baseline set

of results by estimating our model specification considering the sample of all Italian municipalities,
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including non-administrative small towns; we do so by constructing a balanced panel dataset for all the

Italian municipalities (obs.= 8,858,550; n=8,090, t=1,095). The resulting IV estimates, presented in

table Table A11, confirm the results of our preferred specification using the sample of 111 administrative

municipalities.

Estimates based on pollution data from monitoring stations.

In order to validate our reanalysis pollution data, we offer a benchmarking exercise where we replicate

the baseline results using air pollution data from monitoring stations. As previously discussed, data

from monitoring stations may suffer from spatial selection but their use still represents a standard in

literature (Janke, 2014, e.g.). We collect data from the European Environmental Agency (EEA) AirBase

database, which includes daily and hourly concentration measures for the main traffic-related pollutants

and time span considered in our analysis. We aggregate the data by municipality and day in order to

obtain concentration averages that are fully consistent with our original dataset. However, our final

monitoring sample includes only municipalities in which at least one station operates on a regular basis

during the period of analysis. When multiple stations are present in the same municipality, we average

their values. Given the granular texture of Italian municipalities, we assume that the measurement error

in pollution assignment is limited and allows for a comparison with our original dataset 19. However,

the main limitation of monitoring stations is their heterogeneous distribution, which does not allow

for pollutant dispersion and the consequent exposure assignment characterized by large noise. Given

the data limitations, the estimates based on monitoring stations are carried out for 66 administrative

municipalities only. In the baseline specification presented in Table A12 we again weight the estimates

by the municipality population size20. Our findings, presented in Table A12, suggest that the effect of

strike is larger when PM is measured by monitoring stations, which is likely to be driven by the higher

variance of the readings (see Figure B2 in Appendix B). On the contrary, the second stage results are

smaller in magnitude and less statistically significant than the ones from our estimates using CAMS data.

This warrants the hypothesis that the measurement error in the standard approach based on monitoring

stations is not negligible when assigning air pollution exposure and constitutes a serious attenuation bias.

Additional checks

Since our dependent variable is initially measured as hospital admissions counts in a given municipality

and day, we also estimate an IV Poisson regression model (Cameron and Trivedi, 2013, Mullahy, 1997,

Windmeijer and Santos Silva, 1997) to better account for the non-negative and discrete nature of the

data. While in this setting a Poisson regression model might be more appropriate than a linear model
19To give an order of magnitude, the average area of an Italian municipality is only 37.3 kmq, as derived from our own

calculations using ISTAT data. Assuming a squared administrative shape, our pollution assignment is based on a grid with
sides of about 6.1 km on average, which is much less than the one of reanalysis data (about 17x17 km).

20We also weight by the number of monitoring stations in each municipality. These additional results are only weakly
statistically significant and available upon request.
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(Park and Oh, 2018, Winkelmann, 2008), it may underestimate the dispersion of the observed counts

deriving from, e.g. zeros, in the dependent variable. The excess of zeroes is detected when the number

of observed zeroes exceeds largely the number of zeroes reproduced by the fitted Poisson distribution

(Mouatassim and Ezzahid, 2012). For the sake of completeness, we still provide the poisson estimates.

Following Deryugina et al. (2016), we include as control variable in Equation 3 the residual from our

Equation 2 (i.e. the effect of PT strikes on pollution). In contrast to the baseline model, we do not

employ weights. The results, available upon request, qualitatively confirm that respiratory diseases are

sensitive to PM fluctuations as presented in Table 7.

We also test the robustness of our results by not including weights and to an alternative weighting

scheme, which includes the number of hospitalizations at municipality level instead of municipality popu-

lation size. The results, available upon request, are fully consistent with the ones obtained using original

weights.

Finally, since different null hypothesis arise in our setting from the heterogeneity of the effect of

pollution across various SESs and age groups, we provide a step down bootstrap-based procedure for

testing multiple null hypotheses simultaneously in our dataset (Clarke, 2016, Romano and Wolf, 2016).

