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ABSTRACT

We leverage a natural experiment, where a large national automotive racing organization 
switched from leaded to unleaded fuel, to study how ambient lead exposure and nutrition impact 
learning in elementary school. This provides quasi-experimental evidence linking measured 
quantities of lead emissions to decreased test scores, information essential for policies addressing 
ambient lead and emission sources. We find increased levels and duration of exposure to lead 
negatively affect academic performance, shift the entire academic performance distribution, and 
negatively impact both younger and older children. Exposure to 10 additional kilograms of lead 
emissions from lead-fuel races reduces standardized test scores by 0.06 standard deviations, 
where the average race emitted more than 10 kilograms of lead— a quantity similar to the annual 
emissions of an airport or a median lead-emitting industrial facility in the United States. This 
corresponds to an average income reduction of $2,600--$4,000 per treated student in present 
value terms, an effect size similar to improving teacher value added by one-sixth of a standard 
deviation, reducing class size by 3 students, or increasing school spending per pupil by$500. The 
marginal impacts of lead are larger in impoverished, non-white counties, and among students 
with greater duration of exposure, even after controlling for the total quantity of exposure. 
Factors correlated with better nutrition — most notably consumption of calcium-rich foods like 
milk — are associated with smaller negative effects of lead exposure. These results suggest that 
improved child nutrition can help combat the negative effects of lead, addressing several 
prominent social issues including racial test gaps, human capital formation across income groups, 
and disparities in regional environmental justice.
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Education drives future income, productivity, and upward mobility. The United States

devotes a large and growing share of resources to the promotion of education through formal

schooling, with public school spending in the United States exceeding $12,000 per student in

2017, and accounting for 30% of state and 8% of national expenditures (U.S. Census Bureau,

2017). A large body of work examines the education production function, showing how a

wide range of inputs drive student achievement (Hanushek, 2020). Some inputs directly

relate to formal schooling, such as teaching quality, pedagogy, and class size (Krueger, 1999;

Chetty et al., 2011, 2014b); while others are primarily determined outside the bounds of

school, such as socioeconomic status, sleep, the environment, and nutrition (Ladd, 2012;

Frisvold, 2015; Ebenstein et al., 2016; Anderson et al., 2018; Jagnani, 2020; Park et al.,

2020; Park, 2020).

Using a unique natural experiment in changing lead exposure, we examine the e↵ect of two

important and interacting education inputs: environmental quality and nutrition. We show

that exposure to airborne lead—which causes neurological damage, increases impulsiveness,

and hinders learning—has a negative and cumulative e↵ect on student performance. We then

use our causal framework to explore a correlational finding from the public health literature

(e.g., Goyer, 1995) on nutrition and the impacts of lead exposure. We find that areas

consuming more nutritious food have a weaker link between lead exposure and educational

outcomes, and that the negative e↵ects of lead are greatest in areas with larger shares of

minority and impoverished students. Taken jointly, these results indicate that improved

child nutrition, along with environmental quality improvements, can help address several

prominent social issues, including racial test gaps, human capital formation across income

groups, and environmental justice.

Separately identifying the role of lead—or any education input—is challenging, as many

inputs are co-determined or endogenous. Education inputs also display complementarities

where changes in one a↵ect the marginal benefit of others. For example, improvements in

teacher quality and reductions in class size have di↵erential e↵ects across income groups and

race (Krueger, 1999; Chetty et al., 2014b), and socioeconomically disadvantaged students are

generally more costly to educate (Duncombe and Yinger, 2005).1 These interdependencies

provide a rationale for policies that improve life outside of the classroom, enabling the

argument that improving educational outcomes requires addressing core disparities (Ladd,

2012).

We estimate the causal e↵ect of lead on test scores by taking advantage of a natural ex-

1There are substantial gaps in educational attainment by race and income (Fryer and Levitt, 2004;
Reardon, 2018), which persist even when comparing students within the same school (Fryer and Levitt,
2006).
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periment: in 2007 the National Association for Stock Car Auto Racing (NASCAR) switched

from leaded to unleaded fuel, generating an exogenous decrease in lead exposure for areas

near racetracks.2 The sudden deleading generated a permanent drop in the annual flow of

lead emissions in areas near racetracks, reducing nearby ambient lead concentrations, chil-

dren’s lead poisoning rates, and elderly mortality (Hollingsworth and Rudik, Forthcoming),

but left lead exposure una↵ected in farther locations. After 2007, each cohort attending

schools exposed to NASCAR emissions experienced less lifetime lead exposure than the pre-

ceding cohort, allowing us to compare test scores both within and across schools as well

as between cohorts with di↵erential levels and duration of exposure to lead emissions. Our

identification uses data on the location, timing, and quantity of emissions, which allows

us to disentangle the e↵ects of lead from both persistent socioeconomic confounders (e.g.,

household income) and time-varying confounders (e.g., co-emitted pollutants).

We document several new and important facts. First, we provide quasi-experimental

evidence linking exposure to lead emissions, rather than blood lead levels, to decreased test

scores.3 Most research focuses on blood lead levels, and while blood lead is a direct measure of

current health conditions, it is net of several other factors, including any mitigating behavior

taken in response to blood lead information and selection into screening.4 Our findings are

less subject to such mitigating factors or selection, because proximity to NASCAR races was

largely an unknown source of exposure.5

This paper also directly links quantities of lead emissions to outcomes, which can better

inform policies addressing ambient lead and lead emission sources. Previous work using

detailed microdata shows that elevated blood lead in early life is strongly associated with

negative future school outcomes (Reyes, 2015; Aizer et al., 2018; Aizer and Currie, 2019;

Gazze et al., 2020). By studying an abrupt change in lead emissions, we avoid confounding

from unobservable socioeconomic factors correlated with early life blood lead that also a↵ect

student achievement.6

2Despite a Clean Air Act ban for on-road leaded fuel, both automotive racing and aviation have exemp-
tions allowing its use. Prior to the unleaded fuel switch, NASCAR was one of the largest lead emitters in
the US (Hollingsworth and Rudik, Forthcoming), providing ample power for statistical analyses.

3The economics literature has found that lead negatively impacts many outcomes including lifetime
earnings (Grönqvist et al., Forthcoming), fertility (Grossman and Slusky, 2019; Clay et al., 2014), and adult
IQ test performance (Ferrie et al., 2012). There is an extensive public health literature on lead impacts, but
these studies tend to be associational (e.g Canfield et al., 2003; Lanphear et al., 2005, 2018).

4Blood lead testing and associated regulations are typically targeted at those at the highest risk for lead
exposure. Thus, blood lead data, even when using the universe of blood lead tests, is often from a selected
population. See Gazze (2020) for more information regarding selection and screening in blood lead tests for
children.

5Our results still include any negative within-classroom spillover e↵ects from exposure (Gazze et al., 2020),
as well as mitigating behavior by parents or educators in response to observed poor academic performance,
such as hiring tutors to help struggling students.

6Identifying the causal e↵ects of lead exposure is timely, as the US EPA is currently reviewing the lead
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Second, we study exposure to airborne lead in a modern setting where average lead

exposure is low; other important work on dealeading, such as Clay et al. (2018), focuses

on the large-scale removal of lead from commercial gasoline during a time when ambient

lead levels were much higher. Our analysis is on children in Florida, which—unlike many

of the other populous U.S. states—has comparatively low lead contamination. Florida has

the lowest soil lead concentrations of any state in the contiguous U.S. (Smith et al., 2014),

and one of the lowest lead poisoning rates (U.S. Centers for Disease Control, 2019). Given

that lead exposure continues to decline, future lead policy must be informed by research on

impacts when ambient levels are low.

Third, we document new evidence on the duration, quantity, and distributional impacts of

lead exposure. The variation in our data is such that we can compare students exposed to the

same lifetime total quantity of lead, but spread across di↵erent numbers of years. Our results

indicate that exposure both in very early years and up to at least age 8 can have negative

e↵ects, and that the same quantity of exposure causes more harm when spread over a longer

timeframe; “death by a thousand cuts” may be worse than a single large exposure dose.7

We also find no evidence that the marginal e↵ects of additional lead exposure change with

total exposure, suggesting e↵ects are largely linear in our observed range. Lead exposure has

negative e↵ects on students across the entire achievement distribution, but disproportionately

a↵ects those in school districts with larger shares of Black and low-income populations.

Finally, we provide new population-level evidence that nutrition plays a role in mitigat-

ing the e↵ects of lead. While many programs designed to reduce blood lead specifically

address nutrition, this is generally bundled with other components (e.g., Billings and Schne-

pel (2018)), which complicates evaluating the role of the nutritional link. We find the link

between lead exposure and test scores is lower in areas with greater levels of per-capita

spending on calcium-rich products. We further support this result with nationwide cross-

sectional evidence of higher milk and calcium intake correlating with lower blood lead levels.

This pathway is physiologically plausible because lead a↵ects the brain by displacing cal-

cium (Büsselberg, 1995; Peraza et al., 1998), an essential micronutrient.8 Families were also

likely unaware of the presence of NASCAR-caused lead exposure, so di↵erences in nutrition

are less likely to result from interventions; while families might respond to poor academic

National Ambient Air Quality Standards and is interested in causal e↵ects on cognitive outcomes in children
(U.S. Environmental Protection Agency, 2020).

7Importantly, our findings do not indicate that later life exposure is more harmful than early life exposure,
but that additional lead exposure later in life, on top of early life exposure, causes additional harm.

8Bolstering milk consumption is a common recommendation for mitigating the e↵ects of lead exposure
(U.S. Centers for Disease Control, 1991) because evidence from experimental animal studies and associational
human studies shows that higher calcium intake is associated with less lead absorption and lower blood lead
levels for a given quantity of exposure (Six and Goyer, 1970; Ziegler et al., 1978; Maha↵ey et al., 1986).
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performance, without knowing it may be attributable to lead exposure they are unlikely to

respond with increased calcium.

