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Abstract

This paper provides the first quantitative evidence on the causal effect of nature’s wealth on

human development. Focusing on the ocean’s exploitation for food consumption, we study

early-life exposure to exogenous shocks in the ocean’s chemical composition, i.e., unobservable

short-run changes in the wealth of species that can be locally harvested. Focusing on 36 low and

middle income countries between 1972 and 2018, we estimate impacts up to 46 years post expo-

sure analyzing information on 0.5 million adult women and 1.5 million births. Negative shocks

have a significant effect on mortality early in life, especially where resources are overexploited.

While mortality selection dominates scarring, we find long-lasting negative impacts on human

capital and economic well-being among women. Effects are driven by unobserved nutritional

deprivation during pregnancy. They operate in absence of any contemporaneous adaptation as

no behavioral change or adjustment in consumption occur. We exclude the presence of income

or price shocks using granular measures of resource exploitation, nightlight luminosity, and fish

prices. Aggregate estimates reveal that persistent negative shocks lead to considerable life loss.

(JEL I15, Q20, Q54, O10)
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For millennia, societies have exploited renewable natural resources as a source of food

and energy. However, to make this exploitation sustainable, the resource’s rate of repro-

duction needs to, at least, match that of consumption. While this condition has been dis-

cussed by economists since Malthus (1872), overexploitation has often prevailed, incen-

tivized by the rivalrous and non-excludable essence of these resources (Ostrom, 2003).

This applies to well-known issues like deforestation (Burgess et al., 2012; Jayachan-

dran, 2013), overfishing and poaching (Kremer and Morcom, 2000; Stavins, 2011), or

underground water exploitation (Hornbeck and Keskin, 2014; Blakeslee et al., 2020).

The literature highlights the determinants of these phenomena, but there remains little

understanding of their consequences for human development. To our knowledge, there

exists no evidence on the impact of a reduced endowment of these resources.

This paper provides the first quantitative evidence on the causal effect of natural re-

source’s abundance or scarcity on human development. Focusing on mortality early in

life, human capital and economic well-being, we study these relationships in the context

of the exploitation of the ocean for food consumption. This activity accounts for 1% of

global GDP, relates to long-run economic development, and remains crucial for global

food security (The World Bank, 2012; Dalgaard et al., 2020). The livelihood of more

than 3 billion people depend on the consumption of fish, which provide nutrients that

are both accessible in nature and essential for human health (United Nations, 2021).

These populations are mostly living in low and middle income countries (L&MICs),

where resources are limited, consumption is reliant on local harvest, and undernutrition

and micronutrient-related malnutrition remain the most important risk factors for illness

and death among pregnant women and children (Victora et al., 2021).

We uncover causality by exploiting early-in-life exposure to exogenous shocks in the

ocean’s chemical composition. We refer to these events as resource shocks: by altering

marine habitats heterogeneously across space and time, they shift in the short-run the

wealth of species that can be locally harvested and consumed. In particular, we focus

on water acidity, a chemical property that lowers the availability of minerals needed

by marine life to calcify bones and bleaches coral reefs (Doney et al., 2020). Recent

evidence highlights how water acidity impacts the nutritional content of species that are
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commonly consumed (Maire et al., 2021).1

By affecting the returns to exploitation, the resource shock we study shares common

features with exogenous inputs to labor or agricultural productivity, such as tempera-

ture and rainfall. However, two characteristics make it fundamentally different from

previously-studied events. First, while a wide variety of events studied in the literature

are either observable or have direct effects on health,2 water acidity is unobserved: it is

not directly observed or felt by individuals, it has no direct effect on health, and public

awareness about its changing nature is highly limited (Gelcich et al., 2014). If at all,

shocks can only be observed through the exploitation of the ocean’s resources. Second,

while most shocks to human development encompass changes in income (Adda et al.,

2009; Banerjee et al., 2010) or prices (Cogneau and Jedwab, 2012), shocks to open ac-

cess resources are unlikely to operate through market mediators in the short run, a hy-

pothesis that we test in the paper. Fisheries are resilient with respect to income thanks

to biodiversity and catch diversification, to the point that global fishing patterns show

low sensitivity to environmental variation (Kroodsma et al., 2018; Bianchi et al., 2021).

While scarcity is well reflected in markets for non-renewable natural resources, the

prices of renewable resources are primarily driven by global demand (Stavins, 2011).

Exploiting these features, we test alternative mechanisms through which renewable re-

sources’ wealth operates using unique historical and geographical coverage. We ana-

lyze half a million adult women and 1.5 million live births in 36 L&MICs across Africa,

Asia, and Latin America for the period 1972–2018. Exposure to shocks is computed by

matching each individual’s geolocation and date of birth with data on water acidity at

a high spatial and temporal resolution. While we focus on exposure early in life, when

human capital accumulation has the largest returns (Currie and Almond, 2011; Almond

et al., 2018), we also study short- and long-run effects by covering impacts up to 46

1Acidity does not necessarily reduce the quantity of available resources. A large literature highlights
how the ocean’s chemical composition impact the reproductive behavior, size, chance of survival and
spatial distribution of all marine species (Doney et al., 2020).

2The literature covers the effects of early-life exposure to atmospheric events (Heft-Neal et al., 2018;
Geruso and Spears, 2018a; Adhvaryu et al., 2020), conflict (Wagner et al., 2018), macroeconomic fluctu-
ations (Baird et al., 2011; Paxson and Schady, 2005; Bhalotra, 2010), political institutions (Kudamatsu,
2012), environmental contamination (Chay and Greenstone, 2003; Arceo et al., 2016; Isen et al., 2017;
Geruso and Spears, 2018b), and radioactive exposure (Black et al., 2019).
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years post exposure.

For identification, we exploit variation in water acidity that originates from two features.

First, the ocean’s chemical composition follows a natural cycle similar to weather sys-

tems: in a given spatial area, acidity and the availability of minerals needed by marine

life to develop vary in the short-run as random draws from the long-run distribution.

This plausibly random variation is similar to short-run variation in weather, which has

been widely used in the literature (see, e.g., Corno et al., 2020 for a recent example).

