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Abstract

We exploit novel data from brain-training games to examine the impacts of air pollution
on a comprehensive set of cognitive skills of adults. We find that exposure to particulate
matter (PM2.5) impairs adult cognitive function, and that these effects are largest for
those in prime working age. These results confirm a hypothesized mechanism for
the impacts of air pollution on productivity. We also find that the cognitive effects
are largest for new tasks and for those with low ability, suggesting that air pollution
increases inequality in workforce productivity.
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I. Introduction

Besides being harmful to human health,1 exposure to air pollution is detrimental to human

capital formation,2 and labor productivity.3 In principle, these detrimental effects may be

the result of a decline in cognitive skills such as attention, memory, speed of information

processing, and problem solving. To date, however, data availability has been a particular

obstacle to this line of research (Graff Zivin and Neidell, 2013). As such, prior studies have

focused on secondary measures of cognition using scholastic achievement, or coarse measures

of performance in cognitively-demanding settings. The accumulated evidence therefore arises

either from school-age groups, or from a limited set of specific sites, industries and tasks.

Yet, when impacts are heterogeneous such studies may fail to identify effects relevant to the

broader population (Hsiang, Oliva and Walker, 2019).

In this study, we overcome these challenges by examining the impacts of air pollution

exposure on direct measures of cognitive performance using Lumosity brain games over the

period 2015-2017. Lumosity is a widely-used, freely available online platform offering games

aiming at improving attention, memory, flexibility, speed of processing, and problem solving.

It takes scientifically-validated tasks and turns them into games that are accessible to any

age or skill level. Through an agreement with Lumos Labs, Inc., we obtained access to

proprietary user-level data for each play across seven games, totaling over 4.6 million user-

play observations. These detailed data allow us to exploit daily variation in fine particulate

matter (PM2.5) within a 3-digit ZIP code area to identify the effects of air pollution on a

comprehensive set of cognitive domains across different age groups and levels of cognitive

1See, for example, Chay and Greenstone (2003); Currie and Neidell (2005); Currie and Walker (2011);
Graff Zivin and Neidell (2013); Currie et al. (2014, 2015); Schlenker and Walker (2016); Deschenes, Green-
stone and Shapiro (2017); Deryugina et al. (2019).

2See, for example, Currie et al. (2009); Sanders (2012); Miller and Vela (2013); Ham, Zweig and Avol
(2014); Stafford (2015); Ebenstein, Lavy and Roth (2016); Bharadwaj et al. (2017); Marcotte (2017); Austin,
Heutel and Kreisman (2019); Chen (2019); Shehab and Pope (2019); Gilraine (2020); Roth (2020); Heissel,
Persico and Simon (Forthcoming); Persico and Venator (Forthcoming).

3See, for example, Graff Zivin and Neidell (2012, 2013); Hanna and Oliva (2015); Chang et al. (2016);
Heyes, Neidell and Saberian (2016); Fu, Viard and Zhang (2017); Meyer and Pagel (2017); Archsmith, Heyes
and Saberian (2018); Chang et al. (2019); He, Liu and Salvo (2019); Adhvaryu, Kala and Anant (2020);
Huang, Xu and Yu (2020).
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ability in the U.S. population. Due to data limitations, previous studies have focused on

adverse effects on the young and the elderly, overlooking the working-age population.

There are two well-known challenges to identifying causal impacts of pollution exposure.

First, ex-post pollution exposure is not random: for example, individuals may sort into

residential areas in part based on environmental quality (e.g., Chay and Greenstone, 2005;

Banzhaf and Walsh, 2008). Our identification relies only on short-term changes in pollution

exposure within an individual’s play history. Second, there may be important disconnections

between where individuals live and work and where pollution is measured, leading to serious

measurement error issues (e.g., Moretti and Neidell, 2011). Inspired by Deryugina et al.

(2019), we address this concern by instrumenting for daily PM2.5 concentrations using daily

changes in local wind direction. Our instrument is an indicator variable for whether the

daily local wind direction is at the direction associated with the maximum potential for the

transport of pollutants from other locations. The exclusion restriction is that, after flexibly

controlling for many fixed effects and climatic variables, changes in an area’s daily wind

direction have no direct effect on performance in brain games except through their influence

on air pollution.

Our IV estimates indicate that exposure to PM2.5 at levels above 25µg/m3 reduces stan-

dardized scores in brain games by approximately 0.18 standard deviations. The threshold is

the World Health Organization (WHO) air quality guideline value for 24-hour exposure to

PM2.5, but still 10µg/m3 below the U.S. National Ambient Air Quality Standards (NAAQS)

for PM2.5 over 24 hours. The estimated effect has meaningful implications for the U.S. popu-

lation: it is equivalent to a reduction of 5.8 percentiles in the distribution of scores reweighted

to match the characteristics of the population.4 Across the seven cognitive domains consid-

ered by Lumosity and included in our analysis, the effects on memory are strongest but there

is suggestive evidence that problem solving may also be affected. Furthermore, the results

appear to be substantially larger for individuals in prime working age – those under the age

4To construct this distribution, for each game, Lumosity resample from their user base to match age,
gender and education of the US population from the 2010 U.S. Census.
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of 50. Taken together, these findings suggest that occupations that require memory and

problem solving may be more affected by PM2.5.

The results also indicate important heterogeneity by experience and cognitive ability.

The adverse effects of PM2.5 are stronger in the first five times that individuals play the

Lumosity games. On the other hand, there does not appear to be any difference in the

impacts on the performance of more experienced players. The effects also tend to be more

detrimental for individuals in the lower quintiles of the distribution of cognitive ability, as

implied by their initial performances in the games. Overall, these patterns suggest that air

pollution may increase inequality by affecting the acquisition of skills, and by furthering the

divide between low- and high-skilled individuals.

This study makes two main contributions to the literature. First, it opens up the black

box regarding the effects of air pollution on cognitive function, shedding light on poten-

tial mechanisms behind prior findings on the impacts on scholastic achievement and labor

productivity (e.g., Ebenstein, Lavy and Roth, 2016; Archsmith, Heyes and Saberian, 2018;

Chang et al., 2019; Heissel, Persico and Simon, 2020). It also helps understanding the some-

times mixed results from different industries and occupations (e.g., Chang et al., 2016, 2019;

He, Liu and Salvo, 2019; Huang, Xu and Yu, 2020).5 This is accomplished with a relatively

large sample of individuals across many locations, likely enhancing external validity relative

to most previous settings, which are from a single facility or a handful of them. The closest

paper to ours is Bedi et al. (2021), which also examines the impact of PM2.5 on various

cognitive domains, but their sample consists of 464 students from a university in Brazil who

engaged in 54 lab sessions over a 3-year period.