Under this demanding criterion to test the significance of our results, we observe that the effects of PM

significantly persist. Again, this last set of evidence are available upon request.

6 Conclusions

In this study we provide a quasi-experimental investigation of the effects of acute (short-term) exposure

to two different particle pollutants, PM10 and PM2.5. The causal effect of PM is identified by leveraging

PT strikes episodes occurring in specific city-day combinations that are able to generate traffic shocks

with associated higher air pollution concentrations. Together with the effects on hospitalizations, we

present exact estimates of both intensive and extensive margins of hospitalization costs. Our calculations

consider hospital admission unit costs, which represent an important policy parameter for which - to our

knowledge - no other estimates are available on a large scale and for different SES.

In our full sample estimates, we find that an increase in both PM10 and PM2.5, induced by PT strikes,

translate into a higher hospitalization rate for pulmonary diseases. In line with the clinical evidence, the

effects associated with PM2.5 are substantially larger.

Our data allow to largely explore the effects heterogeneity, testing if air pollution disproportionately

affects more disadvantage individuals characterized by a lower SES. By disentangling the impacts through

the lenses of ages, educational attainments and migrant status by country of origin, we find that young

individuals aged 15-24 and the elderly experience similar hospitalization costs for urgent respiratory dis-

eases for the same increase in PM10 or PM2.5. Moreover, the impacts of air pollution induced by PT
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strikes are much lower for individuals with a higher education, with even no effects for those with tertiary

education. When considering the migrant status and the country of origin, we find that air pollution af-

fects migrants only from low-income African countries. Overall, these results show that air pollution does

not affect individuals in the same way but the impacts closely reflect the socio-demographic differences

within the society. This implies that policy makers should look at air pollution not only as a technolog-

ical issue, but also as a socio-economic phenomenon. Effective policies aimed at reducing air pollution

effects should thus account for larger compensation mechanisms for more disadvantaged individuals. In

addition, the strict and reinforcing linkage between air pollution impacts and SES stresses the role of

complementary policies aimed at improving the "boundary conditions" that are able to substantially re-

duce or amplify these effects. Among these, we explicitly examine the role of age, education and broad

marginalized conditions of migrants from low-income African countries. Nonetheless, many other factors

such as income and employment conditions, urban context and lifestyle have to be further explored yet,

representing important research avenues.

An important part or our analysis refers to the decomposition of healthcare costs, in which we provide

a quantification of both extensive (greater number of hospitalizations) and intensive (greater complexity

of hospitalizations) margins caused by PM increases. While other studies find that pollution causes

additional costs due to a higher number of hospitalizations, we also show that these latter tend to be

more complex and expensive. For a one µg/m3 increase in PM10, we estimate a hospitalization cost

approximately 8% higher than an average urgen admission cost for asthma. The estimated cost for

PM2.5 is even larger, being approximately 14% higher. These figures imply that the quantification of

the healthcare burden relative to PM should take into account not only the number of hospitalizations

as done in previous studies, but also their complexity.

Given that our analysis considers air pollution effects that occur within one day, we provide impor-

tant information also for setting the hazard limit to PM2.5 daily concentrations, which has not been

established yet in Europe by the European Commission. Other than finding larger effects on respiratory

hospitalizations, we estimate that a daily increase of one µg/m3 of PM2.5 is associated with a cost of

303 euro per 100,000 citizens, which is approximately 70% higher than the cost generated by the same

increase in PM10.

Among the several limitations of our study, two ones deserve a brief discussion. First, it is important

to highlight that by employing the PT strike as an IV implicitly focuses our analysis on pollutant concen-

trations deriving from fuel combustion for vehicles. This may result in an underestimation of the total

effect of particle pollution in urban centers where a large fraction of both PM10 and PM2.5 is produced

also by heating systems for houses and buildings. However, from a regulation standpoint, assessing the

health effects of air pollution associated with the road transport provides also implications for policies
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specifically designed for this important emitting source (Bell et al., 2014, Park and Oh, 2018). Second,

although our study is perhaps the first to provide causal evidence of the air pollution effects on the

migrant population in Italy, these results should be interpreted with cautious. Migrants coming from