Second, the natural cycle of water acidity has been altered by climate change with ex-

ogenous and spatially-heterogeneous increases in acidity, a process known as ocean

acidification. Exploiting these two features, we define shocks as short-run deviations

in acidity levels from the spatially-specific (and seasonally-adjusted) long-run trend, an

approach that makes relatively few identifying assumptions and allows unusually strong

causative interpretation (Dell et al., 2014).

Deviations are obtained by capturing residual unobserved heterogeneity in the estimat-

ing equation using a multi-way fixed effects (FEs) model. The validity of identifying

assumptions is supported by a series of results. First, observable characteristics are bal-

anced with respect to the shock. Second, results are robust to varying the set of FEs and

control variables, and altering the selection criteria for the population of interest. Third,

following recent advances in the econometrics of multi-way FEs models (Miller et al.,

2021), we show robustness to potential threats of non-random sample selection driven

by overly-restrictive identifying assumptions. Fourth, results are robust to alternative

assumptions related to statistical inference, such as using permutation-based inference

to verify whether the results are driven by the specific pattern of shocks observed in the

data (Chung and Romano, 2013). Finally, following an alternative identification strat-

egy and focusing on extreme events leads to similar conclusions, as shown, for instance,

in a binned analysis.

Resource shocks have a significant effect on mortality early in life. This effect is specific

to negative shocks experienced in utero. A negative one standard deviation shock raises

neonatal mortality–the probability of children to die during their first month of life–by

approximately 0.5 deaths per 1,000 live births in communities living near the ocean’s
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shore. The effect gradually converges to zero by the first year of life, supporting a death

harvesting mechanism in the very first months of life–i.e., a displacement of mortality

that is hastened by experiencing worse conditions.3 In a counterfactual analysis, we

show that these short-run effects can translate into large long-run aggregate effects of

ocean acidification on neonatal mortality.

Resource shocks also have important consequences for human capital accumulation. By

looking at anthropometric measurements, we show that, among children, mortality se-

lection prevails over scarring, but we also highlight important differences depending on

sex. On average, mortality is more prevalent among the weakest as living children who

experienced negative shocks tend to have better health, especially in temporal proximity

to birth. However, among female children, we observe a prevalence of a scarring effect,

with a significant effect on stunting. This effect persists among adult women, among

whom we can detect long-run consequences of the shock on economic well-being. Neg-

ative shocks lead to significant increases in fertility, and reductions in their probability

to work and their wealth.

We highlight four main results documenting how these effects operate through unob-

served (mild) nutritional deprivation induced by natural resource scarcity. First, the

medical literature highlights that fetal growth restrictions–the main cause of neonatal

deaths–are closely associated with maternal malnutrition, and in particular with mi-

cronutrient deficiencies (Black et al., 2013). In line, we show that the largest impacts

are indeed recorded where fish is an essential nutritional source. Impacts on stunting,

potentially induced by reduced growth while in utero, further support this channel.

Second, we exclude the presence of income shocks. Following Acemoglu and Robinson

(2012), we test this channel by distinguishing between two alternative types of ocean’s

exploitation: extractive and inclusive. Extractive exploitation depletes fish resources

and biodiversity without generating economic benefits for local communities, while

inclusive exploitation redistributes the benefits among local populations in the form of

consumption and/or income. Using geographically granular measures for the intensity

3This mechanism has been observed in relation to the COVID-19 pandemic. For weather-related
shocks, evidence is mixed (Deschênes and Moretti, 2009; Heutel et al., 2017; Geruso and Spears, 2018a).
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of these activities, we show that the effect on neonatal mortality is significantly larger

in areas with a higher intensity of extractive exploitation. Because the effect is stable

along the intensity of inclusive exploitation, these results rule out a channel driven by

local income shocks. The consequences of short-run shocks are instead amplified by

resource depletion driven by overexploitation.

Measures of economic well-being confirm this finding. We observe no effect on satellite-

based nightlight luminosity, a proxy for economic productivity, growth and human de-

velopment (Henderson et al., 2012; Bruederle and Hodler, 2018). In addition, estimates

are unaffected by controlling for direct measures of (potentially-endogenous) pollu-

tion in coastal waters, which indicates the presence of human activity; conflict, which

have been shown to respond to fishing income in coastal areas (Axbard, 2016); adverse

weather events that could negatively impact income near the shore, such as typhons

(Hsiang and Jina, 2014; Gröger and Zylberberg, 2016).

Third, the absence of any behavioral change contemporaneous to the shock confirms

its unobservable nature. Parental investments on child health are unaffected, while the

effect on early-life mortality is homogeneous by wealth and education of the household.

Apart from indicating the absence of short-run impacts on household income, these

results also exclude differential access to medical care and nutrient supplementation,

two important correlates of neonatal death (Black et al., 2013). While prenatal health is

only imperfectly observed in L&MICs, no postnatal response also excludes behavioral

changes that can occur after observing child’s health. Absence of adaptation further

suggests that maternal stress, which has been found to impact child health in more

traumatic events (Berthelon et al., 2021), does not play a role.

Fourth, we provide evidence against adjustments in consumption patterns through mar-

kets. Focusing on the Philippines, one of the most fish-dependent country in the world,

we implement a highly geographically disaggregated analysis of the relationship be-

tween fish retail prices and neonatal mortality. Increases in (real) prices contribute to

mortality, but resource shocks operate independently. This result reinforces the finding

that nutrition is mildly affected in an unobservable way. In line with recent scientific

evidence (Maire et al., 2021), the most plausible explanation is a reduced amount of
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nutrients contained in harvested resources, a subtle form of scarcity. Consumption pat-

terns in a larger sample of countries at the time of the interview support this result, with

no effect on the probability to consume fish or proteins from other sources.