The second contribution relates to the potential role of pollution in furthering inequal-

ity in health, education, and labor market outcomes. One dimension of inequality arises

from disproportionate exposure to pollution, as documented by the environmental justice

literature (see reviews by Banzhaf, Ma and Timmins, 2019a,b). Another dimension may be

5The estimated impact on memory may also provide a mechanism behind the causal effect of sustained
exposure to PM2.5 on dementia among the Medicare population (Bishop, Ketcham and Kuminoff, 2018).
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disproportionate impacts (Hsiang, Oliva and Walker, 2019). Here we provide evidence that

even under similar levels of pollution, low-skilled and less-experienced individuals might be

more affected by PM2.5. These findings highlight the potential for environmental insults to

exacerbate the gaps observed in health, education, and labor market outcomes.

The remainder of the paper is organized as follows. Section II presents background

information on cognitive ability and brain training, and the adverse effects of pollution.

Section III introduces our conceptual framework underlying mechanisms through which pol-

lution may affect cognitive function, including biological channels and behavioral responses.

Section IV describes the data sources and summary statistics, and Section V presents the

empirical strategy, focusing on our instrumental variable approach. Section VI reports and

discusses the main findings, including robustness checks. Lastly, Section VII concludes.

II. Background

A. Air pollution and cognitive function

There is growing evidence that exposure to air pollution is associated with impaired cognitive

functions at all ages (e.g., Kilian and Kitazawa, 2018; Paul et al., 2019; Schikowski and

Altuğ, 2020). The adverse effects of particulate matter (PM) on the nervous system may

be a result of a direct route to the brain or stimulation of pro-inflammatory cytokines via

an indirect route. PM has implications for oxidative stress, inflammation, dysfunction of

cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss

and exaggerating the burden of central nervous system (Allen et al., 2017; Wang, Xiong and

Tang, 2017). Acute exposure to PM can also alter properties of glutamate receptors that

are critical to neuronal plasticity and memory processes (Davis et al., 2013).

Older adults living in areas with higher PM2.5 concentrations have been shown to expe-

rience worse cognitive function even after adjustment for community- and individual-level

social and economic characteristics. In a landmark study, Ailshire and Crimmins (2014) an-
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alyzed data from the 2004 Health and Retirement Study, a large, nationally representative

sample of U.S. adults aged 50 years or older, and found that the association is strongest

for the episodic memory component of cognitive function. PM2.5 has also been associated

with greater declines in immediate recall and new learning in a recent study involving older

females enrolled in both the Women’s Health Initiative Study of Cognitive Aging and the

Women’s Health Initiative Memory Study of Magnetic Resonance Imaging (Younan et al.,

2019). Using quasi-random variation in pollution exposure due to the EPA’s 2005 designa-

tion of nonattainment counties for PM2.5, Bishop, Ketcham and Kuminoff (2018) analyzed

fifteen years of Medicare records on 6.9 million U.S. residents over age 65 to estimate the

causal impact of particulate matter on dementia. They found that a 1µg/m3 increase in av-

erage decadal exposure causally increases the probability of receiving a dementia diagnosis

by 1.3 percentage points, or 6.7% of the mean.

There is also evidence that cognitive function in younger individuals is affected by expo-

sure to particulate matter. Air pollution shocks have been shown to reduce student perfor-

mance from elementary school to college (e.g., Miller and Vela, 2013; Stafford, 2015; Eben-

stein, Lavy and Roth, 2016; Roth, 2020). In the study closest to ours, Bedi et al. (2021)

examined the impact of short-term exposure to fine particulate matter on the cognitive

performance of students from a large university in Brazil. Exploiting plausibly exogenous

variation in indoor pollution across 54 lab sessions over a 3-year period with 464 students,

they found that high levels of PM2.5 reduce performance on a fluid reasoning test, but were

underpowered to detect effects on other cognitive domains such as simple attention, com-

plex attention, arithmetic processing speed, and working memory. Regarding the overall

adult population, Zhang, Chen and Zhang (2018) analyzed data from a nationally repre-

sentative longitudinal survey in China, and found that long-term exposure to air pollution

impedes cognitive performance in verbal and math tests. They also documented that the

effect on verbal tests becomes more pronounced as people age, especially for men and the

less educated.
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In summary, while there are strong associations between cognition and exposure to par-

ticular matter across the age distribution, causal evidence is largely limited to performance

of students or long term cognitive decline in the elderly.

B. Brain training and cognitive function

In this study we measure cognitive function in the adult population via performance in

Lumosity games. But does performance in brain training reflect transferable cognitive skills?

Put differently, do changes in game scores, for example due to dedicated training, reflect

changes in cognitive functions such as problem solving? This is a long-standing question in

the behavioral sciences. A recent systematic review of brain-training interventions, or “brain

games,” has found extensive evidence that they do improve performance on trained tasks

(Simons et al., 2016). Furthermore, “[i]t is uncontested that training programs can lead to

near transfer, meaning increased performance on untrained tasks involving similar cognitive

functions” (Smid, Karbach and Steinbeis, 2020, p. 531).

The most extensive review to date of interventions to improve executive functions – which

include attention, working memory, cognitive flexibility, and reasoning – also highlights the

evidence for improvement by training across the lifespan and transfer of this improvement

to similar tasks (Diamond and Ling, 2020). Taken together, these reviews suggest that

performance scores in brain training do measure a specific cognitive skill. Furthermore, the

reviews note that the length, frequency, spacing and difficulty of the training, combined with

baseline ability of the subjects, all determine its efficacy. These lessons help us informing

our conceptual framework, empirical strategy, and the interpretation of our results.

III. Conceptual Framework

Building on Graff Zivin and Neidell (2013), cognitive function can be expressed as a function

of two components: the level of exposure to air pollution p, and a vector of attributes x that

may influence how exposure affects measures of cognition S:
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S = f(p, x). (1)

In our context, p corresponds to ambient concentration of PM2.5 and f(.) translates

p into performance in various cognitive domains. Heterogeneity in environmental impacts

may manifest through differences in levels of exposure p, and/or differences in the vector of

mediating attributes x that may interact with exposure through the cognitive function.

Building on Hsiang, Oliva and Walker (2019), if a change in exposure is relatively uniform

across individuals – perhaps because it is marginal for all i – distributional effects may result

from that change if marginal impacts

∂Si

∂p
=
∂f(pi, xi)

∂p
(2)

differ across individuals. Heterogeneity in marginal impacts on cognition may arise from

nonlinearities in the relationship between exposure and cognitive function, holding other

factors constant, or from heterogeneity in an underlying attribute that controls how exposure

translates into impacts. Designing environmental policy that addresses distributional effects

may require understanding the source of this heterogeneity.

Heterogeneity in marginal impacts usually generates distributional effects of environmen-

tal change, because some individuals will benefit or be harmed more or less for incremental

changes in environmental conditions. If marginal impacts are positively correlated with cog-

nitive ability, for example, then policies that reduce exposure uniformly across a population

will have regressive benefits since high-ability individuals benefit more from the policy. If

marginal impacts are negatively correlated, such a policy would have progressive benefits.