African low-income countries, who currently represent a large fraction of in-flows in Italy, live often in

informal rentals or under illegal subletting, facing significant barriers in accessing healthcare. Despite

signaling an interesting evidence, our estimates for this population group should thus be viewed as a

lower bound of the true effects.
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Appendices
:

A Tables

Table A1: Data sources

Variable Source
Hospital urgent admissions Hospital Discharge Data (SDO) - Italian Ministry of Health
Air pollution data Copernicus Atmosphere Monitoring Service (CAMS)
Weather data MARS-AGRI4CAST - JRC
Public Transport Strikes Italian Strike Comm. and Italian Min. of Infrastructure and Transport
Demand per capita of Public Transportation Italian National Institute of Statistics (ISTAT)
Local population Italian National Institute of Statistics (ISTAT)

39



Table A2: Descriptive statistics for public transportation strikes (2013-2015).

Consecutive days of strike events
Municipality 1 2 4 7 10 11 16 25 28 29 30 31 36 Freq.
Agrigento 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Alessandria 12 0 1 0 0 0 1 0 1 1 1 2 1 217
Asti 2 0 1 0 0 0 0 1 0 0 0 0 0 31
Avellino 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Bari 12 0 0 0 0 0 0 0 0 0 0 0 0 12
Belluno 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Benevento 3 0 0 0 0 0 0 0 0 0 0 0 0 3
Bergamo 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Biella 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Bologna 13 0 0 0 0 0 0 0 0 0 0 0 0 13
Bolzano 12 0 0 0 0 0 1 0 0 0 0 0 0 28
Brescia 12 0 0 0 0 0 0 0 0 0 0 0 0 12
Cagliari 16 0 0 0 0 0 0 0 0 0 0 0 0 16
Campobasso 7 0 0 0 0 0 0 0 0 0 0 0 0 7
Caserta 13 1 0 0 0 0 0 0 0 0 0 0 0 15
Catania 12 0 0 0 0 0 0 0 0 0 0 0 0 12
Catanzaro 4 0 0 0 0 0 0 0 0 0 0 0 0 4
Cesena 8 0 0 0 0 0 0 0 0 0 0 0 0 8
Chieti 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Como 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Cosenza 12 0 0 0 0 0 0 0 0 0 0 0 0 12
Crotone 0 3 0 0 0 0 0 0 0 0 0 0 0 6
Cuneo 5 0 0 0 0 0 0 0 0 0 0 0 0 5
Ferrara 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Firenze 10 0 0 0 0 0 0 0 0 0 0 0 0 10
Foggia 5 0 0 0 0 0 0 0 0 0 0 0 0 5
Frosinone 3 0 0 0 0 0 0 0 0 0 0 0 0 3
Genova 14 4 0 0 0 0 0 0 0 0 0 0 0 22
Gorizia 3 1 0 0 0 0 0 0 0 0 0 0 0 5
Imperia 1 1 0 0 0 0 0 0 0 0 0 0 0 3
L’Aquila 1 0 0 0 0 0 0 0 0 0 0 0 0 1
La Spezia 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Latina 11 0 0 0 0 0 0 0 0 0 0 0 0 11
Lecce 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Lecco 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Lodi 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Lucca 5 0 0 0 0 0 0 0 0 0 0 0 0 5
Macerata 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Mantova 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Massa 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Matera 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Messina 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Milano 14 0 0 0 0 0 0 0 0 0 0 0 0 14
Modena 7 0 0 0 0 0 0 0 0 0 0 0 0 7
Napoli 26 1 0 0 0 0 0 0 0 0 0 0 0 28
Palermo 11 0 0 0 0 0 0 0 0 0 0 0 0 11
Parma 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Pavia 11 0 0 0 0 0 0 0 0 0 0 0 0 11
Pescara 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Piacenza 3 0 0 0 0 0 0 0 0 0 0 0 0 3
Pisa 0 0 0 0 0 0 0 0 0 0 0 0 1 36
Pistoia 1 0 0 0 1 0 0 0 0 0 0 0 0 11
Pordenone 4 0 0 0 0 0 0 0 0 0 0 0 0 4
Potenza 9 0 0 0 0 0 0 0 0 0 0 0 0 9
Reggio di Calabria 8 0 0 0 0 0 0 0 0 0 0 0 0 8
Reggio nell’Emilia 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Rieti 4 0 0 0 0 0 0 0 0 0 0 0 0 4
Rimini 4 0 0 0 0 0 0 0 0 0 0 0 0 4
Roma 65 2 0 0 0 0 0 0 0 0 0 0 0 69
Salerno 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Savona 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Siena 2 0 0 0 0 0 0 0 0 0 0 0 0 2
Taranto 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Teramo 3 0 0 0 0 0 0 0 0 0 0 0 0 3
Torino 17 0 0 0 0 0 0 0 0 0 0 0 0 17
Trapani 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Trento 6 0 0 0 0 0 0 0 0 0 0 0 0 6
Treviso 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Trieste 2 0 0 0 0 0 0 0 0 0 0 0 0 2
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Cond’t of Table A2
Consecutive days of strike events