These results contribute to three distinct strands of literature. We provide novel evidence

on the role of natural resources for human development, further contributing to the

nascent literature on the relationship between biodiversity and poverty. While a large

literature studies the consequences of the extraction of subsoil assets, evidence on the

exploitation of renewable natural assets and biodiversity remains limited (Van der Ploeg,

2011; Dasgupta, 2021). In particular, despite its global economic relevance, the role

of the ocean remains understudied (Colt and Knapp, 2016). To our knowledge, this

paper provides the first contribution on the mechanisms linking a shock associated with

the ocean to human development, uncovering a novel channel explaining how nature’s

wealth determines human development and shedding light on mortality selection and

scarring in L&MICs.

Secondly, as variation in the ocean’s chemical composition is deeply affected by climate

change, we contribute to the understanding of how natural resources shape its short-run

effects, uncovering for the first time a channel that operates in absence of any contem-

poraneous adaptation. In response to rising temperatures and varying precipitations,

households respond with a variety of coping strategies (Barreca et al., 2016; Burke and

Emerick, 2016). In our setting, we do not observe any form of contemporaneous adap-

tation. We show instead that natural resources’s wealth are a form of insurance against

shocks independently from adaptation, to the extent that, where resources are more de-

pleted, the consequences of shocks are significantly amplified. Current estimates of the

effect of climate change might thus be under-estimating impacts on human development

by excluding the role of these processes.

Thirdly, we uncover new evidence for the roots of childhood development in more de-

prived settings. We highlight that heterogeneity in development is in part due to chance,

as parents do not compensate for unobserved shocks. Small decreases in nature’s wealth

at the time of gestation explains future differences in mortality rates, in development,

and in long-term economic outcomes. These results are particularly important in light of
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the centrality of parental investments for early childhood development (Attanasio et al.,

2020). In presence of nutritional deprivation, parental responses are in fact observed

in a wide range of events, such as during famines and fasting (Razzaque et al., 1990;

Almond and Mazumder, 2011; Majid, 2015), and in response to the supplementation of

nutrients (Adhvaryu and Nyshadham, 2016).

1 Fish dependence and exploitation in L&MICs

The exploitation of the ocean is central for the economic development of L&MICs.

Out of the 120 million workers employed worldwide in the marine capture sector, 116

million lives in L&MICs. Of these, more than 90% work in small-scale and artisanal

fisheries, whose capture is almost entirely absorbed by local consumption (The World

Bank, 2012). This has important consequences for nutrition, as fish is key thanks to its

richness in macronutrients like proteins. Across the globe, 17% of all animal protein

that is consumed is derived from fish. This contribution raises to 26% in L&MICs, with

peaks of 50% or more in countries like Bangladesh, Cambodia, the Gambia, Ghana,

Indonesia, Sierra Leone, and Sri Lanka (FAO, 2020). Fish is also crucial to tackle mi-

cronutrient deficiencies, which remain a public health concern in L&MICs (Hicks et al.,

2019). Micronutrients contained in fish are highly bioavailable, i.e., a large fraction is

absorbed by the body, and are particularly important for maternal health, and for fetal

and child development (United Nations, 2021).4 A reduced intake of nutrients derived

from fish can result in malnutrition and have long-run consequences, especially where

knowledge about appropriate food choices is limited (McGovern et al., 2017).

In L&MICs, studying the consequences of the dependence on renewable resources re-

quires considerations over the magnitude of overexploitation. In L&MICs’ coastal wa-

ters, only half of the total catch is made by small-scale and artisanal fisheries, while

the other half is predominantly characterized by extractive forms of fishing. In the

4Iron and iodine support brain development and help preventing stillbirth. Zinc and vitamin A support
childhood survival and promote growth. Calcium and vitamin D prevent preterm delivery, vitamin B12
is essential for a healthy pregnancy and for the health of the nervous system and brain in children, and
essential fatty acids help prevent preeclampsia, preterm delivery, low birth weight, and support cognitive
development in children.
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face of more stringent regulations, the demand for fish in richer countries has been

satisfied by an increase of industrial fishing in the waters of L&MICs, also taking ad-

vantage of a worse natural resource governance. Marine capture fishery production in

richer countries is about half its 1980s level, while in L&MICs has increased steadily

since the 1950s (Ye and Gutierrez, 2017). This practice is largely responsible for the

greater biodiversity declines in these areas, but with limited economic benefits for local

communities as a positive trade balance for seafood correlates with undernourishment

(Golden et al., 2016; Sala et al., 2021).5

2 Data

We collate a wide variety of data sources that we describe in this section. Appendix A.1

provides further details of the variables used and data sources.

Mortality, human capital and adaptative behavior. We collate and homogenize 95

household surveys from 36 countries collected by the Demographic and Health Sur-

veys (DHS) Program in the period 1990–2018. Individual surveys provide nationally

representative data on health and population in L&MICs, with a particular focus on

maternal and child health, and have been widely used to build mortality rates among

children thanks to its detailed and accurate birth histories. The dataset is supplemented

with indicators of child development and nutrition, such as height and weight. The pro-

gram surveys women aged 15–49 and includes information about their demographics,

including wealth and human capital accumulation. Each surveyed woman’s birth his-

tory is recorded and includes information on the children’s year and month of birth, sex,

birth order, whether they are twins, and the date of death when it applies.6

The primary sampling unit is a cluster, which represents the community (a village or a

neighborhood). Our dataset includes all available surveys with coordinates at the cluster

level and only considers countries with direct access to the ocean, thus excluding land-

5For anecdotal evidence, see, e.g., The Guardian’s UK steps in to help West Africa in fight to overturn
EU fishing abuses (18/03/2012).

6While stillbirths are not recorded, we assume measurement error is minimal because the death of a
child is a tragic event. Appendix B.4 shows evidence against recall bias.
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locked countries and those that only have access to a sea. Appendix A.1 provides the

full list of countries and surveys included in the study. We use all available surveys and

re-weight observations to correct for oversampling of countries with multiple surveys.

Geolocation of communities allows for restricting the sample to households living in

coastal areas; by definition, these are the ones with the highest dependence on the ocean.