IV. Data

Our primary data are anonymized game performance scores from the brain training company

Lumos Labs. This company is the owner of Lumosity, which gives users access to brain
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training games and analytics on both web based and phone application platforms. Our data

include scores from the seven Lumosity games outlined in Appendix Table A.1. These games

were selected by Lumos because game design and usage were relatively stable over time, and

to ensure that the combination of games spanned the breadth of cognitive domains – verbal,

attention, flexibility, memory, math, speed, and problem solving.

For each game we observe timestamps and scores for all users who signed up for Lumosity

and played between 5 and 50 times on the web based platform during the period 2015-2017.

We also observe each user’s location at the 3-digit ZIP code at the time the user signed up

for Lumosity, which is derived by Lumos from a user’s IP address.6 In addition, we observe

self reported characteristics of users including age, gender, and education, and additional

data collected by Lumos including an identifier for whether the user is a paid subscriber,

the date the user joined Lumosity, and any dates that the users played games outside our

sample.7

We use the centroid of each ZIP code to match game data to the U.S. EPA Air Quality

Monitoring System – matching to any monitor within 20 miles of the centroid – and to

weather observations from the Integrated Surface Database (ISD) from the National Centers

for Environmental Information – matching to any station within 30 miles of the centroid.8

Appendix Figure A.2 maps the distribution of the 116,495 users in the estimation sample.

They are scattered around the nation, with heavy concentrations in the West coast, where

Lumos Labs are headquartered (San Francisco, CA).

To enable comparisons across games, we standardize scores in the following way:

Sigt =
Raw Scoreigt −Raw Scoreg

σg
(3)

where Sigt is the standardized score of user i in game g at time t, Raw Scoreigt is the raw

6For convenience, the 3-digit ZIP code areas in the United States are displayed in Appendix Figure A.1.
7Summary statistics are reported in Appendix Table A.2. Subscription provides users with access to

additional analytics and games.
8The results are qualitatively the same for matching to air quality monitors within 30 miles.
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score provided by Lumosity, Raw Scoreg is the mean raw score across all players and plays

in game g, and σg is the standard deviation of raw scores in game g.

V. Empirical Strategy

To estimate the impact of air pollution exposure on cognition, we use the following equation:

Sit = β1[PM2.5zdmy > 25] +X ′
zdmyγ + αi + αmy + εit, (4)

where S is the standardized score for player i in 3-digit ZIP code z, at time t of day d, month

m, and year y. 1[PM2.5zdmy > 25] is an indicator variable equal to one if the level of PM2.5

is above 25µg/m3. This threshold is the World Health Organization (WHO) air quality

guideline value for 24-hour exposure to PM2.5, but still 10µg/m3 below the U.S. National

Ambient Air Quality Standards (NAAQS) for PM2.5 over 24 hours. The 25µg/m3 cutoff is

above the ninety-ninth percentile of the distribution of particulates in our sample, but far

below the maximum daily concentration in our sample – about 270µg/m3.9 αi represents

player fixed effects, αmy month-by-year fixed effects, and Xzdmy control variables – wind

speed, precipitation, and bins of daily maximum temperature.10

We face two primary empirical challenges in estimating β. First, individuals choose when

to play brain training games and this choice may be directly or indirectly related to pollution

levels. If, for example, pollution does have an effect on cognitive ability, and this effect is

noticeable to participants, they may be more or less likely to decide to play Lumosity games.

This would be problematic if, for example, users who have low cognitive ability are more

affected by pollution and choose not to play on days when they feel its effects. Appendix

Figure A.4, however, shows PM2.5 does not affect the number or composition of players.

The second empirical challenge in estimating β is measurement error. Measurement

error arises due to the sparsity of the monitoring network, and the fact that actual pollution

9The distribution of daily PM2.5 in our sample is displayed in Appendix Figure A.3.
10In the results section, we explore the sensitivity of our estimates to alternative structure of fixed effects,

alternative thresholds for the indicator variable for exposure to PM2.5, and outliers.
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exposure can vary over very short distances based on proximity to large roads or other local

sources of pollution. Measurement error causes attenuation bias leading us to understate

the impact of pollution on cognition.

We build on the approach of Deryugina et al. (2019) using an instrument based on changes

in wind direction. The idea of the instrument is to isolate variation in non-local pollution

that is transported by wind. This variation in pollution exposure should have a uniform

effect within a locality and be orthogonal to differences in exposure to local sources. The

specification for our first stage is

1[PM2.5zdmy > 25] = θ1[WindDirzdmy = maxPM2.5 WindDirz2m]

+X ′
zdmyδ + αi + αmy + εidmy. (5)

The excluded instrument is the variable 1[WindDirzdmy = maxPM2.5 WindDirz2m].

This indicator variable is equal to one if the daily average wind direction in the 3-digit

ZIP code z falls in the 60-degree interval that usually brings the highest levels of PM2.5 to

the more aggregated 2-digit ZIP code region z2 in month m. The wind directions associated

with the maximum pollution levels for each region-month are found in preliminary regression

analysis considering all 60-degree intervals.11

VI. Results

A. Average Impacts of Exposure to PM2.5 on Cognitive Function

Table 1 reports the average impacts of exposure to fine particulate matter (PM2.5) on

cognitive function as measured by standardized scores in Lumosity games. Columns 1 and

2 in Panel A present the OLS estimates using PM2.5 measured in levels or as a dummy for

relatively high concentrations – above 25µg/m3 – respectively. Columns 3 and 4 display the

11This procedure may avoid weak instrument issues that might emerge when including all interactions be-
tween the 60-degree intervals and the z2 regions in the first stage. Furthermore, unlike an over-identified 2SLS
model, the just-identified 2SLS is approximately median unbiased even with a relatively weak instrument.
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corresponding IV estimates. Lastly, columns 5 and 6 present IV estimates for an alternative

outcome variable: the percentile of an individual’s score in the overall distribution of scores

adjusted to match the characteristics of the U.S. population. The Kleibergen-Paap rk Wald

F statistics from the first stage in the IV specifications are all above the Staiger and Stock

(1997) rule-of-thumb cutoff of 10, suggesting that the excluded instrument is strong.

Our preferred estimate in column 4 indicates that exposure to relatively high levels of

PM2.5 reduces standardized scores by about 0.18 of a standard deviation.12 This effect is

relatively large. For comparison, Ebenstein, Lavy and Roth (2016) find that the effect of

PM2.5 on Israeli high-school student scores for the ninety-ninth percentile of exposure in

their sample (about 50 µg/m3) implies a decline of roughly 0.13 of a standard deviation

in scores relative to an average day’s air quality (about 16µg/m3).13 Our estimate is also

equivalent to a reduction of 5.8 percentiles in the distribution of scores adjusted to match

the characteristics of the U.S. population, as reported in column 6.