Municipality 1 2 4 7 10 11 16 25 28 29 30 31 36 Freq.
Urbino 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Varese 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Venezia 9 0 0 1 0 1 0 0 0 0 0 0 0 27
Verona 4 0 0 0 0 0 0 0 0 0 0 0 0 4
Vicenza 3 0 0 0 0 0 0 0 0 0 0 0 0 3
Totale 470 26 8 7 10 11 32 25 28 29 30 62 72 810

Table A3: Annual mean of temperature and sum of precipitations (2013-2015)

Weather conditions Mean Std. Dev Min Max

Temperature (°C) 15.766 6.964 -15.1 33.3
(15.990) (6.381) (-3.9) (31.1)

Precipitation (mm) 2.437 7.489 0 264
(2.171) (7.730) (0) (66)

Obs.=121,545; n=111; t=1095

Notes: All descriptive statistics are weighted by size of munic-
ipality population. Descriptive statistics computed on a sample
of 470 observations of 1-day strikes are reported in brackets.

Table A4: IV estimates of the effect of PM2.5 on respiratory diseases admissions

First stage

Panel A Panel B Panel C Panel D

PM2.5 PM2.5 PM2.5 PM2.5

STRIKE 0.714∗∗∗ 0.692∗∗∗ 0.615∗∗∗ 0.604∗∗∗

[0.218] [0.217] [0.212] [0.209]
F − stat 15.543 15.152 11.577 11.580

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM2.5
0.0884∗∗∗ 0.0911∗∗∗ 0.0953∗∗∗ 0.0971∗∗∗

[0.0228] [0.0231] [0.0278] [0.0271]
Panel B - Semi-elasticities:

PM2.5
0.0431∗∗∗ 0.0445∗∗∗ 0.0465∗∗∗ 0.0474∗∗∗

[0.0111] [0.0112] [0.0135] [0.0132]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
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B Figures

Figure B1: Map of the 111 Italian municipalities
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Figure B2: Weekly average values of PM10

Figure B3: Weekly average concentrations of air pollutants (2013-2015)
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Figure B4: Scatter correlation matrix for air pollutants

Figure B5: Trends of weekly respiratory diseases rate and weather conditions (2013-2015)
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C Robustness check
C.1 Estimates using O3 as a placebo pollutant

Table A5: IV estimates of the effect of O3 on respiratory diseases admissions (placebo pollutant).