Following the United Nations (2003), a coastal area is defined as the buffer extending

landward from the ocean’s shore up to a distance of 100 km. Distances from shore

are computed as the minimum straight distance from the community to the shoreline

of continental landmasses and ocean islands (see Appendix A.2 for details about the

procedure). Panel A in Figure 1 shows the geographical coverage of the study area, and

Table 1 presents descriptive statistics for the sample. While individual characteristics

tend to be comparable in magnitude between communities in the coastal and inland

areas, households in proximity with the ocean are slightly richer and present lower

mortality rates (Appendix Table A4). Appendices B.1, B.3 and B.5 discuss potential

issues associated with the definition of coastal area.

Ocean’s chemical composition. We focus on the degree of water acidity at the surface

measured by pH, i.e., a logarithmic scale indicating at lower values the acidity of an

aqueous solution. For seawater, pH typically ranges between 7.5 and 8.4. Chemical

features of the ocean in open waters are obtained from the Hadley Global Environment

Model 2 - Earth System provided by the European Space Agency (ESA) Pathfinders-

OA project (Sabia et al., 2015).7 Data are provided as monthly global raster data at the

1°×1° resolution for the period 1972–2018. We match this information with DHS data

using a proximity criteria: each community is matched with a data point in the ocean

using the shortest straight-line distance between geo-coordinates.

We supplement information about water acidity with other climatic variables. First, we

gather information about another vital input to marine life by building concentrations of

dissolved oxygen at the surface using the HadGEM2-ES model and adopting the same

7The produced series from the model match available information from observational data (Totterdell,
2019). Any measurement error is uncorrelated with unobservable determinants of local development
because the model is exclusively determined on climatology. For the use of re-analysis climatology
datasets in economics, refer to Dell et al. (2014).
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Table 1: Descriptive statistics
Mean Std. dev. Percentiles N

1st Median 99th

(1) (2) (3) (4) (5) (6)

A. Children
Child is alive 0.92 0.27 0.00 1.00 1.00 1,587,285
Child is female 0.48 0.50 0.00 0.00 1.00 1,587,285
Birth order 2.54 1.81 1.00 2.00 9.00 1,587,285
Number of twins born with the child 0.03 0.23 0.00 0.00 2.00 1,587,285
Years since birth 12.28 7.87 0.25 11.50 30.25 1,587,285
Mother’s age at birth 24.43 5.77 14.25 23.58 40.00 1,587,285
Ocean’s pH (in utero) 8.05 0.03 7.99 8.05 8.13 1,587,285

B. Adult women
Age at first delivery 20.57 3.91 13.17 20.08 31.83 303,786
Current age 26.89 7.59 15.17 26.08 42.67 500,685
Years of schooling 7.66 4.69 0.00 8.00 17.00 435,839
Ocean’s pH (in utero) 8.07 0.03 8.02 8.07 8.14 499,140
Primary education or less 0.35 0.48 0.00 0.00 1.00 500,661
Married 0.62 0.49 0.00 1.00 1.00 500,684
No children 0.38 0.48 0.00 0.00 1.00 500,685
Working 0.50 0.50 0.00 0.00 1.00 418,712
Household head is female 0.22 0.41 0.00 0.00 1.00 500,685
Household head’s age 45.31 13.72 21.00 44.00 80.00 500,246
Household members 5.69 3.05 2.00 5.00 17.00 500,685
Household wealth 3.73 1.26 1.00 4.00 5.00 471,824
Living in urban area 0.53 0.50 0.00 1.00 1.00 500,685
Distance from shore 31.56 30.44 0.16 20.11 97.42 500,685
Distance from another water body 48.40 104.68 0.18 18.73 582.04 500,685
Altitude 187.77 407.29 1.00 37.00 2,234.00 500,685
Temperature (° C) 26.28 3.04 15.79 27.15 31.22 500,685
Precipitations (mm) 1,562.45 649.53 113.10 1,546.41 3,095.58 500,685
Intensity of extractive exploitation 0.07 0.21 0.00 0.00 0.86 500,685
Intensity of inclusive exploitation 0.08 0.18 0.00 0.02 0.53 500,685

C. Mortality rates
Neonatal 27.51 163.55 0.00 0.00 1,000.00 1,583,731
Postneonatal 23.67 152.02 0.00 0.00 1,000.00 1,470,093
Child 21.69 145.68 0.00 0.00 1,000.00 1,141,371
Infant 50.66 219.30 0.00 0.00 1,000.00 1,516,640
Under-five 74.22 262.12 0.00 0.00 1,000.00 1,217,000

Note. The sample is restricted to coastal areas (see Section 2). Variables for antenatal and delivery care are restricted to the last birth
for cross-survey comparability. Early-childhood mortality rates indicators are defined in Appendix A.1. Appendix A.2 provides
further information about the computation of distances. Years since birth is measured at the time of the interview and is independent
from the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero) is the average pH in the ocean’s
cell closest to an individual’s community during the 9 months before birth; it refers to the date of birth of the child in Panel A
and to the date of birth of the woman in Panel B. Altitude, temperature, precipitations, intensity of extractive exploitation, and
intensity of inclusive exploitation refer to the community where the adult woman live. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.

resolution used for water acidity.8 Second, we supplement data with a direct measure

of ocean warming and other meteorological characteristics from the ERA5 database,

and time-varying average rainfall and temperature at community-level from the PRIO-

GRID database. Finally, we compute chlorophyll concentration in coastal waters, a

8This chemical feature has also been impacted by climate change as increased water temperature
reduces oxygen content. Global sea surface temperature (SST) increased by 0.7 °C since the end of the
19th century, and is predicted to rise an additional 3.1 °C by 2100 (Keeling et al., 2010).
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Figure 1: Coastal area and resource shocks
A. Study area and selected communities

B. Global average of resource shocks
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Note. Geographical distribution of selected communities in coastal areas (Panel A), and evolution over time the average devi-
ation in acidity levels from spatially-specific (and seasonally-adjusted) long-run trends (Panel B). In Panel A, the shaded area
represents all countries surveyed by the DHS with access to the ocean (the full list is reported in Appendix A.1). Communities in
coastal area are villages and neighborhoods within 100 km from the ocean’s shore. Appendix A.2 details the procedure followed
to compute distance from shore. In Panel B, variation is restricted to cells matched to the sample using the nearest cell in the
open waters. The solid red line shows the quadratic trend over the period.

proxy for water contamination based on satellite data obtained from the GlobColour

project. Appendix B.7 provides descriptive statistics for these variables.