Panel B of Table 1 reports a number of robustness and specification checks. Column 1

replaces user fixed effects in our main specification in Equation (4) with user-by-hour fixed

effects, and includes day-of-week fixed effects as well. This alternative specification addresses

concerns associated with selection of users into playing in particular hours or days of the

week. As an example, working-age users may play in the evenings and weekends, and retirees

may play during the day in weekdays. Column 2 adds to our main specification day-of-week

and 2-digit ZIP code-by-month fixed effects, to control more flexibly for spatial and seasonal

variation in game playing. Column 3 adds a lag and a lead of the high PM2.5 indicator to our

main specification, to check for delayed effects of pollution and spurious effects, respectively.

12If we instrumented PM2.5 with interactions of nine 1-digit ZIP code areas and five 60-degree wind
direction bins – analogous to Deryugina et al. (2019) – the IV estimate -0.119 (S.E. 0.137) would be in the
95% confidence interval of our preferred estimate in column 4.

13Another comparison to put the magnitude of our estimates into perspective: Ebenstein, Lavy and Roth
(2016) find that a test score in an exam on a day with average pollution (about 16µg/m3) will be lowered
relative to an exam taken on a day with the minimum pollution level (about 2.4µg/m3) by 0.083 standard
deviations. Recall that they use data for every SAT-equivalent test taker in Israel from 2000-2002. Our
estimate in Table 1, Panel B, column 5, shows a reduction of 0.15 of a standard deviation when Lumosity
users nationwide are exposed to levels of PM2.5 above 15µg/m3 relative to exposure below that threshold.

11



Column 4 constrains the sample to include only observations with PM2.5 below 35µg/m3 –

the current 24-hour NAAQS for PM2.5 – to avoid the potential influence of outliers. This

alternative sample also allows us to test for PM2.5 effects only among levels of exposure below

the current air quality standards. In all these four columns, the causal effect of exposure to

relatively high levels of fine particulate matter is quantitatively similar to our main estimate

in Panel A, column 4.

The last two columns of Table 1, Panel B, display the estimates associated with alterna-

tive cutoffs for exposure to fine particulates. Column 5 reveals that even exposure to levels

of PM2.5 20µg/m3 below the current 24-hour EPA air quality standards is detrimental to

cognitive function, suggesting that there may be room for adjustments in the standards.

For reference, 15µg/m3 is about the ninety-fifth percentile of the distribution of particulates

in our sample. Perhaps not surprisingly, column 6 shows that exposure to levels of PM2.5

above the current 24-hour standards causes a large decline in cognitive performance.14

B. Heterogeneous Impacts of Exposure to PM2.5 on Cognitive Function

PM2.5 Impacts by Age. Figure 1, Panel A, depicts the causal effects by age groups. All

coefficients are jointly estimated using a version of Equation (4) with interactions between

the indicator of high PM2.5 and the age groups reported in the figure. The pattern that

emerges is that the adverse effects of exposure to PM2.5 are more pronounced at younger

ages – below 50. The age distribution in our sample is displayed in Panel B, which shows

little representation of individuals younger than 20, but a large representation of 50- and

60-year-olds. The mean user age in our sample is 48.7. Unlike the bulk of the literature

highlighting detrimental effects of exposure to particle pollution on health outcomes among

children and the elderly, our estimates reveal large impacts on the working-age population.

To give a sense of the magnitude, take the estimated effect for 20-year-olds – exposure to

14An alternative way to check for potential nonlinearities in the relationship between PM2.5 and cognition
is to create bins for different ranges of exposure, and jointly estimate the coefficients associated with those
bins. The results of this analysis are presented in Appendix Figure A.5.
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levels of PM2.5 above 25µg/m3 causes a reduction in standardized scores by 0.479 of a

standard deviation. This effect is equivalent to the normal decay in cognitive function when

comparing 20-year-olds to 40-year-olds, as depicted by the diamond markers in Panel B.15

The effects of exposure to air pollution could be larger for younger individuals for a range

of reasons. For example, according to well known theories of intelligence, as people age they

begin to rely more on crystallized intelligence, that part of intelligence that comes from

learned procedures and knowledge.16 If fluid intelligence – intelligence that is independent

of learning – is more affected by exposure to fine particulates, then we would expect to see

younger and less experienced individuals are more affected.17

PM2.5 Impacts on Specific Cognitive Domains. Figure 2, Panel A, plots the estimated

effects on seven cognitive domains – verbal, attention, flexibility, memory, math, speed,

and problem solving. All coefficients are jointly estimated using a version of Equation (4)

with interactions between the indicator of high PM2.5 and the cognitive domains reported

in the figure. Among these domains, the effects are strongest for memory, with exposure

to PM2.5 above 25µg/m3 estimated to reduce standardized scores by 0.598 of a standard

deviation (95% confidence interval: [-1.147,-0.0489]). There is also suggestive evidence that

problem solving may also be substantially affected by particle pollution. The reduction in this

cognitive domain due to high levels of PM2.5 is estimated to be 0.418 of a standard deviation

(95% CI: [-1.517,0.681]). Although we have a large number of observations associated with

each domain, Lumosity games training memory and math are the least played by the users

in our sample, as reported by Panel B. The game training problem solving, however, is the

most played in our setting.

To put the estimated impact of PM2.5 on memory into perspective, it is equivalent to the

normal cognitive aging from the 30s to the 50s, as depicted by the diamond markers in Figure

15Salthouse (2009) provides evidence that some aspects of age-related cognitive decline do begin in healthy
educated adults when they are in their 20s and 30s. For a review of the literature on normal cognitive aging,
see Harada, Natelson-Love and Triebel (2013).

16This theory is attributed to Raymond Cattell and Donald Hebb (Brown, 2016).
17This explanation is also consistent with the ability and learning results reported below.
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1, Panel B. In the closest study to ours, Bedi et al. (2021) examine the impact of PM2.5 on

five cognitive domains – simple attention, complex attention, arithmetic processing speed,

working memory, and fluid reasoning – using a sample of 464 students from a university in

Brazil, who engaged in 54 lab sessions over a 3-year period. They find evidence suggesting

that one cognitive domain – fluid reasoning – may be more affected by high PM2.5 exposure

than other cognitive domains such as attention and memory. Fluid reasoning is the ability to

think flexibly and problem solve. We do find suggestive evidence of adverse effects on problem

solving, but a near zero effect on flexibility. On the other hand, the effect we estimate on

memory is more robust than other cognitive domains. Harada, Natelson-Love and Triebel

(2013) point out that one of the most common cognitive complaints among older adults

is, indeed, change in memory. According to their literature review, “[a]ge-related memory

changes may be related to slowed processing speed, reduced ability to ignore irrelevant

information, and decreased use of strategies to improve learning and memory” (p.740).