We find exposure to an additional 10kg of lifetime lead emissions by the third grade —

equivalent to growing up near the average airport or a 42nd percentile lead-emitting Toxics

Release Inventory (TRI) facility — decreases standardized test scores by 0.06 standard devi-

ations.9 Removing this exposure would generate returns similar in magnitude to decreasing

class size by 3 students, having a more experienced teacher, or having a one standard devia-

tion better teacher in terms of value added (Jepsen and Rivkin, 2009; Chetty et al., 2014a).

The estimate is also of a similar magnitude to documented gender and racial gaps observed

in test scores (Fryer and Levitt, 2006, 2010).

Combining our results with estimates of how test scores a↵ect future income (Chetty

et al., 2014b), we calculate the present value of lost future income for the average 3rd grader

growing up exposed to emissions in our sample is approximately $2,600–$4,000 in 2020

dollars. For a 90th percentile exposure student in our data discounted lifetime income losses

are closer to $8,300. This suggests that the e↵ects of living near a lead-intensive emissions

source has drastic e↵ects on lifetime earnings.

While many education inputs are often e↵ectively fixed or costly to change, lead may

be simpler to target.10 Legacy lead can be mitigated by one-time expenditures such as

home remediation, and other sources of lead emissions can be reduced by the removal of

the exemptions from the Clean Air Act leaded fuel ban for o↵-road racing and aviation.11

Our findings also point to improved nutrition and increased calcium intake as possible ad-

ditional investments against some of the negative e↵ects of both known and unknown lead

exposure. Some portion of previously observed benefits of improved nutrition on test scores

(e.g., Frisvold (2015); Anderson et al. (2018); Gassman-Pines and Bellows (2018); Figlio and

Winicki (2005)) may be due in part to avoided lead absorption, which highlights the role that

simple child nutrition can play in addressing issues of health, education, and environmental

justice.

910kg of lead emissions is approximately one-third of the emissions caused by a 500 mile race, such as
the Daytona 500. Prior research suggests this amount of lead emissions within a county in a single year
increases county-level lead poisoning rates that year by approximately 1 percent (Hollingsworth and Rudik,
Forthcoming).

10For example, parental income or education is nearly impossible to change, and meaningfully decreasing
class size requires regular salary payments to newly hired teachers. Hiring more teachers may also decrease
average teaching quality, o↵setting some of the gains from smaller class size.

11Prior research has found that remediation of lead-contaminated homes improves test scores (Billings and
Schnepel, 2018; Sorensen et al., 2019).
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1 The Education Production Function, Identification,

and Complementarities

To frame our contribution and model the relationship between lead and test scores, consider

a stylized static education production function:

test scores = f(S,C,N,E, b(Pb)),

where test scores—averaged at the school-grade-year level, like our data—are a function

of vectors of socioeconomic characteristics S, school/classroom characteristics C, nutrition

variables N , environmental characteristics E, and blood lead concentrations b(Pb), which

are a function of lead exposure Pb. Pb = x + l is the sum of exposure from NASCAR x,

and from other lead sources l. We are interested in the marginal e↵ect of Pb on test scores,

holding other factors constant:

@f(S,C,N,E, b(Pb))

@b(Pb)

@b(Pb)

@Pb
= fbb

0.

In non-randomized settings, other inputs may also be a function of Pb. For example, due

to residential sorting or pollutant co-emission, changes in Pb may correlate with changes in

other inputs into f , yielding direct and indirect e↵ects of lead on test scores. The total e↵ect

of lead on test scores is:

d test scores

dPb
=fbb

0 + fC
dS

dPb
+ fS

dC

dPb
+ fN

dN

dPb
+ fE

dE

dPb
. (1)

The first term on the right hand side, fbb0, is the direct e↵ect of lead on test scores, holding

other inputs fixed. Our goal is to estimate this direct e↵ect.

The last three terms capture common potential confounders for fbb0 due to indirect e↵ects

of lead. For example, large, persistent changes in ambient lead—like those induced by

deleading standard on-road gasoline in the 1970s or the opening or closing of a TRI plant

(Currie et al., 2015)—may induce residential sorting, which will a↵ect inputs in S, altering

test scores by changing the student composition. Changes in S subsequently may a↵ect the

school tax base and alter classroom characteristics in C, such as classroom size. Changes

in lead emissions from industrial sources may also cause changes in other pollutants in E if

they are complements or substitutes in the industrial production process.12

12This is a particular concern for historical catalytic converter mandates. The devices reduce emissions of
non-lead pollutants through chemical reactions and prohibit leaded fuel since lead renders them ine↵ective.
This co-emission creates challenges in separately identifying the e↵ects of lead from co-emitted pollutants.
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Equation (1) illustrates two of our key contributions. First, research focuses largely on

the relationship between outcomes and blood lead at a point in time, fb, instead of the

relationship between outcomes and exposure to emissions fbb0. This is often due to a lack of

data or a lack of quasi-experimental variation in measurable exposure. We can measure lead

emissions using observed leaded race miles and the lead content of the fuel used. This helps

identify the e↵ect of lead exposure across distance, as well as the role of length of exposure

conditional on total exposure.

Second, regressing learning outcomes on measures of total lead exposure will confound its

impact through correlated inputs. To identify fbb0, we need to isolate independent variation

in Pb. The deleading of NASCAR satisfies this requirement. Hollingsworth and Rudik

(Forthcoming) show deleading did not change ambient concentrations of other automotive

pollutants captured by E, thus dE
dx = 0. There is no evidence that the deleading of NASCAR

fuel associates with trends in socioeconomic variables S, nutrition choices N , or school

characteristics C, indicating that dS
dx = dN

dx = dC
dx = 0. The robustness of our estimates to a

wide range of fixed e↵ects and socioeconomic controls supports this as well. This gives us:

d test scores

dx
= fbb

0,

and variation in lead exposure from NASCAR identifies the e↵ect of gasoline lead on test

scores.

The cross-partial derivatives of the production function give insight into heterogeneous

e↵ects. The nutrition and medical literature both emphasize the physiological mechanisms

behind the role of calcium in mitigating the negative e↵ects of lead exposure; lead displaces

calcium in the body and additional calcium intake limits this displacement (Ahamed and

Siddiqui, 2007). Taking the cross-partials of our production function with respect to lead

and calcium n 2 N gives:
d2 test scores

dxdn
= fbNb

0.

Nutrition science suggests that this cross partial is positive and that the corresponding in-

teraction term in a regression should be positive, reflecting that additional calcium dampens

the negative e↵ects of lead.

Finally, the cross partial derivatives show how lead matters for educational policy. Con-

sider some policy that a↵ects a variable c 2 C. The policy’s marginal e↵ect depends on lead

exposure Pb if the cross-derivative is non-zero:

d2 test scores

dxdc
= fbCb

0.
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If lead-poisoned students obtain smaller marginal benefits from better teachers or smaller

classrooms, lead mitigation is complementary and increases returns to educational invest-

ments. We leave this question for future research.

2 Data

2.1 Test scores

We obtain data on educational achievement from the Florida Department of Education. Each

year, the Florida Department of Education records school-level outcomes from the Florida

Comprehensive Assessment Test (FCAT), the standardized test used in Florida public schools

in grades 3–10. The FCAT data we use span 2003–2014.13

FCAT data report test score outcomes at the school-grade-subject-year level, averaged

across all students. We standardize school-grade-subject-year average scores within each

grade, year, and subject to be mean zero and standard deviation one. The z-score gives us

how many standard deviations a group is above the state-wide test average in that year. This

means that our treatment e↵ect estimates will be based on school-level rather than individual-

level standard deviations. Following Ost et al. (2017) we adjust our school-level estimates

to be comparable with estimates from individual-level data whenever such comparisons are

made.14

The data also report the percentage of students in each of five achievement levels. Level 5

contains the highest-achieving students, while level 1 contains the lowest-achieving students.

Achievement levels proxy for the distribution of scores within a school. We define students

in level 3 and above to be proficient, as level 3 is the threshold for “passing” the test. For

example, a level 3 score in grade 10 reading is required for graduation.

In this paper we focus on mathematics and reading tests for grades 3–5. Focusing on the

earliest grades provides the most variation in lead exposure. These grades also correspond to

elementary schools, which have smaller catchment areas than middle or high schools. Since

13After 2014 Florida changed its standardized test to the Florida Standards Assessment. Prior to 2003
FCATs were not taken in each grade.

14Ost et al. (2017) demonstrate that treatment e↵ect estimates reported in standard deviation units will
reflect the level of aggregation used in the analysis. Even when studying the same test, 1) a more aggregate
group will tend to have a smaller standard deviation than the a less aggregated one and 2) this di↵erence
must be accounted for when comparing treatment e↵ects across the studies. In Table A7, we use data from
the Florida Department of Education on a subset of data used in our paper to demonstrate that—for the
same test—a school-level standard deviation is around 37% the size of a student-level standard deviation.
Following Ost et al. (2017), we use this FCAT-specific deflator whenever we compare school-level results to
results from individual-level data. Thus includes our estimates of monetary damage since the studies linking
test scores to future income are based on individual-level data.
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we lack data on where students live, we assign lead exposure based on school location, and

smaller catchment areas reduce measurement error. Our estimates will be biased toward zero

from any remaining measurement error in exposure from this source or if students move to

di↵erent districts. We weight observations by the number of students in each school-grade-

year.

2.2 Lead, NASCAR, and the TRI

Race data come from Racing-Reference, an archive maintained by NASCAR.15 The data

detail the number of drivers, the number of laps completed by each driver, track length, and

day and time for each race. Hollingsworth and Rudik (Forthcoming) describe the leaded

fuel status of each NASCAR race and its evolution over time. Section 3 describes our main

treatment variable, which we base on our NASCAR lead measure.

Data on industrial lead emissions come from the Toxics Release Inventory, which reports

emissions from facilities that use, manufacture, or process more than 100 pounds of lead and

have 10 or more employees.