Ocean’s exploitation. We supplement information with geographically-granular data

about natural resource exploitation. The aim is to distinguish between coastal areas that

have been characterized by a varying degree of extractive versus intensive exploitation.

Extractive exploitation harvests marine resources with a high depletion of resources,

including a large cost in terms of biodiversity, and with limited economic benefits for

local communities. For L&MICs, industrial fishing is widely recognized as a form

of extractive exploitation (Section 1). We measure it using the Global Fishing Watch
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dataset, which provides data on the hours industrial fishing vessels spend at specific

geo-locations. Because data are available only for the period 2012–2016, we build a

global grid at the 1°×1° resolution summing fishing hours within each cell over the

available period. It is unlikely that this type of variation captures short-run responses

to changes in the ocean’s health because global fishing patterns have low sensitivity to

economic and environmental variation and are stable over time (Kroodsma et al., 2018),

and dependency on fish for nutrition is also highly stable over time (Appendix B.2). We

thus rely on time-invariant heterogeneity not only due to the availability of data only for

more recent years, but also to capture longer-run patterns.

Inclusive exploitation harvests marine resources by generating income for local popu-

lations. We measure this activity using the Automatic Boat Identification System for

VIIRS Low Light Imaging Data (Elvidge et al., 2015). This algorithm detects boat

presence using nightlight measured from satellite imaging and provides the time and

geolocation of each detection. Because it focuses on boats that use lights to attract

fish, which are expected to operate on a small scale and on a local basis, it indicates

dependency of the local economy on fishing. Similar to the measure of extractive ex-

ploitation, we build a global grid at the 1°×1° resolution with the sum of all detected

boats for the period in which data are available (2017–2019). We normalize intensity

from both activities to be between 0 (no presence) and 1 (high intensity). Appendix

Figure B11 shows an example of the geographical distribution.

Economic well-being. We proxy well-being with the average nighttime light emission

from the calibrated DMSP-OLS Nighttime Lights Time Series 4. Yearly data are avail-

able for the period 1992–2012. We normalize luminosity by population in the grid cell

using the PRIO-GRID database., performing the analysis using nightlight luminosity

per 100,000 inhabitants in a gridded dataset at the 0.5°×0.5° resolution, selecting only

grid cells where at least one observation used in the main analysis is present.

Prices. We cannot rely on fish prices at the geographical and temporal scale of our

analysis because data are generally scarce. We restrict our analysis to the Philippines,

for which we gather monthly retail fish prices at the province level for the period 1990–

2018 from the Philipppine Statistics Authority. Prices are spatially heterogeneous and
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their pattern over time is in line with the global trend (Appendix Figure B12).

3 Empirical strategy

Focusing on water’s acidity allows exploiting two features for identification. First,

because acidity is affected by winds, temperature, sea ice, precipitation, runoff, and

ocean circulation, natural variation presents a short-term component that is randomly

drawn from the long-run distribution, a standard feature of weather systems (Feely et al.,

2008). Summary statistics for matched raster points confirms this property as variation

around a global trend with within-year seasonality is common to other weather vari-

ables, such as air temperature and rainfall (Appendix B.7). The peak in average pH is

reached in January (8.10) and the minimum is around September (8.09), with a median

within-year variation of 0.01 units of pH. Variation in pH originates from both the time

and geographic dimensions with comparable contributions of its between and within

components (Appendix B.6).

Second, local variation has been altered by climate change. The ocean’s absorption of

anthropogenic CO2 has led to an increase in the global average of water acidity by 26%

since the Industrial Revolution (Doney et al., 2020). Overall, in the sample of children,

average in-utero exposure to pH is equal to 8.05 (Table 1), and decreased from 8.08 to

8.02 in the considered time frame. Because acidification is determined at a global scale,

but with spatially-heterogeneous effects, it introduces further exogenous variation in the

local trend and seasonality of pH: some regions exhibit steeper trends than others, in

addition to amplified or compressed within-year variation.

We denote as Rvc,mt the open water’s acidity of the ocean in the nearest point from the

community v of macro-region c measured at time m, t (where m indicates the month

and t the year). Acidity is reported in pH and multiplied by 100 to relate coefficients

to an increase of 0.01 units in pH (roughly one third of a standard variation in the

sample). Individual exposure to water acidity early in life is then computed by matching

individual information about children and adult women with Rvc,mt using their date
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and location of birth.9 When exposure is computed over multiple months, we average

acidity over the period. For instance, when we refer to exposure in utero, we average

Rvc,mt during the 9 months preceding the date of birth.

For identification, we follow a standard approach in the literature on the effects of

weather shocks (see, e.g., Dell et al., 2014), and define a resource shock as the short-run

deviation in water acidity levels from the spatially-specific long run trend (corrected for

seasonality) at the location of birth. This approach relies on the inclusion of a set of FEs,

Ωvc,mt, in the estimating equation. First, to remove spatially-specific seasonality in both

the ocean’s chemical composition and in outcome variables, we include macro-region

by birth month FEs, µc,m. Second, to remove spatially-specific trends, we include com-

munity FEs, θvc, which capture fixed (observed or unobserved) spatial characteristics,

and macro-region by birth year FEs, φc,t, which captures unobserved variation in trends

among areas affected by faster or slower rates of acidification. Finally, time FEs, ηmt,

remove unobserved characteristics of the date of birth by controlling for year by month

of birth indicators. Panel B in Figure 1 shows the evolution of the average shock in the

sample over time.

In our benchmark specification, the set of FEs is defined by Ωvc,mt = ηmt + θvc +

φc,t + µc,m. Because unobservable characteristics of mothers could threaten identifi-

cation in the benchmark specification, in what we label as within-sibling specification,

we replace community FEs with mother-specific FEs, τk. This strategy restricts the

analysis to siblings and allows controlling for mothers and households’ time-invariant

characteristics.