The adverse effect of PM2.5 on memory may have implications for workforce productiv-

ity. The Occupational Information Network (O*NET) database ranks occupations based on

the importance of the use of several cognitive functions.18 The ranking includes over 870

detailed occupations. Among the top twenty in terms of the importance of memory, there

are actors, clergy members, physicians, nurses, inspectors, teachers, managers, engineers,

telecommunicators, and sales representatives. Therefore, it is not surprising that contem-

poraneous exposure to particulate matter has been shown to decrease productivity among

call center workers in China (Chang et al., 2019), but does not affect the manufacturing

output of production workers in the textile industry (He, Liu and Salvo, 2019). Naturally,

our findings open a research avenue on the links between the impact of particle pollution on

cognitive functions and labor productivity.

PM2.5 Impacts on Cognitive Function by Initial Ability. Figure 3, Panel A, plots the esti-

18See details on the importance of cognition at onetonline.org/find/descriptor/browse/Abilities/1.A.1/
and onetonline.org/find/descriptor/browse/Skills/2.A/.
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mated effects of exposure to levels of PM2.5 above 25µg/m3 on cognitive function by quintile

of initial ability. All coefficients are jointly estimated using a version of Equation (4) with

interactions between the indicator of high PM2.5 and quintiles of ability. Because memory

appears to be the cognitive domain most affected by fine particulates, we measure initial

ability by estimating the following equation for first play in the memory game:

Si = φWindi +X ′
iΠ + εi, (6)

where Si represents standardized score for user i, and Windi the reduced-form equivalent of

particle pollution. Xi includes other meteorological controls and fixed effects for age, 3-digit

ZIP code, and month-year. Our approximate measure of initial ability is the residualized

score ε̂i, which nets out predictable patterns in the data. This measure has good predictive

power for ability. Indeed, the pattern in Panel B reveals a strong positive association with

educational attainment, which is knowingly correlated with innate ability (see, for example,

discussion in Card, 2001). Panel B also shows that most users in our sample are college

graduates.

The estimated effects in Figure 3, Panel A, indicate that low-ability individuals are more

affected by exposure to high levels of PM2.5 than high-ability users. The difference between

the point estimates for the second and fourth quintiles of -0.593 of a standard deviation

is nontrivial: it is equivalent to the normal cognitive aging from the 30s to the 50s, as

depicted by the diamond markers in Figure 1, Panel B. We are underpowered to draw strong

conclusions, but the evidence from both panels, taken together, suggests that environmental

insults might exacerbate the inequality in cognitive performance. This corroborates the

pattern found by Ebenstein, Lavy and Roth (2016) for Israeli high-school students. They

rank students based on an ex-ante measure of student quality reflecting performance in the

full-year class and on a previously-taken SAT-equivalent test. When they split the sample

by whether their measure of ability is above or below the median, the estimated detrimental

impacts of exposure to ten additional units of PM2.5 are more than four times larger among
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those classified as low quality.

PM2.5 Impacts on Cognitive Function by Learning Stage. Figure 4, Panel A, displays the

estimated effects of exposure to PM2.5 on cognition by practice in the games – fewer than

five plays or more than five plays – which we are interpreting as different learning stages

or experience. In fact, Panel B depicts a concave relationship between standardized scores

and the number of plays, similar to the well-known experience-earnings profile in the labor

market. The underlying histogram in the panel also reveals that most users play just a few

times over our sample period, similar to the pattern of short job tenure for most workers

in the labor force.19 All coefficients in Panel A are jointly estimated using a version of

Equation (4) with interactions between the indicator of high PM2.5 and the learning-stage

groups reported in the figure using only the sample of users who play a game at least 20

times.

The pattern emerging from Panel A is that exposure to relatively high levels of PM2.5

appears to affect cognitive performance primarily in the learning stage. Once users acquire

experience, their performance is unaltered by fine particulates. In this case, the difference-

in-differences estimate of about 0.40 of a standard deviation of standardized scores – the

difference between fewer and more than five plays for high PM2.5 minus the difference

between fewer and more than five plays for low PM2.5 – is marginally significant at conven-

tional levels. That 0.40 difference-in-differences estimate corresponds roughly to the absolute

value of the normal decay in cognitive function when comparing 20-year-olds to 40-year-olds,

as depicted by the diamond markers in Figure 1, Panel B. Given the highly right-skewed

histogram of the number of game plays, as shown in Figure 4, Panel B, there are ample

opportunities for exposure to fine particulates to affect the acquisition of basic skills. If one

were willing to extrapolate these findings to the labor market, they may imply large impacts

on employee turnover, likely due to a failure to learn the basic cognitively-demanding tasks

19According to the Bureau of Labor Statistics, in January 2020 the median employee tenure was 4.3 years
for men and 3.9 years for women (BLS, 2020).
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on the job.

VII. Concluding Remarks

This study has examined the impacts of exposure to fine particulate matter (PM2.5) on

cognition, leveraging performances in brain games. We have taken advantage of detailed

proprietary user-level data from Lumosity games over the period 2015-2017, covering seven

cognitive domains across all stages of adult life. By instrumenting daily PM2.5 concentrations

with changes in local wind direction à la Deryugina et al. (2019),20 we were able to identify the

local average treatment effects of PM2.5 on cognitive functions, and assess the heterogeneity

of those effects across multiple dimensions.

We highlight and discuss four main findings. First, the average impact of exposure to

daily PM2.5 is substantial even at levels below the current 24-hour EPA ambient air quality

standards of 35µg/m3, and even at levels below the WHO air quality guideline value of

25µg/m3. These results suggest that there may be additional benefits from reducing those

thresholds.21 Second, among the seven cognitive domains we investigated, the effect on

memory is the strongest. This has implications for the types of occupations most likely to

suffer from high exposure to PM2.5, and might reconcile some mixed results in the literature

regarding occupations that were more or less affected by particulate matter.22 The memory

result may also shed light on a mechanism behind the causal impact of sustained exposure

to fine particulates on the probability of receiving a dementia diagnosis among the Medicare

population, as found by Bishop, Ketcham and Kuminoff (2018).

Third, unlike the bulk of evidence of adverse effects of PM2.5 on health outcomes con-

20As explained earlier, our instrument is an indicator variable for whether the daily local wind direction is
at the direction associated with the maximum potential for the transport of pollutants from other locations
to the area where the Lumosity user is located.

21Despite evidence pointing to gains from lowering those cutoffs, in December 2020 the EPA decided to
retain current standards for PM2.5.

22For instance, exposure to particulate matter has been shown to decrease productivity among call center
workers in China (Chang et al., 2019), but does not seem to affect the manufacturing output of production
workers in the textile industry (He, Liu and Salvo, 2019).