2.3 Income, demographics, and nutrition

Data on county median income come from the U.S. Census Small Area Income Poverty

Estimates, and data on county unemployment rates come from the Bureau of Labor Statistics

Local Area Unemployment Statistics. Data on the percent of individuals in a county who

are Black or Hispanic, and the percent of homes built before 1940, come from the American

Community Survey. County median household income and poverty rates come from the

U.S. Census Small Area Income Poverty Estimates. Fast food establishments per capita come

from the USDA Food Atlas. We proxy for school district average home calcium consumption

using data from Nielsen Homescan, calculating the average per-person spending in each

school district on milk, non-milk dairy products like cheese, fresh produce, canned and dried

vegetables, and vitamin supplements. As a demonstration of the link between calcium intake

and blood lead, we use information on daily food dairies and blood lead measures from the

2005-2006 wave of the National Health and Nutrition Examination Survey (NHANES).
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Figure 1: Locations of tracks, schools, and number of races at each track, time series of
lifetime inverse distance-weighted lead exposure by year, and timeline of years of life exposed
to leaded races.
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B. Time Series of Lead Exposure from NASCAR

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NASCAR Deleads After 2007 Daytona 500

Grade 3

Grade 4

Grade 5 2−10 2−10 2−10 1−10 2−10 1−10 8−9 7−8 6−7 5−6 4−5 3−4

2−9 2−9 1−9 2−9 1−9 8−9 7−8 6−7 5−6 4−5 3−4 2−3

2−8 1−8 2−8 1−8 8−8 7−8 6−7 5−6 4−5 3−4 2−3 1−2

C. Range of Total Years Exposed to NASCAR Lead By Grade and Year

Panel A: We plot schools in our dataset as blue points. The shaded red area shows all places within 50 miles
of a racetrack. The number in the center of the red circle is the location and number of leaded races that
occurred at that racetrack between the birth year of the oldest students in our sample and the final year of
our sample.
Panel B: The inverse distance-weighted lead exposure in kilograms for each grade’s cohort, averaged across
all schools within 50 miles of a racetrack. Lead exposure is estimated assuming an average race fuel e�ciency
of 3.2 race miles per gallon and 5.2 grams of tetraethyl lead per gallon.
Panel C: For each year’s cohort, the minimum and maximum years of life exposed to leaded NASCAR races,
ignoring exposure during the year of the cohort’s test, for those schools within 50 miles of a racetrack. The
left number is the minimum number of years exposed by a school cohort, the right number is the maximum
number of years. The 2007 Daytona 500 was leaded, so maximum exposure for 2008 does not drop despite
the fact that NASCAR deleaded in 2007.

3 Summary Data and Methods

We begin with an overview of the cross-sectional and longitudinal variation in our data. Our

data contain variation across space, time, age at exposure, duration of exposure, and intensity

15The data also include races from the Automobile Racing Club of America, a related organization that
deleaded at the same time as NASCAR; we refer to both as NASCAR.
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of exposure. This enables use to include a rich set of fixed e↵ects to reduce concerns of

omitted confounders. Figure 1 Panel A shows racetracks featuring leaded races, the location

of schools, and the number of leaded races at each racetrack over the lifetime of all children in

our sample. Shaded red areas depict the treatment radius around each track, with a cuto↵

of 50 miles, which we base on our own cubic spline estimates on detectable correlations

between distance from racetracks and student outcomes, and on prior work showing e↵ects

on ambient concentrations out to 50 miles (Hollingsworth and Rudik, Forthcoming). We use

schools outside these areas as controls and assign them zero lead exposure from NASCAR.

We inverse distance-weight exposure by school-racetrack distance, which follows the shape of

detectable distance e↵ects, though weighting does not a↵ect the net magnitude or significance

of our estimates. Because some schools are very close to racetracks, use of inverse distance-

weighting to calculate exposure means values for the 100th percentile of observations are an

extreme outlier, more than 10 times the 99th percentile. In our primary results, we Winsorize

the data to omit the top 1% of observations in terms of inverse distance-weighted lead

emissions. We show results are robust to alternate distance weighting metrics and inclusion

of the upper 1%. Prior to deleading, average lifetime lead exposure is approximately flat for

all grades. After deleading, exposure steadily declines to 5–8 kilograms at the end of our

sample in 2014.

Panel C shows the range of possible years exposed to leaded races for the treatment group

of schools by grade and cohort.16 For example, the 2003 grade 3 cohort was exposed to races

between 2–8 years of life, depending on their proximity to each racetrack, as some tracks

have annual races and others do not. Cohorts that took the test in 2008 or earlier, within

50 miles of a racetrack holding annual races, have the largest possible number of exposure

years.17 As races generally occur annually, the maximum exposure of each subsequent test

cohort declines by 1 as they phase out of leaded exposure years, until the end of our sample.

Note that later cohorts are receiving reduced exposure largely through fewer race-years later

in life (e.g., an 8-year old with 6 years of exposure got them from ages 0-6, with the two

most recent years free of exposure). Minimum exposure for each cohort is generally either

one less or equal to the maximum exposure. However, some school cohorts have just 1 or

2 years of exposure due to two uniquely occurring races at Walt Disney World in Orlando.

The most exposed third grade cohorts have 8 cumulative years of leaded-race exposure, and

the least exposed (treated) third grade cohorts have 1 year of leaded-race exposure.

We estimate the e↵ect of lead emissions on test scores using the following general speci-

16We ignore exposure during the year of the test to avoid capturing short-term e↵ects (Ebenstein et al.,
2016; Marcotte, 2017). Our results are robust to including this year.

17The 2007 Daytona 500 was leaded; thus the 2008 and 2007 cohorts were exposed each year of life before
the test year.
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fication:

Ysgty = f(cumulative lead exposuresgy; �lead) +Xsyt�X + ↵sgt + �tgy + "sgty. (2)

Ysgty is the school z-score, proficiency rate, or percent of students at a specific achievement

level for school s, grade g, year y, and subject t. f(cumulative lead exposuresgy; �lead) is a

function f of cumulative lead emitted from NASCAR races near the school during a student’s

lifetime. For example, for a 9-year old third grader, cumulative lead emissions are the sum

of all lead emissions within some distance d of the school in the 8 years before year y —

our main results omit exposure in year y to avoid potential confounding from the role of

contemporaneous particulate pollution from races on test outcomes (e.g., Ebenstein et al.

(2016)). We compute lead emitted using the observed miles driven during each race, the

known lead content of the fuel, and the average of two estimates of gasoline used per mile

driven in the race.18

In our simplest specifications, f sums inverse distance-weighted cumulative lead emissions

within 50 miles of each school s. A simple cubic spline regression estimate, which Figure 3

shows, support that in our framework 50 miles is the distance where statistically detectable

test score e↵ects disappear, and economic e↵ects approach zero. This means the exposure

in a given year for school s from lead-emitting racetrack r with a distance of distancesr, the

emissions treatment assigned to a school is:

cumulative lead exposuresgy =
X

r2racetracks

1 (distancesr  50)
cumulative lead emittedrgy

distancesr

where cumulative lead emittedrgy is the cumulative lead emitted at racetrack r during the

lifetime of students in grade g in year y. We use this inverse distance-weighting procedure

because we do not observe the actual level of ambient lead exposure at each school and the

inverse distance-weighting recognizes that schools closer to racetracks have exponentially

greater exposure than those farther away. We explore both linear distance weighting, which

puts comparatively less weight on nearby lead emissions than inverse distance-weighting, and

unweighted specification, which treats all distances under 50 miles equally, in our appendix.

We also test specifications where f is a flexible binned function of inverse distance-weighted

emissions, or where f is a cubic spline in distance, instead of assuming a distance-weighting

scheme.

Xsyt is our set of controls to address potential observable confounders. It includes county

18Using the estimated quantity of lead emitted rather than miles driven also helps clarify when we mean
quantities of exposure versus distances.
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median income, county unemployment rate, and cumulative TRI facility lead emissions

within 50 miles of each school over the same set of years described above. Controlling for

income and unemployment addresses potential di↵erential trends in socioeconomic status

that influence school average test scores and spuriously correlate with declining NASCAR

lead exposure for schools near racetracks. Controlling for cumulative TRI lead emissions

addresses potential di↵erential trends in industrial lead exposure for schools near racetracks

versus those farther away.19

↵sgt is a set of school-grade-subject fixed e↵ects that control for time-invariant school

characteristics, allowing for within-school di↵erences across grades and subjects. �tgy is a

set of subject-grade-year fixed e↵ects addressing common annual shocks across all schools

specific to each grade and subject, such as subject-specific test di�culty and state-level

education policy. "sgty is the error term. We cluster standard errors at the school district

level, which in Florida aligns with county borders.

Our estimates of the e↵ect of lead emissions on test scores are well-identified if—conditional

on our controls—there remain no omitted variables varying within a school, within a grade,

for a specific subject, or over time that correlate with both test scores and cumulative lead

emissions. The exogenous nature of the fuel switch circumvents many such concerns, since

deleading did not a↵ect other pollutants and is unrelated to changes in socioeconomic con-

founders for those who live nearby. In the appendix, we show our estimates are robust to a

wide range of control, specification, and fixed e↵ects choices. The stability regardless of our

sets of controls and fixed e↵ects further supports the exogeneity of our treatment measure.

4 Results

Table 1 presents estimates using our preferred specification across outcomes and subsets of

the data. Panels A and B show the e↵ect of lead emissions on school z-scores; Panels C

and D show the e↵ect on proficiency rates. Panels A and C inverse distance-weight lead

emissions, while Panels B and D leave them unweighted. Panel A contains our preferred

combination: z-scores and inverse distance-weighted emissions.

Our main estimates in column 1 correspond to equation (2) and indicate that 10 ad-

ditional inverse distance-weighted kilograms of lifetime lead emissions, 2/3rds of the mean

exposure in our data of 15 kilograms, decreases average test scores by 0.060 standard devia-

tions and the proficiency rate by 0.952 percentage points. To get a better sense of how large

19TRI facilities represent another possible source of variation in lead exposure (Currie et al., 2015), but
other economic and demographic factors that correlate with plant emissions complicate using such variation
for identification.
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10 inverse distance-weighted kilograms is, we compare it to emissions of TRI facilities: an

additional 10 inverse distance-weighted kilograms is equivalent to locating a 42nd percentile

lead-emitting facility 1 mile away from a school for the life of a 3rd-grader.