For children’s and adult women’s outcomes, the causal effect of a resource shock (β) is

therefore estimated in deviations using the following specification:

yikvc,mt = β Rvc,mt + Xikvc,mtγ + Ωvc,mt + εikvc,mt (1)

where yikvym is the outcome of interest for individual i born from mother k in month m

of year t in community v of macro-region c, Xikvc,mt is a vector of control variables, and
9We assume that the location of surveying correspond to the location of birth. We do not highlight

potential issues associated with selective migration (Appendix B.5).
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εikvc,mt are idiosyncratic errors assumed to be clustered at the ocean raster data point.

For child-level regressions, demographic controls include the child’s gender and birth

order, the number of twins born with the child, mother’s age at birth (including a square

term), mother’s age at the time of the interview (including a square term), mother’s years

of education, the household head’s gender and age, and household size. For adult-level

regressions, these controls are limited to mother and household head’s characteristics.

Weather controls include the community’s average temperature and rainfall (and their

interaction) in the year of birth (both measured inland), and dissolved O2 concentration

in the same location and temporal granularity of the resource shock.10

We support the validity of the identifying assumption with a variety of tests. First, we

check the exogeneity of the resource shock to observed heterogeneity by estimating

equation (1) without controls and with mothers and communities’ observable charac-

teristics as dependent variables. Balance on observables is confirmed as characteristics

are not statistically different in areas with different shocks (Appendix B.1).

Second, we present estimates using alternative identifying assumptions, varying the set

of FEs in equation (1), thus altering the definition of a shock. We control for alter-

native sets of control variables, including the exclusion of Xikvc,mt from equation (1),

and for different time FEs, including year and month indicators separately. Further, we

consider different geographical areas to remove seasonality and trend, varying the def-

inition of macro-regions. We consider administrative indicators, such as the country or

the district of the community, which is a standard approach in the literature, and global

grids at different resolutions, which dissuade concerns about the potential endogeneity

of administrative bounds. In the latter, the macro-region is defined by the grid cell that

contains the community v. To guarantee sufficient variation in ocean acidity, we use as

main reference a global grid with a latitude-longitude resolution of 5°×5° per grid cell.

Third, the identifying assumptions in equation (1) can lead to non-random selection

when, within the groups defined by FEs, the variance of the resource shock is limited.

In our setting, this can occur from the loss of groups with only one observation and can

10To control for O2 concentration, we include the residual variation that is unexplained by pH be-
cause of its highly correlation with pH. This control is computed as the residual of a linear regression of
dissolved O2 concentration on pH. Appendix B.7 provides further details for this procedure.
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lead estimates to differ from the population-wise average effect if impacts are heteroge-

neous (Cameron et al., 2011; Miller et al., 2021). For example, the within-sibling iden-

tifying assumptions require restricting the sample to mothers having at least two live

births, who are generally older, have fewer years of education, had a younger age dur-

ing first birth, and live in poorer households and communities (Appendix B.6). Threats

from this form of selection are limited by the resource shock being not only continuous,

but also presenting a high degree of variation as the within-community variance in the

identifying sample used by the benchmark specification is always positive. Neverthe-

less, in all results tables, we report the number of observations used in the estimation

(identifying observations), and the number of observations that are dropped due to the

identifying restrictions (singleton observations). In addition, to correct for this poten-

tial threat, Appendix B.6 provides estimates using the Miller et al. (2021) re-weighting

procedure and, following Alesina et al. (2021), estimating the benchmark specification

using the identifying sample of the within-sibling specification.

Finally, we present results using alternative assumptions related to statistical inference.

We show robustness not only to alternative assumptions about standard errors (Ap-

pendix B.8), but we also implement permutation-based inference by artificially varying

the resource shock. Section 4 details the procedure.

When analyzing outcome variables in a (balanced) panel form, such as the case of night-

light luminosity, we follow a similar approach achieving identification from deviations

from spatially-specific long-run trends. We estimate the following specification:

nlightic,t = β Ri,t + Xic,tγ + δi + ηc,t + εic,t (2)

where nlighti,ct is nightlight luminosity in the grid cell i of macro-region c at time t,

Ric,t is the (average) open water’s acidity of the ocean at year t in the nearest point

from the grid cell i, Xic,t is a vector of time-varying controls, δi are cell-specific time-

invariant unobservable characteristics, and ηc,t capture local trends. εic,t are idiosyn-

cratic errors assumed to be clustered at the grid cell.
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4 Results

4.1 Mortality and human capital accumulation

Mortality. We begin by focusing on the effect of a resource shock on mortality in

temporal proximity with birth. To isolate a channel operating through maternal health,

we begin by studying exposure to shocks while in utero. Table 2 presents estimates

of the effect on the Neonatal Mortality Rate (NMR)–the number of deaths in the first

month of life per 1,000 live births. Panel A uses the benchmark specification, while

Panel B uses the within-sibling specification. All specifications include community

FEs, birth year by birth month FEs, and to control for local trends include country by

birth year FEs. Columns (1)–(3) remove seasonality at the country level, while columns

(3)–(6) remove seasonality at the grid cell level. Columns (1) and (4) do not include

any control variables, columns (2) and (5) add weather controls, while columns (3) and

(6) further add demographic controls.

Resource shocks experienced in utero have a substantial impact. A 0.01 decrease sig-

nificantly increases NMR by 1.42–2.12 deaths per 1,000 live births in our benchmark

specification. In terms of standardized effects, a one-standard-deviation negative shock

leads to an increase in NMR by 0.53–0.60 deaths per 1,000 live births (Appendix Ta-

ble B7). Point estimates are larger in magnitude when local seasonality is captured at

grid cell level. Adding control variables has a limited effect on the estimates of the

effect, providing further evidence in support of the exogeneity of the shock. Significant

effects are also found when varying the definition of coastal area.11 In Section 5, we

discuss how these short-run effects translate into long-run aggregate effects of ocean

acidification.