17



centrated among children and the elderly, our findings indicate that individuals under the

age of 50 – the working-age population – may be the most affected by contemporaneous ex-

posure to particle pollution. Furthermore, it seems that those learning new tasks may suffer

the most the harmful consequences of PM2.5. Policymakers should consider the impacts of

environmental insults when designing policies to train the youth to enter the labor force,

and retrain displaced older workers to switch careers successfully. Fourth, exposure to high

levels of PM2.5 appears to exacerbate the inequality in cognitive performance. Low-ability

individuals may be the most affected by fine particulates. This is suggestive evidence that

investments in environmental quality are progressive, an important finding in the context of

the recent rise in income inequality in the United States and abroad.
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Figure 1: PM2.5 Impacts on Cognitive Function by Age

Panel A. Estimated Effects Panel B. Age Distribution

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by age, and descriptive
statistics on the age distribution in our sample. In Panel A, the plotted coefficients are jointly estimated
using a version of Equation (4) with interactions between the indicator of high PM2.5 and age groups.
The vertical bars around the coefficients are 95% confidence intervals. The estimates are also reported in
Appendix Table A.3. Robustness checks are presented in Appendix Figure A.6. Heterogeneity analysis by
age and gender is presented in Appendix Figure A.7. In Panel B, the bars depict the number of observations
in each age range, and the markers show the change in average standardized scores for an age group relative
to users under 20. Learning curves associated with each age group are presented in Appendix Figure A.8.
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Figure 2: PM2.5 Impacts on Specific Cognitive Domains

Panel A. Estimated Effects Panel B. Game Distribution

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by cognitive domain, and
descriptive statistics on the distribution of observations across games in our sample. In Panel A, the plotted
coefficients are jointly estimated using a version of Equation (4) with interactions between the indicator of
high PM2.5 and cognitive domains. The vertical bars around the coefficients are 95% confidence intervals.
The estimates are also reported in Appendix Table A.4. A robustness check is presented in Appendix Figure
A.9. In Panel B, the bars depict the number of observations in each game, and the markers show the change
in the number of times the game is played by an individual relative to the verbal game.
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Figure 3: PM2.5 Impacts on Cognitive Function by Initial Ability

Panel A. Estimated Effects Panel B. Initial Ability and Education

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by initial ability, and descriptive
statistics on ability and educational attainment in our sample. In Panel A, the plotted coefficients are jointly
estimated using a version of Equation (4) with interactions between the indicator of high PM2.5 and quintiles
of initial ability. Our measure of ability is based on the first play in the memory game. In practice, it is the
residualized score from Equation (6). The vertical bars around the coefficients are 95% confidence intervals.
The estimates are also reported in Appendix Table A.5. Robustness checks are presented in Appendix
Figure A.10, and analysis using education groups as an alternative for quintiles of initial ability is presented
in Appendix Figure A.11. In Panel B, the bars depict the number of observations in each education group,
and the markers show the change in average initial ability for an education group relative to the category
less than college degree.
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Figure 4: PM2.5 Impacts on Specific Cognitive Function by Learning Stage

Panel A. Estimated Effects Panel B. Number of Plays and Learning

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by experience playing Lumosity
games, and descriptive statistics on the distribution of number of game plays and learning in our sample.
In Panel A, the plotted coefficients are jointly estimated using a version of Equation (4) with interactions
between the indicator of high PM2.5 and two categories of number of plays – fewer or more than five
plays – for the sample of users playing at least 20 times. The vertical bars around the coefficients are 95%
confidence intervals. The estimates are also reported in Appendix Table A.6. A robustness check is presented
in Appendix Figure A.12. In Panel B, the bars depict the number of observations for each binned number
of plays, and the markers show the average standardized score for each binned number of plays relative to
the first 5 plays bin.

27



Table 1: Impacts of Exposure to PM2.5 on Cognition – Average Effects and Robustness

Panel A. Average OLS Estimates (Columns 1-2) and IV Estimates (Columns 3-6)
Dep. Var.: Std. Score (1) (2) (3) (4) (5)# (6)#

Daily PM2.5 (µg/m3) -0.000520∗∗ -0.00486∗∗ -0.154∗∗

(0.000178) (0.00207) (0.0600)

1[Daily PM2.5 >25] -0.0197∗∗ -0.183∗∗ -5.809∗∗

(0.00632) (0.0803) (2.316)
User FE Y Y Y Y Y Y
Month by Year FE Y Y Y Y Y Y
Meteorological controls Y Y Y Y Y Y
Observations 4,667,636 4,667,636 4,667,636 4,667,636 4,667,636 4,667,636
First-stage F 40.86 33.24 40.86 33.24
Hausman test (p-value) 0.094 0.086 0.049 0.043

Panel B. IV Estimates for Alternative Specifications, Sample, and Variable Definitions
Dep. Var.: Std. Score (1) (2) (3) (4) (5) (6)
1[Daily PM2.5 >25] -0.197∗∗ -0.176∗∗ -0.211∗∗ -0.227∗∗

(0.0943) (0.0760) (0.0891) (0.110)

1[Daily PM2.5 >25] (t-1 ) 0.0567
(0.111)

1[Daily PM2.5 >25] (t+1 ) 0.00680
(0.103)

1[Daily PM2.5 >15] -0.150∗

(0.0760)

1[Daily PM2.5 >35] -0.654∗∗

(0.294)
User FE Y Y Y Y Y
User by Hour-of-day FE Y
Game FE Y
Month by Year FE Y Y Y Y Y Y
Day-of-week FE Y Y
Zip2 by Month-of-year FE Y
Meteorological controls Y Y Y Y Y Y
Sample Restriction Y Y
Observations 4,382,220 4,667,636 4,635,654 4,659,194 4,659,194 4,667,636
First-stage F 36.46 32.63 6.349 36.32 26.42 17.45

Notes: This table reports the impacts of exposure to PM2.5 on cognitive function, as measured by
standardized scores in Lumosity games – mean zero and standard deviation one. # in the last two
columns of Panel A indicates that an alternative dependent variable has been used: the percentile of
a score in the distribution of scores adjusted to match the characteristics of the U.S. population. IV
estimates arise from instrumenting daily PM2.5 with an indicator variable for whether the daily local
wind direction is at the direction associated with the maximum potential for the transport of pollutants
from other locations to a 3-digit ZIP code area where the Lumosity users are located. The first-stage
F statistic is the Kleibergen-Paap rk Wald F statistic associated with the excluded instrument in the
first stage. The null hypothesis for the Hausman test is that the difference between the OLS and
IV estimates is not systematic. Meteorological controls include wind speed, precipitation and bins of
daily maximum temperature. “Zip2” at the bottom of Panel B represents a 2-digit ZIP code region,
an aggregation of 3-digit ZIP code areas, which are the smallest geographical units identified for the
individuals in our data. The “sample restriction” also at the bottom of Panel B refers to the removal of
outlier observations for PM2.5 – those above 35µg/m3, the current 24-hour EPA standards for PM2.5.
Standard errors double-clustered at the user and month-by-year levels are reported in parentheses.
*** denotes statistical significance at the 1% level, ** at the 5% level, and * at the 10% level.