Panels B and D shows that 10 unweighted kilograms of lead decrease test scores by 0.003

standard deviations and the proficiency rate by 0.056 percentage points. The mean exposure

in unweighted terms is 390 kilograms. Thus depending on weighting, the e↵ect for the mean

treated school cohort is a z-score decrease of between 0.09–0.12 standard deviations, and a

proficiency rate decrease of between 1.4–2.2 percentage points.

Columns 2–6 show estimates when our sample consists of only a specific grade or subject.

All estimates are economically significant in size, but are 0–30% larger for math than for

reading, and tend to be larger for testing in grades 3 and 4 compared to grade 5.

Figures 2–4 display estimates of heterogeneous marginal e↵ects in terms of quantity,

proximity, and length of exposure. Figure 2 plots the estimated dose-response function in

black which allows the treatment e↵ect to vary by quantity of exposure. The figure comes

from estimating equation (2), where the function f is eleven indicator variables corresponding

to lifetime inverse distance-weighted lead exposure in 3 kilogram bins up to 30 kilograms,

and an additional bin for greater than 30 kilograms. The estimated e↵ects are relative to 0

kilograms of exposure. Increased lead emissions decrease z-scores, but detectable e↵ects level

o↵ around 20 kilograms, suggesting that the negative marginal e↵ects of lead may decrease

once lifetime exposure reaches a su�ciently high level.

In red and blue, Figure 2 also plots the results from two permutation tests: one across all

schools, and the other across treatment schools. The first should yield results close to zero,

and the second should yield a significantly attenuated dose-response curve if our identification

is valid. In red, we permute lifetime lead exposure across all schools and then re-estimate

the dose-response function 50 times. The permuted dose-response functions are all flat and

close to zero. In blue, we permute lead exposure only amongst schools within the 50 mile

treatment distance in Figure 1. This is equivalent to permuting the location of treated

schools, or randomly assigning treatment levels across treated schools, but still maintaining

the true treatment versus control status of each school. By permuting treatment intensity

only within the treatment group, this serves to test whether schools in our treatment group

and close to racetracks had upward trending test scores relative to those schools further away.

The permuted dose-response functions are slightly declining, but close to zero, indicating that

our estimated e↵ect is not spuriously driven by trends where schools very close to racetracks

happened to be on a better test score trend.

Figure 3 shows how the estimated e↵ect varies by how far away the lead source is from

the school. The panel plots result from equation (2), where the function f is a cubic spline

13



Table 1: E↵ect of lead emissions from NASCAR on school z-score and proficiency rate.

(1) (2) (3) (4) (5) (6)

Panel A: Outcome: Z-Score, Treatment: Inverse-Distance Weighted

Lifetime Lead Emissions (10 kg) �0.060⇤⇤ �0.067⇤⇤ �0.053⇤⇤ �0.067⇤⇤ �0.063⇤⇤⇤ �0.048⇤⇤

(0.024) (0.029) (0.021) (0.026) (0.022) (0.024)

Panel B: Outcome: Z-Score, Treatment: Unweighted

Lifetime Lead Emissions (10 kg) �0.003⇤⇤ �0.003⇤ �0.003⇤⇤⇤ �0.004⇤⇤ �0.003⇤⇤ �0.003⇤

(0.001) (0.002) (0.001) (0.002) (0.001) (0.001)

Panel C: Outcome: Proficiency Rate, Treatment: Inverse-Distance Weighted

Lifetime Lead Emissions (10 kg) �0.952⇤⇤ �1.110⇤⇤ �0.795⇤⇤ �1.077⇤⇤ �1.021⇤⇤ �0.722
(0.432) (0.546) (0.364) (0.443) (0.434) (0.445)

Panel D: Outcome: Proficiency Rate, Treatment: Unweighted

Lifetime Lead Emissions (10 kg) �0.056⇤⇤ �0.059 �0.053⇤⇤ �0.069⇤⇤ �0.055⇤⇤ �0.041
(0.026) (0.036) (0.022) (0.029) (0.025) (0.025)

Grades Included All All All 3 4 5
Subjects Included All Math Reading All All All
Observations 136,384 68,170 68,214 45,710 45,364 45,310

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors are clustered at the school district
level. School-subject-grade-year observations are weighted by number of students. Panels A and B con-
tain estimates where the outcome is the z-score of the school’s average test score. Z-scores are calculated
by standardizing within a grade-year-subject across all schools. Panels C and D contain estimates where
the outcome is the proficiency rate and the proficiency rate spans from 0 to 100. Panels A and C inverse
distance-weight the lead emissions, while Panels B and D leave them unweighted. The control variables
included in all regressions are cumulative TRI facility emissions within 50 miles, county unemployment
rate, and county median income. All regressions include school-grade-subject and grade-subject-year
fixed e↵ects.

in distance from the racetrack to the school. The spline shows the marginal e↵ect of 10

unweighted kilograms of lead up to 100 miles away from the school. This plot is to test

how the treatment e↵ect of emissions on test scores decays as emissions are further away,

and to investigate where the treatment e↵ect falls to zero allowing us to delineate treated

versus control schools for our other specifications. The estimated e↵ect is highest for schools

closest to racetracks, as expected; it declines with distance and levels o↵ close to zero at

around 50 miles, which drives our choice of cuto↵ for treatment versus control. Given the

average treated exposure of about 390 unweighted kilograms, schools very close to racetracks
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experienced test score reductions of over 0.4 standard deviations for the average cohort.

Our main estimates are a function of both duration of exposure (number of cumulative

years) and level of exposure (exposure in any given year). To better isolate how duration

of exposure matters, we use a specification where treatment is a set of indicator variables

corresponding to how many years of life a cohort experienced leaded race emissions, while

conditioning on the total quantity of emissions. For example, take two 3rd grade cohorts

in two districts, A and B. In district A, the cohort was exposed to 5 years of races, with 2

kg of lead in each year. In district B, the cohort was only exposed to 2 years of races, but

each year had 5 kg of lead. This model tests whether these should be considered equivalent

dangers. Appendix Figure A3 shows the distribution of quantity of lifetime exposure by

duration of exposure and provides evidence we can separately identify e↵ects of duration

from e↵ects of total lifetime quantity, given the substantial overlap in total exposure across

years of exposure.

Figure 4 plots estimates of the e↵ect of each additional year of exposure during a stu-

dent’s lifetime relative to zero years of exposure, conditional on a given lifetime quantity of

exposure.20 This plot teases out the di↵erence between being exposed to a large amount of

lead over a short period versus spread out over more consecutive years of a child’s life. Since

races happen annually in Daytona and Homestead, the two largest sources of exposure in

our data, the estimate for X years of exposure maps almost perfectly into the cumulative

e↵ect of being exposed every year until a particular age. The figure depicts an escalating

negative e↵ect of additional exposure length, holding quantity of total exposure fixed. The

e↵ects of one, five, and eight years of exposure by grade 3 are -0.03, -0.08, and -0.24 standard

deviations, respectively.

There are several possible reasons that length of exposure might matter for a given

intensity. Lead exposure may have di↵erential long-term e↵ects depending on the stage of

an child’s development, so lasting exposure could increase the probability of being a↵ected

at a given fundamental moment. For example, although early childhood is well-known to

be important for aspects of cognitive development such as control of attention (Anderson,

2002), other key stages of development occur throughout childhood. Development of working

memory — which is related to test performance and test anxiety (LeFevre et al., 2005;

Ashcraft and Krause, 2007) — is largely linear up to around age 13 (Gathercole et al.,

2004), while the abilities to process multiple sources of information and e�ciently tackle

defined tasks have a critical development stage closer to ages 7–9 (Anderson, 2002). It is

20These estimates are similar to equation (2), where treatment is a set of indicator variables for whether
a particular student cohort was exposed to 1, 2, . . . , 8 years of leaded races, and now controlling for total
exposure to separate the e↵ects of duration and levels.
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also important to recall that for the majority of exposed students in our sample, di↵erences

in duration of exposure are driven by later years of life. For example, comparing two students

with 4 vs. 8 years of exposure means one was exposed from ages 0-4, and the other from

ages 0-8.

We later show results that suggest nutrition plays a large role in reducing the impacts

of lead, which may also interact with the role of duration. If children cycle through periods

of poor nutrition, lasting exposure may increase the probability of hitting a low-nutrition

cycle. Regardless of the reason, our results support that “death by a thousand cuts” may

be more illustrative of how the lasting damages of lead accumulate.

Robustness checks: Appendix Figure A1 shows the stability of our main estimates to

combinations of controls, fixed e↵ects, and subsets of the data. Similarly, Appendix Ta-

bles A2 and A3 demonstrate the robustness of our estimates to alternative treatment vari-

ables, distance weights, observation weights, placebo tests, and sets of fixed e↵ects to control

for time-varying unobservables across school districts.

4.1 Distributional E↵ects and Heterogeneity

4.1.1 Heterogeneity in Achievement

Figure 5 depicts how lead exposure a↵ects the share of students in di↵erent parts of the

achievement distribution in order to understand which types of students are being a↵ected.

It plots the marginal e↵ect of 10 inverse distance-weighted kilograms of lead on the fraction

of students that fall in each achievement level. We find lead exposure shifts the entire

distribution of achievement, harming both high- and low-performing students. 10 kilograms

of exposure reduces the school-level share of students in achievement levels 4 and 5 by 0.5

percentage points each. The shares of the lowest two achievement levels increase by about 0.5

percentage points each. The e↵ect on the share of students in the middle achievement level is

approximately zero. This need not mean lead does not impact students in that portion of the

distribution; rather, the share of students transitioning out into the lower achievement levels

is approximately equal to the share of students transitioning in from higher achievement

levels.