Impacts are driven by the specific pattern of resource shocks observed in the data. Sta-

tistical inference is robust to permutation-based inference, which artificially varies the

exposure in both space and time to the shock. We focus on the specification in column

(3) of Table 2 and implement three different tests producing 1,000 iterations each. In

11The most affected communities live within 40 km from the shore. Restricting coastal areas to alti-
tudes below 100 meters or excluding estuaries have limited effect on estimates (Appendix B.3).
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Table 2: The effect on neonatal mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

A. Benchmark specification
Resource shock -1.417 -1.419 -1.491 -2.117 -2.094 -2.083

(0.691) (0.683) (0.664) (0.754) (0.761) (0.738)
[0.041] [0.038] [0.025] [0.005] [0.006] [0.005]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

B. Within-sibling specification
Resource shock -2.065 -2.126 -2.232 -2.459 -2.502 -2.612

(0.874) (0.855) (0.838) (0.953) (0.951) (0.935)
[0.019] [0.013] [0.008] [0.010] [0.009] [0.005]

Mean (dep.var.) 31.476 31.476 31.476 31.476 31.476 31.476

Identifying observations 1,474,945 1,474,945 1,474,945 1,474,941 1,474,941 1,474,941
Singleton observations 108,786 108,786 108,786 108,790 108,790 108,790
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs. Sseasonality is captured by either
country by birth month FEs or 5°×5° cell by birth month FEs. The full list of controls is presented in Section 3. Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.

a first test, birth dates are randomly reassigned within each community. In a second

test, birth dates are randomly reassigned within each country, independently from the

community and the survey. In a third test, mothers (and their children) are randomly

allocated to different communities, independently from the country and the survey. Fig-

ure 2 plots the distribution of marginal effects in the permutation samples. For all tests,

the 1st percentile of the distribution in the permutation samples lies to the right of our

estimate, therefore rejecting the null hypothesis of a nil effect.
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Figure 2: The effect on neonatal mortality: permutation-based inference
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Note. Distribution of marginal effects of the resource shock on NMR when birth dates are randomly reassigned within each
community (Panel A), when birth dates are randomly reassigned within each country (Panel B), and when mothers are randomly
allocated to different communities (Panel C). Each test is based on 1,000 iterations. In each iteration, the resource shock is
the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before
birth. The light-shaded and dark-shaded areas highlight the 1st–5th percentiles and the area beyond the 5th percentile of the
distributions. The vertical lines indicate the estimate in column (3) of Table 2. In each iteration, marginal effects are estimated
using equation (1) including community FEs, birth year by birth month FEs, country by birth year FEs, country by birth month
FEs, and control variables (see Section 3). The sample is restricted to the coastal area (see Section 2). Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

Results are robust to a wide variety of specification checks. First, estimates using the

within-sibling specification are not highly dissimilar to the benchmark specification

(Panel B of Table 2), suggesting that family-specific unobserved heterogeneity is not

diving identification. A one-standard-deviation shock leads to 0.53-0.67 deaths per

1,000 live births. Even though the share of singleton observations increases to roughly

7% in this specification, selection into identification does not drive these results. Es-

timating the effect using the reweighting procedure proposed by Miller et al. (2021)

and the benchmark specification restricting the sample to the identifying sample of the

within-sibling specification as in Alesina et al. (2021) highlight similar estimates and

conclusions. Second, Figure 3 shows how these estimates vary using alternative speci-

fications. While we expect some degree of variation in the estimates, because changing

the set of FEs alters our identifying assumptions and our measure of shock, we highlight

a high stability of the estimates. At standard confidence levels, estimates are always

negative and significantly different from zero.12

12Results are also robust to including interactions between the birth year and the birth month of the
child with the time-invariant average across the study period of the following variables: intensity of
extractive and inclusive exploitation; the gross cell product, the population living in the cell, and the
average nightlight luminosity. Results available upon request.
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Figure 3: The effect on neonatal mortality – alternative specifications
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Note. Marginal effect of the resource shock under alternative sets of FEs in the benchmark specification (Panel A), and in the
within-sibling specification (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. Marginal effects are estimated using equation
(1) with the set of FEs and controls reported in the bottom panel. Main specifications are the ones used in Table 2. The sample
is restricted to coastal areas (see Section 2). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures. Main controls are the weather and demographic
controls (see Section 3). Interactions are interaction terms between the birth month and indicator variables for different oceans.

While we began by focusing on exposure to resource shocks while in utero, we are

interested in understanding whether exposure of shocks in periods in proximity to ges-

tation can also explain mortality. We estimate equation (1) by adding exposure one

month before conception (10 months before birth), the month of birth, and 1–4 months

after birth (a placebo period since it is posterior to the period considered for the death).

Figure 4 shows the marginal effects. For both the benchmark and the within-sibling

specifications, impacts are driven by the specific exposure to shocks during the gesta-

tion, reinforcing the role of maternal health during pregnancy and excluding channels

operating through direct effects on children.
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Figure 4: The effect on neonatal mortality, by timing of exposure to the ocean’s acidity
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B. Within-sibling

Note. Marginal effects of resource shocks by timing of exposure (reported in the horizontal axis) estimated using the benchmark
specification (Panel A), and the within-sibling specification (Panel B). Resource shocks are the pH (multiplied by a factor of 100)
in the ocean’s cell closest to the individual’s community in the corresponding period relative to birth; when the period refers to
multiple months, the value is averaged. The sample is restricted to the coastal area (see Section 2). In Panel A, the specification
includes community FEs, birth year by birth month FEs, country by birth year FEs, country by birth month FEs, and control
variables (see Section 3). In Panel B, the specification adds mother-specific FEs. Standard errors are clustered at the ocean raster
data point. Confidence intervals at 90% level. Appendix A.1 provides detailed information on variables, selected surveys, and
weighting procedures.