28



Online Appendix (Not For Publication)

“Air Pollution and Adult Cognition:

Evidence from Brain Training”

Andrea La Nauze and Edson Severnini∗

∗La Nauze: University of Queensland, a.lanauze@uq.edu.au. Severnini: Carnegie Mellon University and
IZA, edsons@andrew.cmu.edu.

29



Appendix A: Figures and Tables

Figure A.1: The 3-Digit ZIP Code Areas in the United States

Notes: This figure displays the 3-digit ZIP code areas in the continental United States. This is the smallest
geographical unit identified in the Lumosity brain training data, which is derived from a user’s IP address.
For reference, there are currently 41,692 5-digit ZIP codes in the country, 929 3-digit ZIP code areas, and
99 2-digit ZIP code regions. Source: https://public.tableau.com/views/ZIP3Map/ZIP3NationalMap?.
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Figure A.2: Distribution of Lumosity Users

Notes: This figure maps the distribution of users of Lumosity brain games in our sample over the period 2015-
2017. Gray indicates no users. Those individuals are scattered around the nation, with heavy concentrations
in the West coast, where Lumos Labs, the owner of Lumosity, are headquartered (San Francisco, CA).
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Figure A.3: Daily PM2.5 Variation in Our Sample

Panel A. Entire Distribution

Panel B. Variation Above 25µg/m3

Notes: This figure displays the distribution of daily PM2.5 in our sample. The levels of PM2.5 are color-
coded according to the colors used by EPA to provide air quality information to the public via the air quality
index (AQI). Panel A shows the entire distribution. The median daily PM2.5 in our sample 4.48 µg/m3,
the mean is 5.61 µg/m3, and the standard deviation 5.02 µg/m3. Panel B zooms in over the portion of the
distribution above the threshold used in our main analysis – 25µg/m3. This threshold is the World Health
Organization (WHO) air quality guideline value for 24-hour exposure to PM2.5, but still 10µg/m3 below
the U.S. National Ambient Air Quality Standards (NAAQS) for PM2.5 over 24 hours.
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Figure A.4: PM2.5 Impacts on Number and Composition of Players

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 on the number and composition
of players. The plotted coefficients are estimated in separate regressions of each outcome on an indicator for
PM2.5 > 25 and the same control variables as in Equation (4) – wind speed, precipitation and bins of daily
maximum temperature. Our measure of ability is based on the first play in the memory game. In practice,
it is the residualized score from Equation (6). The vertical bars around the coefficients are 95% confidence
intervals.
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Figure A.5: Nonlinear Impacts of PM2.5 on Cognitive Function

Notes: This figure displays the nonlinear impacts of exposure to PM2.5 relative to levels below 5µg/m3. The
plotted coefficients are separately estimated using a version of Equation (4) with each of the seven 5µg/m3-
bin indicators for PM2.5. For each estimate the sample is restricted to observations with PM2.5 < 5µg/m3

and observations with high PM2.5 as defined by the bin indicator. The last bin is for PM2.5 between
35µg/m3 and 40µg/m3. The colors of the coefficients in this figure are associated with the color code for
the AQI, as explained in A.3). Because the distribution of particulates is highly right-skewed, with the
median slightly below 5µg/m3 (see Figure A.3), in this figure the vertical bars around the coefficients are
90% confidence intervals.
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Figure A.6: PM2.5 Impacts on Cognitive Function by Age – Robustness Checks

Panel A. Controlling for Game FE Panel B. Controlling for >5 Plays Dummy

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by age, controlling for addi-
tional variables. Panel A controls for game fixed effects, and Panel B for a dummy indicating that the play
is above the fifth for that user. The vertical bars around the coefficients are 95% confidence intervals.
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Figure A.7: PM2.5 Impacts on Cognitive Function by Gender and Age

Panel A. Estimated Effects Panel B. Age Distribution and Male Shares

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by age-gender groups, and
descriptive statistics on the age-gender distribution in our sample. In Panel A, the plotted coefficients are
jointly estimated using a version of Equation (4) with interactions between the indicator of high PM2.5 and
four age-gender groups – combinations of below/above 50 years old with male/female. In Panel B, the bars
depict the number of observations in each age range, and the markers show the change in the share of an
age group that is male relative to male share of 20-25 year olds.
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Figure A.8: Learning Curves by Age

Panel A. Below vs. Above 50 Years Old

Panel B. Detailed Age Groups

Notes: This figure displays the learning curve by age. Each panel plots coefficients of regressions by age
group of standardized scores on dummies for each number of plays. Panel A splits all users into two age
groups – below vs. above 50 years old – and Panel B provides a more detailed age breakdown.
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Figure A.9: PM2.5 Impacts on Specific Cognitive Domains – Robustness Check

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by cognitive domain, controlling
for a dummy indicating that the play is above the fifth for that user. The vertical bars around the coefficients
are 95% confidence intervals.
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Figure A.10: PM2.5 Impacts on Cognitive Function by Initial Ability – Robustness Checks

Panel A. Controlling for Game FE Panel B. Controlling for >5 Plays Dummy

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by initial ability, controlling
for additional variables. Panel A controls for game fixed effects, and Panel B for a dummy indicating that
the play is above the fifth for that user. Our measure of ability is based on the first play in the memory
game. In practice, it is the residualized score from Equation (6). The vertical bars around the coefficients
are 95% confidence intervals.
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Figure A.11: PM2.5 Impacts on Cognitive Function by Education

Panel A. Estimated Effects Panel B. Education and Initial Ability

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by education, and descriptive
statistics on educational attainment and initial ability in our sample. In Panel A, the plotted coefficients
are jointly estimated using a version of Equation (4) with interactions between the indicator of high PM2.5
and three groups of educational attainment. The vertical bars around the coefficients are 95% confidence
intervals. In Panel B, the bars depict the number of observations in each education group, and the markers
show the change in average initial ability for an education group relative to the category less than college
degree. Our measure of ability is based on the first play in the memory game. In practice, it is the residualized
score from Equation (6).
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Figure A.12: PM2.5 Impacts on Specific Cognitive Function by Learning Stage – Robustness
Checks

Notes: This figure displays the impacts of exposure to PM2.5 above 25µg/m3 by experience playing Lumosity
games, controlling for game fixed effects. The vertical bars around the coefficients are 95% confidence
intervals.
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Table A.1: Lumosity Games

Name Domain Skills Levels
Word Bubbles Rising Verbal Fluency vocabulary, reading comprehension Y
Lost in Migration* Selective Attention selective attention, response inhibition N
Brain Shift Task Flexibility task switching, classification N
Memory Matrix Working Memory spatial recall, visual memory span Y
Chalkboard Challenge Math quantitative, math, arithmetic reasoning N
Speed Match# Speed information processing N
Pet Detective Problem Solving forming possible solutions, choosing the best Y

Notes: This table presents the seven Lumosity games used in our analysis. The first column lists the game
names. *Also known as the Flanker Task. #Also known as the N back task. The second column lists the
corresponding cognitive domains. The third column details the skills trained by the games. Lastly, the
fourth column reports whether there are different levels of difficulty within the same game.
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Table A.2: Summary Statistics