Figure A4 shows how changes in the share of students at each achievement level are

a↵ected by cumulative years of exposure. Similar to Figure 5, additional years of exposure

decrease the share of students at the highest two achievement levels and increase the share

in the lowest levels. The e↵ect is approximately linear in years of exposure.
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Figure 2: Flexible e↵ect of lifetime lead emissions on test scores by quantity and random-
ization tests.
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Test Score Response Function and Permutation Test

The treatment variables are a set of indicators equal to 1 if a school’s inverse distance-weighted lead exposure
was in a particular range. Bins are open on the left and closed on the right so the first bin does not contain
zero kilograms. We assign treatment only if the school was within 50 miles of the track where the leaded
race occurred. The red points are the point estimates for 50 alternative dose response functions when lead
exposure is permuted across all schools. The blue points are the point estimates for 50 alternative dose
response functions when lead exposure is randomized only across schools within the treatment group. The
black points or lines are the point estimates and the blue shaded area is the 95% confidence interval computed
from robust standard errors clustered at the school district level. School-subject-grade-year observations are
weighted by number of students. The estimates are conditioned on the set of controls and fixed e↵ects in
equation (2).
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Figure 3: E↵ect of lifetime lead emissions on test scores by distance of emissions from school.
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Effect of Lifetime Unweighted Lead Emissions (10 kg) by Distance

The cubic spline is constructed with knots at the 33rd and 67th percentiles of the data. The treatment
variable is now unweighted lead emissions. For all panels, the black points or lines are the point estimates
and the blue shaded area is the 95% confidence interval computed from robust standard errors clustered at
the school district level. School-subject-grade-year observations are weighted by number of students. The
estimates are conditioned on the set of controls and fixed e↵ects in equation (2).
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Figure 4: E↵ect of lifetime lead emissions duration of exposure on test scores conditional on
total quantity of lifetime exposure.
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Effect of Years of Exposure Conditional on Lifetime Lead Emissions

The treatment variables are a set of indicators equal to 1 if the school cohort was exposed to positive amounts
of lead from NASCAR for the past 1, 2, 3,...,8 years. We assign treatment only if the school was within 50
miles of the track where the leaded race occurred. The estimates are conditional on the lifetime quantity of
lead exposure, the treatment variable in Panels A and C of Table 1. Appendix Figure A3 shows common
support of lifetime exposure totals by years of cumulative exposure. For all panels, the black points or
lines are the point estimates and the blue shaded area is the 95% confidence interval computed from robust
standard errors clustered at the school district level. School-subject-grade-year observations are weighted by
number of students. The estimates are conditioned on the set of controls and fixed e↵ects in equation (2).
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Figure 5: E↵ect of 10 kilograms of inverse distance-weighted lead on percent of students in
each achievement level.
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Effect of Lifetime Inverse Distance−Weighted Lead Emissions (10 kg)

The blue bars indicate the estimated e↵ect of 10 inverse distance-weighted kilograms of lead emissions on
the fraction of students in each achievement level. The black bars indicate the 95% confidence interval of
the estimates computed from robust standard errors clustered at the school district level.
Note: The outcome variable is in terms of percentage points and ranges from 0 to 100. We assign treatment
only if the school was within 50 miles of the track where the leaded race occurred. School-subject-grade-year
observations are weighted by the number of students. The estimates are conditioned on the set of controls
and fixed e↵ects in equation (2).
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4.1.2 The Protective Role of Nutrition

We next use our setting to help evaluate the open and important question of how nutrition,

and specifically calcium, impact damages from exposure to lead. The medical literature es-

tablishes a physiological basis for the idea that improved nutrition—particularly consumption

of high calcium foods like dairy products—can mitigate the health e↵ects of lead exposure.

Lead competes with and displaces calcium in the body and additional calcium intake limits

this displacement (Ahamed and Siddiqui, 2007). Appendix Figure A5 and Table A4 show

correlational support for this link. Using data from the 2005-2006 wave of the National

Health and Nutrition Examination Survey (NHANES), we show that higher daily calcium

intake and greater milk consumption are both associated with lower blood lead levels.

In Figure 6, we explore how the e↵ect of lead exposure varies depending on nutrition.

The figure plots estimates from our main specification, but we interact treatment with a

dummy variable for whether the county is above or below the median per capita spending

on calcium-rich products in the Nielsen dataset. Each bar shows the estimated e↵ects of 10

inverse distance-weighted kilograms of lead for counties below and above the median value.

In each case, we take the average value of the separating variable across all years, and assign

rank using this stationary value. We do not include the interacted variable alone in our

regression, as it is a linear combination of county fixed e↵ects. Red (left) corresponds to

counties below the median of the relevant variable, while blue (right) corresponds to above

the median.

We focus on three sets of calcium-rich products: dairy, vitamins, and produce. We find

strong negative e↵ects of lead on test scores in school districts with below median spending on

milk, and non-milk dairy products, while the school districts with above median spending

levels show no statistically significant e↵ects of lead. We find similar results for vitamin

supplements, however the di↵erences between the above and below median groups are not

statistically significant. Last, results for fresh and canned or dried produce mirror that of

dairy. In total, these results indicate that nutrition, specifically consumption of calcium-rich

foods, may play a protective role. These e↵ects are net of income di↵erences, suggesting

they are not just a result of comparing high- vs. low-income areas.

4.1.3 Other Heterogeneous and Distributional Impacts

Figure 7 plots estimates of heterogeneous e↵ects by proxies for race, age of home (related

to lead exposure from leaded paint), socioeconomic status, and penetration of fast food

establishments, another possible measure of nutrition. The interpretation of the plot is the

same as Figure 6. The first estimate shows negative e↵ects of lead exposure for counties with

21



Figure 6: Heterogeneous e↵ects of 10 inverse distance-weighted kilograms of lead by above
or below median in consumption of calcium-rich products.
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Treatment effect heterogeneity

The treatment variables are 10 inverse distance-weighted kilograms of lead interacted with dummy variables
for whether a school is in a county that is above or below the median for the variable on the x-axis. We
estimate the regressions separately for each variable on the x-axis. We assign treatment only if the school
was within 50 miles of the track where the leaded race occurred. The bars are the point estimates, and the
error bars denote the 95% confidence interval computed from robust standard errors clustered at the school
district level. School-subject-grade-year observations are weighted by number of students. The estimates
are conditioned on the set of controls and fixed e↵ects in equation (2). The p-values at the bottom of the
figure are for testing the null hypothesis that the two coe�cient estimates are equal.
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higher penetration of fast food establishments, which may indicate a greater prevalence of

low-nutrition foods.

The second set of estimates show e↵ects by district racial makeup. We find noisy zero

e↵ects for counties that are below median in terms of percent Black or Hispanic residents, and

negative e↵ects of around 0.1 standard deviations for counties above median. The estimates

are statistically distinguishable for percent Black, but not Hispanic.

The third set of estimates shows the e↵ect by percent of homes built before 1940. Homes

built before 1940 likely have lead-based paint, potentially raising the baseline level of ex-

posure for children in these homes, and putting them on a di↵erent part of the lead dose-

response curve. We find little di↵erence in the estimated e↵ects between counties with above

or below median fractions of homes built before 1940.

The last set of estimates show the e↵ect by measures of socioeconomic status (SES).

Lower SES families may have less ability to counteract the negative e↵ects of lead exposure

with remediation e↵orts or by adjusting other education inputs like tutoring. Here we find

mixed results: there is little di↵erence in terms of median income, but larger and statistically

di↵erent e↵ects in counties with higher poverty rates relative to those with lower poverty

rates. The lower tail of the income distribution may matter the most in terms of ability to

mitigate exposure.

An important consideration in interpreting these heterogeneous estimates causally is that

levels of these variables are not randomly assigned. Fast food restaurants tend to locate in

more populous areas, and we may expect those who consume more calcium-rich products

to be di↵erent on other relevant dimensions as well. Appendix Figure A7 shows pairwise

correlations of the heterogeneous e↵ects variables, along with Nielsen spending, to determine

whether one variable is likely to be picking up the e↵ect of another observable variable.

For example, percent Black is moderately correlated with poverty in Florida, and tends to

be negatively correlated with consumption of calcium-rich foods. While income presents a

potential confounder in identifying nutrition e↵ects, calcium-rich food consumption is weakly

correlated with either income or poverty.

The purchase of calcium-rich foods could be a proxy for nutrition programs, which carry

other health benefits unrelated to lead. If program take-up correlates with proximity to

race tracks, this creates a potential confounder. Appendix Table A5 directly considers the

correlation between nutrition and public programs. We add a control for the log of dollar

benefits per person paid out by the Supplemental Nutrition Assistant Program (SNAP) at

the county level.21 Ideally, we would have quasi-random variation in SNAP take-up to best

21Given the use of logs, our inclusion of year fixed e↵ects adjusts for any inflationary factors across time,
as they are common to all counties.
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Figure 7: Heterogeneous e↵ects of 10 inverse distance-weighted kilograms of lead by above
or below median in socioeconomic or nutrition variables.
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Treatment effect heterogeneity

The treatment variables are 10 inverse distance-weighted kilograms of lead interacted with dummy variables
for whether a school is in a county that is above or below the median for the variable on the x-axis. We
estimate the regressions separately for each variable on the x-axis. We assign treatment only if the school
was within 50 miles of the track where the leaded race occurred. The bars are the point estimates, and the
error bars denote the 95% confidence interval computed from robust standard errors clustered at the school
district level. School-subject-grade-year observations are weighted by number of students. The estimates
are conditioned on the set of controls and fixed e↵ects in equation (2). The p-values at the bottom of the
figure are for testing the null hypothesis that the two coe�cient estimates are equal.

identify the e↵ects. However, since data are limited to participation levels across counties, we

draw no causal conclusions from the coe�cient estimates on SNAP payouts. Columns 1 and

4 show our baseline results with and without interactions including spending on calcium-rich

foods. Columns 2 and 5 repeats 1 and 4, but restrict to county-years for which we have

SNAP data. Columns 3 and 6 repeat 2 and 5, but now directly control for log of benefits

per person. While including the SNAP data increases our standard errors and reduces our

point estimate by changing our sample, it has little e↵ect on the magnitude of our estimates

holding the sample fixed when comparing column 2 to column 3 and column 5 to column

6. Appendix Table A6 shows the correlation between milk purchases and lead is robust

to controlling for purchases of other products generally classified as unhealthy, healthy, or

calcium-rich. While some have a statistically significant correlation with our outcome of

interest, controlling for each does nothing to change our main estimates.
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5 Valuation of Test Score E↵ects

Here we present two valuations of the e↵ect of lead on academic achievement. First, we

estimate the e↵ect on future earnings by linking estimated reductions in test scores to esti-

mated changes in future income. Second, we make non-monetary comparisons to test score

improvements found from manipulating other in-school inputs to the education production

function.