First stage

Panel A Panel B Panel C Panel D

O3 O3 O3 O3

STRIKE
0.0183 0.0232 0.0291 0.0831
[0.362] [0.399] [0.358] [0.395]

F − stat 0.005 0.008 0.012 0.109

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

O3
3.457 2.719 2.014 0.705
[68.53] [46.78] [24.75] [3.347]

Panel B - Semi-elasticities:

O3
1.687 1.327 0.983 0.344
[33.30] [22.73] [12.03] [1.626]

CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: All regressions control for day-of-week, week-of-year, year and municipality fixed effects.
Controls include dummies for school holidays and national public holidays the following weather
variables: atmospheric temperature and amount of precipitation. Standard errors (in parenthe-
ses) clustered by municipality. STRIKE is the strike dummy variable equal to unity when a
strike is in effect and zero otherwise. First stage F-statistic coefficients are calculated using the
Cragg-Donald F-test. Estimates are weighted by size of municipality population.
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C.2 Placebo diseases

Table A6: IV estimates of the effect of PM10 on placebo diseases.

Second stage – Nervous system diseases (ICD09 320-359)

Panel A Panel B Panel C Panel D
Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
-0.00360 -0.00366 -0.00652 -0.00649
[0.0132] [0.0135] [0.0136] [0.0138]

Panel B - Semi-elasticities:

PM10
0.0578 0.0589 0.0559 0.0559
[0.0414] [0.0399] [0.0458] [0.0432]

Second stage – Musculoskeletal diseases (ICD09 710-739)

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
-0.00650 -0.00662 -0.00906∗ -0.00901∗

[0.00515] [0.00546] [0.00505] [0.00534]
Panel B - Semi-elasticities:

PM10
0.0591 0.0606 0.0535 0.0540
[0.0480] [0.0468] [0.0527] [0.0502]

Second stage – Endocrine systems diseases (ICD09 240-279)

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
-0.00726 -0.00740 -0.00908 -0.00890
[0.00894] [0.00916] [0.00956] [0.00961]

Panel B - Semi-elasticities:

PM10
0.0179 0.0182 0.0142 0.0145
[0.0297] [0.0299] [0.0335] [0.0332]

CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. Estimates are weighted by municipality population size.
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C.3 Placebo strike effect in non-affected cities

Table A7: IV estimates of the effect of PM10 on respiratory diseases in non-affectd cities.

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

STRIKE
0.0145 0.129 0.0696 0.170
[0.538] [0.523] [0.529] [0.518]

F − stat 0.000 0.034 0.009 0.059

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
4.479 -0.501 -0.987 -0.401
[165.0] [2.073] [7.367] [1.276]

Panel B - Semi-elasticities:

PM10
-2.186 -0.244 -0.482 -0.196
[80.15] [1.007] [3.579] [0.620]

CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. STRIKE is the strike dummy variable equal to unity when a strike is in effect and
zero otherwise. First stage F-statistic coefficients are calculated using the Cragg-Donald F-test.
Estimates are weighted by municipality population size.
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C.4 Estimates using multi-day strikes

Table A8: IV estimates of the effect of PM10 on respiratory diseases considering multi-day strike.

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

MULTI-DAY STRIKES 0.937∗∗∗ 0.904∗∗∗ 0.829∗∗∗ 0.827∗∗∗

[0.257] [0.219] [0.255] [0.217]
F − stat 20.340 19.889 15.927 116.633

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0651∗∗∗ 0.0674∗∗∗ 0.0689∗∗∗ 0.0692∗∗∗

[0.0218] [0.0211] [0.0255] [0.0235]
Panel B - Semi-elasticities:

PM10
0.0318∗∗∗ 0.0329∗∗∗ 0.0336∗∗∗ 0.0338∗∗∗

[0.0106] [0.0103] [0.0124] [0.0114]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. MULTI −DAY STRIKES is the strike dummy variable equal to unity when a strike is
in effect and zero otherwise. First stage F-statistic coefficients are calculated using the Cragg-
Donald F-test. Estimates are weighted by municipality population size.
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C.5 Estimates taking into account the demand per capita of PT

Table A9: First Stage estimates of the effect of strike on PM10 taking into account the demand per capita of PT (DTP)

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

STRIKE ×DPT
1.644∗∗∗ 1.559∗∗∗ 1.564∗∗∗ 1.503∗∗∗

[0.209] [0.214] [0.199] [0.207]
F − stat 42.259 39.890 38.292 37.117

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0453∗∗∗ 0.0475∗∗∗ 0.0448∗∗∗ 0.0464∗∗∗