Variables (1)
Average Age 48.78

(16.39)

Proportion Age ≥ 50 0.542
(0.498)

Proportion of Males 0.415
(0.493)

Average Daily PM2.5 (in µg/m3) 5.850
(3.146)

Maximum Number of Plays per Game 20.32
(13.75)

Proportion With Less Than College 0.338
(0.473)

Proportion With Bachelor Degree 0.353
(0.478)

Proportion With Post-graduate Degree 0.310
(0.462)

Proportion of Paid Subscriber 0.367
(0.482)

Number of Lumosity Users 113,975

Notes: This table reports summary statistics for our main sample. Standard deviations are reported
in parentheses.
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Table A.3: PM2.5 Impacts on Cognitive Function by Age

Dep. Var.: Standardized Score (1)
1[Daily PM2.5 >25] ×

1[Age <20] -1.604∗∗∗

(0.386)
[0.001]
{7.412}

1[Age 20–29] -0.479∗∗∗

(0.142)
[0.003]
{9.646}

1[Age 30-39] -0.235
(0.179)
[0.236]
{7.898}

1[Age 40-49] -0.414∗∗

(0.153)
[0.012]
{7.964}

1[Age 50-59] 0.0373
(0.117)
[0.501]
{9.028}

1[Age 60-69] -0.0968
(0.122)
[0.445]
{9.359}

1[Age ≥70] 0.146
(0.198)
[0.445]
{10.159}

Observations 4,667,636

Notes: This table reports the impacts of exposure to PM2.5 above 25µg/m3 by age. Coefficients are
jointly estimated using a version of Equation (4) with interactions between the indicator of high PM2.5
and age groups. The estimating equation includes user fixed effects, month-by-year fixed effects, and
meteorological controls. Standard errors double-clustered at the user and month-by-year levels are
reported in parentheses (Cameron, Gelbach and Miller, 2011). *** denotes statistical significance at
the 1% level, ** at the 5% level, and * at the 10% level. Sharpened q values accounting for multiple
inference are reported in square brackets (Anderson, 2008). Conditional first-stage F statistics for
weak instruments are reported in curly braces (Sanderson and Windmeijer, 2016).
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Table A.4: PM2.5 Impacts on Specific Cognitive Domains

Dep. Var.: Standardized Score (1) (2)
1[Daily PM2.5 >25] ×

1[Verbal] -0.149
(0.163)

[1]
{8.287}

1[Attention] 0.0738
(0.137)

[1]
{7.762}

1[Flexibility] -0.0632
(0.237)

[1]
{10.291}

1[Memory] -0.598∗∗

(0.275)
[0.304]
{20.239}

1[Math] -0.211
(0.208)

[1]
{10.358}

1[Speed] -0.0859
(0.206)

[1]
{6.499}

1[Problem] Solving -0.418
(0.551)

[1]
{5.420}

1[Non-memory domains] -0.135
(0.0811)
[0.077]
{42.873}

1[Memory domain] -0.594∗∗

(0.276)
[0.077]
{26.787}

Observations 4,667,636 4,667,636

Notes: This table reports the impacts of exposure to PM2.5 above 25µg/m3 by cognitive domain.
Coefficients are jointly estimated using a version of Equation (4) with interactions between the in-
dicator of high PM2.5 and cognitive domains. The estimating equation includes user fixed effects,
month-by-year fixed effects, and meteorological controls. Standard errors double-clustered at the user
and month-by-year levels are reported in parentheses (Cameron, Gelbach and Miller, 2011). *** de-
notes statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. Sharpened q
values accounting for multiple inference are reported in square brackets (Anderson, 2008). Conditional
first-stage F statistics for weak instruments are reported in curly braces (Sanderson and Windmeijer,
2016).
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Table A.5: PM2.5 Impacts on Cognitive Function by Initial Ability

Dep. Var.: Standardized Score (1) (2)
1[Daily PM2.5 >25] ×

1[Ability Quintile 1] -0.463∗∗

(0.225)
[0.124]
{8.294}

1[Ability Quintile 2] -0.669∗∗

(0.305)
[0.124]
{8.336}

1[Ability Quintile 3] -0.181
(0.386)
[0.924]
{6.772}

1[Ability Quintile 4] -0.0760
(0.302)
[0.928]
{9.055}

1[Ability Quintile 5] 0.304
(0.448)
[0.924]
{9.220}

1[Below Median Ability] -0.466∗∗

(0.189)
[0.035]
{30.744}

1[Above Median Ability] 0.00959
(0.185)
[0.921]
{35.390}

Observations 352,849 352,849

Notes: This table reports the impacts of exposure to PM2.5 above 25µg/m3 by initial ability. Coef-
ficients are jointly estimated using a version of Equation (4) with interactions between the indicator
of high PM2.5 and quintiles of initial ability. The estimating equation includes user fixed effects,
month-by-year fixed effects, and meteorological controls. Our measure of ability is based on the first
play in the memory game. In practice, it is the residualized score from Equation (6). Standard errors
double-clustered at the user and month-by-year levels are reported in parentheses (Cameron, Gelbach
and Miller, 2011). *** denotes statistical significance at the 1% level, ** at the 5% level, and * at
the 10% level. Sharpened q values accounting for multiple inference are reported in square brackets
(Anderson, 2008). Conditional first-stage F statistics for weak instruments are reported in curly braces
(Sanderson and Windmeijer, 2016).
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Table A.6: PM2.5 Impacts on Specific Cognitive Function by Learning Stage

Dep. Var.: Standardized Score (1)
1[Daily PM2.5 >25] ×

1[ Below 5 Plays] -0.506∗∗

(0.250)
[0.05]
{24.614}

1[Above 5 Plays] -0.155
(0.115)
[0.077]
{47.494}

1[Below 5 Plays] 0
(.)
[.]

1[Above 5 Plays] 0.644∗∗∗

(0.0150)
[0.001]

Observations 2,699,936

Notes: This table reports the impacts of exposure to PM2.5 above 25µg/m3 by experience playing
Lumosity games. Coefficients are jointly estimated using a version of Equation (4) with interactions
between the indicator of high PM2.5 and two categories of number of plays – fewer or more than
five plays. The coefficient of the indicator for below 5 plays is set to zero because it is the omit-
ted category. The estimating equation includes user fixed effects, month-by-year fixed effects, and
meteorological controls. Standard errors double-clustered at the user and month-by-year levels are
reported in parentheses (Cameron, Gelbach and Miller, 2011). *** denotes statistical significance at
the 1% level, ** at the 5% level, and * at the 10% level. Sharpened q values accounting for multiple
inference are reported in square brackets (Anderson, 2008). Conditional first-stage F statistics for
weak instruments are reported in curly braces (Sanderson and Windmeijer, 2016).
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