Test scores and future income: We use results from Chetty et al. (2014b) to translate

changes in test scores into changes in lifetime earnings. Chetty et al. (2014b) report e↵ects

in terms of student-level standard deviations, while we report e↵ects in terms of school-level

standard deviations of the school mean score. To make a valid comparison we need to map

our school-level standard deviations to student-level standard deviations following Ost et al.

(2017).

For the average treated third grader in 2005, we find that lead exposure from racing

results in a 0.47% reduction in earnings. Using a 3% real discount rate puts the present

value of total lost future income per average student is $2,600–$4,000.22 As a point of

comparison, Isen et al. (2017) find that reduced fetal particulate exposure under the Clean

Air Act raised lifetime earnings for relevant cohorts by approximately $4,300 (discounted

similarly).

Comparison to school-based inputs: To provide additional context for our test score

e↵ects, we compare them to the value of other school-based inputs. For exposed students,

test scores are reduced by around 0.02 student-level standard deviations per 10 kilograms

of lead exposure. Removing that exposure would generate returns similar to: one-sixth

the magnitude of improving instructor value added by one standard deviation for one year—

around a 0.15 standard deviation improvement in test scores (Chetty et al., 2014a; Hanushek

and Rivkin, 2010; Bau and Das, 2020); reducing class size by 3 students—around a .03

standard deviation increase (Jepsen and Rivkin, 2009); increasing school spending per pupil

by $500—around a .02 standard deviation improvement (Jackson et al., Forthcoming); or a

quarter of the e↵ect of avoiding an instructor with no previous teaching experience—around

a .085 standard deviation reduction (Jepsen and Rivkin, 2009). Using estimates on the

average increases in test scores grade over grade, our estimated e↵ect of 10 kilograms of lead

is equivalent to 14% of the expected annual increase for the third grade, which is roughly 6

weeks of lost learning (Hill et al., 2008).

22On a per-kilogram basis, this equates to 10.53 dollars per student per kilogram of lead emitted within
50 miles. A more detailed exposition of this calculation can be found in Appendix section A.3.
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6 Discussion and Conclusion

Using a natural experiment in removal of intense leaded fuel use, we estimate the causal

e↵ects of exposure to lead emissions on student achievement. We demonstrate that expo-

sure to lead emissions has economically significant e↵ects for elementary students living near

emission sources, and show that exposure to airborne lead correlates with reduced stan-

dardized test performance across the student achievement distribution. Our results bolster

prior work suggesting that environmental quality is a key input in the education production

function. We also find that duration of exposure matters, even conditional on total lifetime

exposure. While all treated students in our sample are exposed to leaded races for the first

years of their lives, only some see exposure continue up until the year of the our observed

exam. For a given quantity of nearby lead emissions, e↵ects are larger if that quantity is

spread across a greater span of years. Importantly, our findings are for students in Florida,

a state with some of the lowest levels of lead contamination and measured blood lead in

the United States. This suggests that there remain significant returns to further reductions

in lead exposure even at lower modern levels. A basic model of interacting educational in-

puts suggests mitigating lead exposure may also increase the returns of other educational

programs.

Our findings also point to another promising avenue for dealing with lead exposure at the

population level: improved childhood nutrition and consumption of milk and other calcium-

rich foods. We find that students living in areas with greater per-person spending on calcium-

rich foods see lower e↵ects on test scores from lead exposure, even after controlling for income

and participation in public health programs. This aligns with the prior medical and public

health literature on the importance of calcium in reducing lead exposure’s harmful e↵ects,

and provides new evidence for a causal link. This result is promising but requires additional

investigation. Although we do not find any evidence that our estimates are confounded by

other factors, more sophisticated research designs exploiting quasi-experimental variation in

calcium intake—for example, through di↵erences in the nutritional content of school lunch

vendors (Anderson et al., 2018)—would bolster claims of causality. We also find that lead

exposure e↵ects are most dramatic in school districts with higher shares of Black students and

higher poverty rates. These two factors jointly indicate that childhood nutrition programs

could play a pivotal role in addressing racial and socioeconomic test score gaps and issues of

environmental justice.
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A Appendix

A.1 Summary Statistics

Table A1 displays the summary statistics for the 2,326 schools in our dataset. The data are

almost evenly balanced across grades 3–5. The average cohort of about 100 students has a

proficiency rate of 63%, with students mostly falling in achievement levels 3 and 4. Nearly

40% of students have limited success on the FCAT and fall into achievement levels 1 or 2.

School average proficiency rates span the full range from 0 to 100 percent, and z-scores span

from over 6 standard deviations below average to almost 5 standard deviations above average.

On average across both control and treated schools, cohorts are exposed to 126 unweighted

kilograms, or 5 inverse distance-weighted kilograms, of lead. The average lifetime exposure

to TRI lead emissions is over 500 metric tons, but with a substantial amount of variation.

A.2 Robustness Tests

Specification chart Figure A1 presents a specification chart and shows the robustness of

our main estimates of the e↵ect of inverse distance-weighted lead emissions on test z-scores to

di↵erent combinations of controls, fixed e↵ects, and subsets of the data. The filled in circles

in the bottom panel show which controls, fixed e↵ects, grades, and tests were included. Our

preferred specification in red produces a point estimate of -0.060, near the middle of the set

of estimates, which range from -0.05 to -0.1. Larger e↵ects are generally found for math and

grades 3 and 4, while smaller e↵ects are found for reading and grade 5.

Weighting, placebos, building up FEs Table A2 demonstrates the robustness of our

regressions to alternative choices of treatment variable, distance weighting, and observation

weighting. It also shows estimates from several placebo tests. Column 1 is our base spec-

ification corresponding to Table 1 Panel A Column 7. Column 2 is the same as column

1 but does not weight the observations by number of students. Column 3 corresponds to

our unweighted results in Table 1 Panel B Column 7, while Column 4 is identical but does

not weight the observations by number of students. Weighting by number of students has

little e↵ect on our estimates. Column 5 replaces lead emissions with just a count of the

number of leaded races, indicating that each leaded race is associated with a 0.01 standard

deviation reduction in test scores. Columns 6-8 perform three placebo tests where we assign

all races after 1997, 1998, and 1999 to be unleaded. We estimate these specifications solely

for the cohorts in our data that took tests during leaded years: 2003–2006. If our results

were simply picking up on di↵erential improvements in test scores for schools near racetracks
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that started even before deleading, then these placebos should show negative e↵ects of lead

exposure in the pre-period versus the placebo (unleaded) post-period. All three estimates

have a positive sign and are statistically indistinguishable from zero, but the placebo tests

reduce our sample size by about two thirds.

Table A3 shows how our estimates change as we build up to our main regression from just

a simple correlation. The top two panels show that our z-score outcomes are robust to adding

more granular fixed e↵ects once we control for school and year fixed e↵ects. The bottom two

panels show a similar story for the proficiency rate, however they are also sensitive to the

inclusion of subject and grade fixed e↵ects.

Controlling for Supplemental Nutrition Assistance Program Table A5 shows our

estimated e↵ects when controlling for county-level log total benefits in the Supplemental

Nutrition Assistance Program (SNAP) which likely matters for test score outcomes and may

be correlated with NASCAR lead exposure or milk consumption. The first two columns

correspond to our preferred specification in Table 1. The first column is the same as our

preferred specification but where we use the same sample for which we have SNAP data —

until 2011. This cuts our sample by over a quarter and drops the years for which the treated

group had the least amount of exposure. This attenuates our estimates, but the inclusion of

controls for the log SNAP benefits does not a↵ect our estimates.

The last two columns replicate the specification for our milk result in Figure 7. Again,

the estimates are attenuated but above median milk consumption school districts have signif-

icantly di↵erent e↵ects than below median milk consumption school districts as in the main

text, regardless of the smaller sample size and whether we control for log SNAP benefits per

person.

Other foods and products Table A6 further tests the robustness of our finding that

better nutrition and greater milk consumption mitigates the e↵ect of lead exposure on test

scores. Column 1 replicates our specification in Figure 7 in the main text. Column 2 is the

same as column 1, but using the same sample as columns 3–5 where we include additional

Nielsen variables. Column 3 includes controls for “unhealthy” products. Column 4 controls

for healthy products, other dairy sources, and vitamins — things that are likely to have

substantial quantities of calcium. Column 5 controls for both. We find that these additional

controls have virtually no e↵ect on our results.

Wind direction One potentially important margin for exposure is wind direction. Figure

A2 plots wind roses for each of the four tracks. The wind roses show the distribution of
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direction and speed of wind at each track using the nearest wind monitor, which for each

track, is in the same city. The plots indicate the direction that the wind is blowing from,

so for example, Miami-Homestead tends to have winds that blow from east to west while

Daytona has a relatively uniform distribution of wind direction. This presents challenges

for common upwind vs downwind empirical specifications. In Daytona, there is no general

upwind versus downwind direction because of the uniformity of the distribution. In Miami,

areas to the west of the racetrack are downwind while those to the left are upwind. However,

to the east of Miami-Homestead Speedway is the Southern Glades Conservation Park and

then the ocean, without any schools.