[0.00821] [0.00838] [0.00914] [0.00920]
Panel B - Semi-elasticities:

PM10
0.0221∗∗∗ 0.0232∗∗∗ 0.0219∗∗∗ 0.0226∗∗∗

[0.00399] [0.00407] [0.00444] [0.00447]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 121,545 121,545 121,545 121,545

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies for
school holidays and public holidays as well as weather controls (atmospheric temperature and
amount of precipitation). Standard errors (in parentheses) are clustered at the municipality level.
Estimates are weighted by municipality population size. First stage F-statistic coefficients are
calculated using the Cragg-Donald F-test. Estimates are weighted by municipality population
size.
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Table A10: IV estimates of the effect of PM10 taking into account the demand per capita of PT (DTP) on a sample of 10
cities with high DPT.

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

STRIKE
1.523∗∗∗ 1.478∗∗∗ 1.444∗∗∗ 1.420∗∗∗

[0.0782] [0.108] [0.0736] [0.102]
F − stat 8.892 8.714 8.005 8.041

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0334∗∗ 0.0343∗∗ 0.0319∗ 0.0323∗∗

[0.0126] [0.0125] [0.0141] [0.0138]
Panel B - Semi-elasticities:

PM10
0.0164∗∗∗ 0.0169∗∗∗ 0.0157∗∗ 0.0159∗∗

[0.00585] [0.00580] [0.00656] [0.00642]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 10,950 10,950 10,950 10,950

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. First stage F-statistic coefficients are calculated using the Cragg-Donald F-test. Estimates
are weighted by municipality population size.
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C.6 Estimates on all Italian municipalities

Table A11: IV estimates of the effect of PM10 on all Italian municipalities.

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

STRIKE
1.181∗∗∗ 1.161∗∗∗ 1.101∗∗∗ 1.106∗∗∗

[0.308] [0.253] [0.310] [0.255]
F − stat

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0499∗∗∗ 0.0508∗∗∗ 0.0484∗∗∗ 0.0482∗∗∗

[0.0151] [0.0143] [0.0161] [0.0149]
CONTROL (weather) YES YES
CONTROL (holiday) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 8,858,550 8,858,550 8,858,550 8,858,550

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. First stage F-statistic coefficients are calculated using the Cragg-Donald F-test. Estimates
are weighted by municipality population size.
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C.7 Estimates using monitoring station data for pollution

Table A12: IV estimates of the effect of PM10 on respiratory diseases using air pollution data from monitoring stations.

First stage

Panel A Panel B Panel C Panel D

PM10 PM10 PM10 PM10

STRIKE
1.721∗∗ 1.695∗∗ 1.605∗∗ 1.586∗∗

[0.763] [0.759] [0.742] [0.736]
F − stat 18.89 18.633 16.450 16.311

Second stage

Respiratory Respiratory Respiratory Respiratory
(all patients) (all patients) (all patients) (all patients)

Panel A - Marginal effects:

PM10
0.0320∗∗ 0.0324∗∗ 0.0317∗∗ 0.0321∗∗

[0.0124] [0.0125] [0.0131] [0.0131]
Panel B - Semi-elasticities:

PM10
0.0155∗∗∗ 0.0157∗∗∗ 0.0153∗∗ 0.0155∗∗

[0.00595] [0.00601] [0.00627] [0.00628]
CONTROL (holiday) YES YES
CONTROL (weather) YES YES
TIME FE YES YES YES YES
MUNICIPALITIES FE YES YES YES YES
N 72,270 72,270 72,270 72,270

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1
Notes: The coefficients indicate effects for 100,000 residents. All regressions include day-of-
week, week-of-year, year and municipality fixed effects. Additional controls include dummies
for school holidays and public holidays as well as weather controls (atmospheric temperature
and amount of precipitation). Standard errors (in parentheses) are clustered at the municipality
level. First stage F-statistic coefficients are calculated using the Cragg-Donald F-test. Estimates
are weighted by municipality population size.
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