A.3 Detailed welfare calculations

Here we use associated estimates linking test scores to future earnings to construct an es-

timate of how lead exposure may a↵ect future earnings. For this exercise we estimate lost

earnings for the average 2005 treated third grader in Florida as a result of their cumulative

lifetime exposure. Conditional on being exposed to at least one leaded race within the 50

mile treatment radius, the average third grader in 2005 was exposed to 15.7 inverse distance-

weighted kilograms of lead. Column 4 of Table 1 indicates that this amount of lead exposure

decreases school-level test scores at for third graders by 0.0672 standard deviations.

We translate these e↵ects on test scores into lost lifetime earnings using results from

Chetty et al. (2014b), who report that a 1 standard deviation improvement in student-

level standardized test scores is associated with 12% higher lifetime earnings.23 Combining

this with the 0.0672 standard deviation reduction estimate, and that the ratio of school to

student-level standard deviations is .371, the average 2005 treated third grader in our sample

experienced a 0.47% decrease in lifetime earnings. Chetty et al. (2014b) also report that the

present value of expected future earnings at age 12 is $618,705 in 2020 dollars using a 3%

real discount rate (5% discount minus 2% wage growth). At grade 3 (age 9), the present

value is $566,203. A 0.47% lifetime earnings loss is $2,659.80 in 2020 dollars. When using

the unweighted leaded miles estimate in the appendix we obtain an average income loss of

$4,058.06 for an average treated exposure of 385 unweighted kilograms.

We use the unweighted leaded miles estimate to provide a back of the envelope approxi-

mation of the external cost of a gram of lead from gasoline. We put the external cost in per

student per kilogram terms so that our estimate is not a function of Florida’s population

23While this estimated relationship should not be interpreted to be causal, it represents the best estimate
we can find between standardized test scores and future earnings. The estimate is conditional on teacher
fixed e↵ects as well as student and class-level controls. Chetty et al. (2014b) also report the unconditional
relationship, which is 36%.
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distribution around racetracks. The external cost of a kilogram of lead per exposed student

within 50 miles is the income loss per student divided by the average lifetime exposure:

$4, 058.06

student

,
385 kilograms = $10.53/student/kilogram.

Being exposed to 1 kilogram of lead emitted within 50 miles by the third grade results in

a present value income loss of $10.54 dollars. Next we aggregate to the total loss to the

entire Florida 2005 third grade cohort. There were 83,975 third graders in Florida in 2005,

which amounts to a total income loss of over $340 million from NASCAR lead exposure.

Note that this is only for students in a single cohort in a single state. One limitation to our

approach is that our test score outcome is a school average, not an individual student’s. The

average treatment e↵ect at the school-grade-test level—even when deflated to approximate

student-level data—may not be the same as the average treatment for the treated student.

A.4 Lead emissions and miles traveled

Our quantity estimates are based on two unique data elements and an estimate of average

race fuel economy. First, we observe the actual distance driven by each racecar in each

race.24 Second, we observe the lead content of the race fuel.25 The fuel for every race is

provided by NASCAR and Sunoco, ruling out any potential cheating by using leaded fuel

in the unleaded period. We combine miles driven and fuel lead content with an estimate of

the average fuel economy of the racecars, derived from reported fuel usage over a full racing

season. Fryer (2008) reports that the top series in NASCAR used 175,000 gallons of fuel in

2008. Our race data show that 566,130 in-race miles were run in the 2008 season, indicating

that roughly 3.24 in-race miles awere traveled per gallon of race fuel used. This provides our

estimate of the total quantity of lead emitted per race.

Note that we find a similar estimate when considering additional information from a

single race. In-race miles per gallon have been estimated to be between four and five miles

per gallon (Belson, 2011). This does not account for out-of-race miles traveled in qualifying

and practice rounds and we want to account for fuel used for these purposes. Following

Hollingsworth and Rudik (Forthcoming), we obtain estimates of the share of miles that

24Actual distance driven may vary due to crashes or weather, so inferring distance from the maximum
potential distance driven, for example 500 miles per racer for the Daytona 500, would overstate the amount
of lead emitted and bias our estimates toward zero.

25NASCAR rules mandated the use of Sunoco Supreme, a 112 octane fuel with 5.2 grams of tetraethyl
lead per gallon. The exact fuel can be found here: https://www.sunocoracefuels.com/fuel/supreme. It
is still available to be purchased by the public as of 2020, and is continued to be used in a number of racing
series such as TransAm Racing and the National Hot Rod Association.
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come from these portions of the race using data from the 2019 Ticket Guardian 500. This

race had 10,766 race miles and 3,053 practice miles.26 Assuming that 330 miles were driven

as a part of qualifying (see Hollingsworth and Rudik (Forthcoming) for more detail on this

estimate), the 10,766 in-race miles are 76% of the total miles driven as a part of the whole

event. Accounting for these additional non-race miles would mean adjusting in-race fuel

economy estimates to be between 3 and 3.8. This is consistent with the 3.24 mpg estimate

provided from the first approach.

A.5 Supplementary figures

Quantity of exposure by duration of exposure Figure A3 shows the distribution of

quantity of lifetime exposure by duration of exposure. The densities shows total exposure

for students with specific years of exposure. For a given level of cumulative exposure, years

of exposure range widely, making for substantial overlap across densities. The dash-dotted

line indicates 10 kg of lifetime exposure, approximately the mean level for treated children

in our data. The dotted line, about 32 kilograms of lifetime exposure, corresponds to the

90th percentile of exposure for treated children. The significant amount of overlap across

densities indicates that there is variation in duration for a given intensity, and variation in

intensity for a given duration.

Achievement e↵ects by duration Figure A4 shows the e↵ect of duration of exposure

on achievement levels, e↵ectively a combination of Figure 4 and Figure 5. Greater duration

of exposure decreases the share of students in the top achievement levels and increases the

share of students in the lowest achievement levels.

Correlation between calcium intake and measured blood lead from the National

Health and Nutrition Examination Survey (NHANES) Figure A5 shows ventiles of

average daily calcium intake from food diaries reported in the NHANES data set 2005-2006

wave, along with a linear fit estimate of the relationship Higher calcium intake is strongly

associated with lower blood lead levels.

Distribution of exposure by above and below median milk consumption Fig-

ure A6 shows the support of lifetime inverse distance-weighted lead exposure for all treated

cohorts, split by above and below median milk consumption. There is significant overlap

26https://www.nascar.com/results/race_center/2019/monster-energy-nascar-cup-series/tic
ketguardian-500/stn/practice1/
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across the distributions ruling out that high versus low levels of milk consumption is simply

picking up on di↵erential exposure to lead.

Pairwise correlations for heterogeneous e↵ects Figure A7 shows the pairwise corre-

lations between the heterogeneous e↵ect variables in Figure 7 to better understand whether

one variable is simply proxying for another. For our main nutrition variable of interest, milk

consumption, we find that it is not strongly correlated with measures of income or poverty,

however it does have a strong negative correlation with the percent of the population that

is Black.
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Table A1: Summary statistics.

Statistic Mean St. Dev. Min Max N

Z-Score 0.001 1.00 �6.77 4.88 136,384
Proficiency Rate 63.20 18.01 0 100 136,384
Grade 4.00 0.82 3 5 136,384
% Achievement Level 1 17.36 12.28 0 100 136,384
% Achievement Level 2 19.47 9.24 0 80 136,384
% Achievement Level 3 31.11 8.39 0 94 136,384
% Achievement Level 4 23.82 11.03 0 94 136,384
% Achievement Level 5 8.27 7.60 0 87 136,384
Number of Students 102.46 46.53 10 448 136,384
Lifetime Unweighted Lead Emissions (10 kg) 12.67 24.31 0.00 102.72 136,384
Lifetime Inverse Distance-Weighted Lead Emissions (10 kg) 0.50 1.11 0.00 9.53 136,384
Lifetime Leaded Years 1.80 2.97 0 8 136,384
Median Income ($) 44,754.86 5,893.04 25,201 67,238 136,384
Unemployment Rate 6.36 2.78 2 14 136,384
Lifetime Industrial Lead Emissions (metric tons) 545.14 559.38 0.00 2,927.36 136,384

Note: An observation is a school-grade-subject-year.
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Table A2: Robustness checks for the e↵ect of lead emissions on school z-score.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Lifetime Inverse Distance-Weighted Lead Emissions (10 kg) �0.060⇤⇤ �0.067⇤⇤ �0.028⇤ �0.032⇤⇤

(0.024) (0.026) (0.014) (0.014)

Lifetime Linear Distance-Weighted Lead Emissions (10 kg) �0.010⇤⇤

(0.004)

Lifetime Unweighted Lead Emissions (10 kg) �0.003⇤

(0.002)

Lifetime Leaded Races �0.007⇤⇤

(0.003)

Lifetime Inverse Distance-Weighted Lead Emissions (10 kg): 1997 Placebo 0.014
(0.013)

Lifetime Inverse Distance-Weighted Lead Emissions (10 kg): 1998 Placebo 0.013
(0.011)

Lifetime Inverse Distance-Weighted Lead Emissions (10 kg): 1999 Placebo 0.013
(0.011)

Base Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
School-Subject-Grade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Subject-Grade-Year FE Yes Yes No Yes Yes Yes Yes Yes Yes Yes
District-Year FE No No Yes No No No No No No No
District-Subject-Grade-Year FE No No No Yes No No No No No No
Observation Weights # Students None # Students # Students # Students # Students # Students # Students # Students # Students
Observations 136,384 136,384 136,384 136,384 136,384 137,761 136,384 42,076 42,076 42,076

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors are clustered at the school district level. The control variables included in all regressions are cumulative TRI facility emissions within 50 miles,
county unemployment rate, and county median income. All regressions include school-grade-subject and grade-subject-year fixed e↵ects.
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Table A3: E↵ect of lead emissions from NASCAR on school z-score and proficiency rate with
di↵erent fixed e↵ects.

(1) (2) (3) (4) (5) (6) (7)

Panel A: Outcome: Z-Score, Treatment: Inverse-Distance Weighted

Lifetime Lead Emissions (10 kg) �0.023 �0.051⇤⇤ �0.050⇤⇤ �0.054⇤⇤ �0.060⇤⇤ �0.060⇤⇤ �0.060⇤⇤

(0.043) (0.023) (0.021) (0.022) (0.024) (0.024) (0.024)

Panel B: Outcome: Z-Score, Treatment: Unweighted

Lifetime Lead Emissions (10 kg) 0.000 �0.003⇤⇤ �0.003⇤⇤ �0.003⇤⇤ �0.003⇤⇤ �0.003⇤⇤ �0.003⇤⇤

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Panel C: Outcome: Proficiency Rate, Treatment: Inverse-Distance Weighted

Lifetime Lead Emissions (10 kg) �0.113 �1.752⇤⇤⇤ �1.662⇤⇤⇤ �0.749⇤ �0.883⇤⇤ �0.952⇤⇤ �0.952⇤⇤

(0.648) (0.431) (0.400) (0.389) (0.407) (0.432) (0.432)

Panel D: Outcome: Proficiency Rate, Treatment: Unweighted

Lifetime Lead Emissions (10 kg) 0.020 �0.109⇤⇤⇤ �0.096⇤⇤⇤ �0.039⇤ �0.049⇤⇤ �0.056⇤⇤ �0.056⇤⇤

(0.035) (0.030) (0.028) (0.021) (0.024) (0.026) (0.026)

Controls No No Yes Yes Yes Yes Yes
School FE No Yes Yes Yes No No No
Year FE No Yes Yes Yes Yes No No
School-Subject-Grade FE No No No No Yes Yes Yes
Subject FE No No No Yes No No No
Grade FE No No No Yes No No No
Grade-Year FE No No No No No Yes No
Subject-Grade-Year FE No No No No No No Yes
Observations 136,384 136,384 136,384 136,384 136,384 136,384 136,384

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors are clustered at the school district level. School-subject-grade-year

observations are weighted by the number of students. Outcome is the z-score of the school’s average test score. Z-scores are calculated by

standardizing within a grade-year-subject across all schools. Control variables include cumulative TRI facility emissions within 50 miles, the

county unemployment rate, and county median income.
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Table A4: Greater milk consumption is related to lower blood lead levels.

Milk consumption Mean BLL S.D. N
Never 2.00 1.84 932
Rarely 1.71 1.51 987
Sometimes 1.68 1.90 2117
Often 1.61 1.56 5735

Note: Note: Data come from the 2005-2006 wave of

the National Health and Nutrition Examination Survey

(NHANES). Milk consumption refers to past 30 day

milk consumption. The halflife of lead in the blood

stream is also approximately 30 days. We omit two

categories, Varied and Refused. Data come from 9,771

observations.

Table A5: E↵ect of lead emissions from NASCAR on school z-score controlling for SNAP
benefits.

(1) (2) (3) (4) (5) (6)

Lifetime Lead Emissions (10kg) �0.060⇤⇤ �0.033 �0.032 �0.128⇤ �0.018 �0.016
(0.024) (0.028) (0.028) (0.068) (0.059) (0.061)

Lifetime Lead Emissions ⇥ Calcium-Rich Product Sales ($1,000) 0.328 0.316 0.332
(0.258) (0.296) (0.282)

Calcium-Rich Product Sales ($1,000) 0.333 �0.120 �0.127
(0.285) (0.193) (0.198)

Controls Base Base Base + Snap Benefits Base Base Base + Snap Benefits
School-Subject-Grade FE Yes Yes Yes Yes Yes Yes
Subject-Grade-Year FE Yes Yes Yes Yes Yes Yes
Observations 136,384 119,378 119,378 125,359 109,660 109,660

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors are clustered at the school district level. School-subject-grade-year observations are weighted by the number of students.

Control variables include cumulative TRI facility emissions within 50 miles, the county unemployment rate, county median income, and log SNAP benefits.

41



Table A6: E↵ects of lead emissions from NASCAR controlling for consumption of unhealthy
products and calcium-containing products.

(1) (2) (3) (4) (5)

Lifetime Lead Emissions (10kg) �0.131⇤ �0.131⇤ �0.131⇤ �0.131⇤ �0.132⇤⇤

(0.068) (0.068) (0.067) (0.067) (0.065)

Lifetime Lead Emissions ⇥ Calcium-Rich Product Sales ($1000) 0.389 0.389 0.387 0.390 0.388
(0.308) (0.308) (0.301) (0.298) (0.292)

Calcium-Rich Product Sales ($1000) 0.190 0.190 0.213 0.188 0.187
(0.272) (0.272) (0.263) (0.264) (0.259)

Alcohol Sales ($1000) �0.304 �0.308
(0.192) (0.193)

Tobacco Sales ($1000) �0.055 �0.058
(0.153) (0.152)

Non-Diet Soda Sales ($1000) 1.425⇤ 1.376⇤

(0.730) (0.732)

Fresh Produce Sales ($1000) �0.320 �0.205
(0.776) (0.739)

Canned and Dried Vegetable Sales (Including Grains) ($1000) 0.962 0.916
(1.068) (1.049)

Grades Included All All All All All
Subjects Included All All All All All
Base Controls Yes Yes Yes Yes Yes
School-Subject-Grade FE Yes Yes Yes Yes Yes
Subject-Grade-Year FE Yes Yes Yes Yes Yes
Observations 125,359 125,359 125,359 125,359 125,359

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors are clustered at the school district level. School-subject-grade-year

observations are weighted by the number of students. The first column uses all available data, while the second column restricts the sample to be

the same data as is used in columns three through five. Z-scores are calculated by standardizing within a grade-year-subject across all schools.

Base control variables include cumulative TRI facility emissions within 50 miles, the county unemployment rate, and county median income.
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Figure A1: Sample and fixed e↵ects subsets for the e↵ect of 10 kg of lead emissions on school z-scores.
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Note: We highlight our main specification in red and mark included coe�cients with squares. All other models are in black and mark coe�cients
with circles. Top panel: The points are the point estimates from separate specifications. The bars are the 95% confidence interval computed from
robust standard errors clustered at the school district level. School-subject-grade-year observations are weighted by number of students. Estimates
are ordered by their magnitude.
Bottom panel: The filled-in circles indicate which combinations of controls and fixed e↵ects are included in the regression used to estimate the
coe�cients in the top panel. The filled-in circles also indicate the subset of grades and subjects in the data used to produce the estimates in the top
panel.
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Figure A2: Distribution of wind direction and speed at each racetrack.
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Note: The windroses show the distribution of daily average wind direction. The plots show where the wind is blowing from, not where the wind is
blowing toward. Darker colors indicate higher speed winds.
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Figure A3: Lifetime inverse distance-weighted exposure quantity by years of exposure.
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Note: Histograms are zoomed in to 0–40 inverse distance-weighted lifetime kilograms. Each density shows
the distribution of inverse distance-weighted lifetime lead exposure (vertical axis) for a cohort with a given
number of exposure years (horizontal axis). The dash-dotted line corresponds to 10kg of exposure, the
amount reflected in our inverse distance-weighted estimates of marginal e↵ects throughout the paper. The
dotted line corresponds to the 90th percentile of exposure amongst treated schools. See Section 4 for
discussion. Cumulative years of exposure align with estimates provided in Figure 4.
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Figure A4: E↵ect of 10 kilograms of lead on percent of students in each achievement level.
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Note: The treatment variables are a set of indicators equal to 1 if the school
was exposed to positive amounts of lead from NASCAR for 1, 2, 3,...,8 years.
The black points are the point estimates, and the blue shaded area is the 95%
confidence interval computed from robust standard errors clustered at the school
district level. The outcome variable is in terms of percentage points and ranges
from 0 to 100. We assign treatment only if the school was within 50 miles of the
track where the leaded race occurred. School-subject-grade-year observations are
weighted by the number of students. The estimates are conditioned on the set of
controls and fixed e↵ects in equation (2).
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Figure A5: Correlation of calcium intake and blood lead
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Note: This figure presents the non-parametric conditional expectation of blood
level across twenty ventiles of average daily calculated calcium intake. Data come
from the 2005-2006 wave of the National Health and Nutrition Examination Sur-
vey (NHANES). Mean average daily calcium intake from 7,255 observations is
920. Mean blood lead level from 7,255 observations is 1.68.
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Figure A6: Lead exposure density by above and below median milk consumption.
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Note: Distribution shows lead exposure by above and below median milk con-
sumption. Densities only include data from treated schools. “Lead exposure”
refers to estimated total lifetime exposure to inverse-distance weighted lead emis-
sions. See Section 4.1 for discussion of e↵ects by milk consumption.
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Figure A7: Pairwise correlations between each pair of variables interacted with treatment in
Figure 7.

Note: The numbers are the correlation coe�cients. Data sources are outlined in Section 2.
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Table A7: Comparison of grade 4 mean and standard deviation across student-level and
school-level data for the same test.

Year
Student
mean

School
mean

Student
S.D.

School
S.D.

S.D.
Ratio

Math
2003 298 298 63.4 24.4 0.384
2004 312 312 58.7 21.7 0.370
2005 312 312 57.8 22.2 0.385
2006 318 318 60.8 24.1 0.396
2007 319 320 59.9 23.0 0.385
2008 324 325 60.8 23.0 0.378
Average 314 314 60.2 23.1 0.383

ELA
2003 305 305 60.5 22.2 0.368
2004 318 318 51.4 18.1 0.352
2005 319 319 55.1 19.3 0.350
2006 314 314 53.5 19.2 0.359
2007 316 316 57.7 21.0 0.363
2008 319 319 56.2 20.0 0.357
Average 315 315 55.7 20.0 0.358

Notes: Student-level means and standard deviations come
from Tables FL-5 and FL-6 from this document https:
//files.eric.ed.gov/fulltext/ED506142.pdf. School-
level means and standard deviations are calculated using
the data used in our analysis. Since we do not have access
to the restricted student level data, we can only compare
the means and standard deviations for the years, tests, and
grades in this report.
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