We then look at how resource shocks experienced in utero impact the probability of

death for each month of life up to age 5. We focus on the probability of death at the

monthly level to avoid potential issues related to the heaping of self-reported date of

death.13 We estimate the probability of death at age x (in months) using equation (1)

and restricting the sample to children who, at the time of the interview, are born at

least x months before (independently from being alive). We select the sample based

on time from birth, rather than age, to avoid selecting children alive and younger than

x (because at the time of the interview it is uncertain whether they will survive up to

x). We repeat the same specification for x ranging from 1 month to 60 months. The

dependent variable, updated in every iteration, is an indicator variable equal to one if

the child is not alive at time x from birth, and 0 otherwise, and is multiplied by 1,000

to relate coefficients to changes in deaths per 1,000 live births. We present results for

mortality rates at standard times in Appendix B.9.

Panel A of Figure 5 shows how this probability is affected by shocks experienced during

the gestation period. The pattern is consistent with a death harvesting mechanism–a
13 The heaping of deaths at 1 year is common, while mortality rates at ages 2, 3, 4 and 5 are hardly

affected by heaping (Croft et al., 2018). In Figure 5, we indicate these points by vertical lines. We do not
observe any effect on the estimates due to these potential issues.
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displacement of mortality that is hastened by a shock. The effect peaks in the first month

of life, which corresponds to the effect on neonatal mortality, and remains significant

for the very first months of life. However, a smaller net effect is observed beyond the

first month of life, with convergence to zero within the first year of life. In presence of

harvesting, short-run effects would slowly disappear as the initial increase in mortality

is offset by later decreases.

Figure 5: Mortality and child development
A. Mortality B. Underweight
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Note. Marginal effect of the resource shock experienced in utero on the probability to die (Panel A), and on the probability of the
child to be underweight (Panel B). In Panel A, the dependent variable is a dummy variable equal to one if the child is dead at time
x from birth, and zero if the child is alive, and it is multiplied by 1,000. The 90% confidence interval is indicated by dotted lines,
beyond which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate a larger
number of observations (see Appendix A.3). In Panel B, the dependent variable is an indicator variable equal to 1 if the child is
underweight, and 0 otherwise. Confidence intervals at 90% level. In both panels, estimates are based on equation (1) including
community FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see
Section 3). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides further information on the variables
and for the list of surveys included in the study.

Human capital. Table 3 shows the effects of resource shocks experienced in utero

on nutritional indicators built upon anthropometry, whose relation with long-term hu-

man capital accumulation is well established in the literature (McGovern et al., 2017).

Panels A and B focus on short-run effects by analyzing measurements for children,

while Panel C presents long-run effects among adult women. Column (1) focuses on

whether the individual is underweight, which highlights an abnormally low weight-for-

age among children or body mass index (BMI) among adults. To study insufficient

food intake or a high incidence of infectious diseases in temporal proximity with the

measurement, columns (2)–(3) focus on weight-for-height (z-score) and for wasting,

an indicator variable for an abnormally low weight-for-height. Finally, to measure the

effect on the past or cumulative effects of under-nutrition and infectious diseases since
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conception, columns (4)–(5) report effects on height-for-age (z-score) and on stunting,

an indicator variable for an abnormally low height-for-age.14 All measures rely on ob-

jective measurements performed by the enumerators on a random subset of children and

adults. These measures are conditional on the individual being alive at the moment of

the interview, and therefore need to be interpreted in light of the results on mortality.

Living children that experienced a negative shock tend to have slightly better indicators

(Panel A). A 0.01 negative shock decreases the probability of the child to be under-

weight by 1.2 percentage points. Panel B in Figure 5 shows that this effect is specific

to the first months of life and converges to zero over time.15 This effect is partially

reflected in weight-for-height, especially in relation to wasting. We do not observe any

significant effect on height-for-age and stunting among children.

The pattern of the effects observed among children is driven by male children in the

sample. Among male children the effect of the resource shock on early-life mortality

is slightly larger, even though the male-female difference is not statistically significant

(Appendix B.11). In Panel B, for comparability with Panel C, we restrict the sample to

female children. While we do not observe any significant effect on variables associated

with weight, we record a significant effect on stunting. A 0.01 negative shock increases

the probability of the child to be stunted by 1.3 percentage points. This effect is per-

sistent, as we observe a significant effect on height-for-age and stunting among adult

women (Panel C). A 0.01 negative shock increases the probability of adult women to be

stunted by 0.7 percentage points. The magnitude of the effect is smaller among adults,

possibly due to further mortality selection or partial adaptation at later ages.

Table 3 highlights that the shock operates with two distinct channels. On one hand, it

induces mortality selection, which leads children to have on average better indicators

in presence of negative shocks. This channel, characterized by death harvesting among

the weakest children, is the prevalent in our setting. This result is in line with the neg-

ative relationship between mortality and anthropometrics for L&MICs (Deaton, 2007).
14For adults older than 18 years old, z-scores refer to standard reference curves at age 18, when phys-

ical development is assumed complete.
15Among children, we do not observe any significant effect on morbidity and on an objective measure-

ment of micronutritional deficiency (i.e., anemia) at the time of the interview (Appendix B.10). These
results suggest that differences in anthropometrics are not associated with contemporaneous nutrition.
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Table 3: The short- and long-run effect on nutritional indicators
Dependent variables: Underweight Weight-for-height Wasted Height-for-age Stunted

(1) (2) (3) (4) (5)

A. Short-run effects
Resource shock 0.012 -0.021 0.006 -0.012 0.004

(0.005) (0.016) (0.003) (0.015) (0.004)
[0.017] [0.191] [0.091] [0.407] [0.285]

Mean (dep.var.) 0.198 -0.309 0.080 -0.984 0.234

Identifying observations 230,037 232,339 232,339 232,575 232,575
Singleton observations 1,119 1,106 1,106 1,124 1,124
Communities 24,808 24,824 24,824 25,110 25,110
Countries 33 33 33 33 33
Birth year range (min) 1985 1985 1985 1985 1985
Birth year range (max) 2018 2018 2018 2018 2018

B. Short-run effects (female)
Resource shock -0.004 -0.014 -0.004 0.024 -0.013

(0.011) (0.019) (0.007) (0.020) (0.006)
[0.699] [0.446] [0.595] [0.227] [0.037]

Mean (dep.var.) 0.197 -0.285 0.076 -0.942 0.227

Identifying observations 109,940 111,095 111,095 111,157 111,157
Singleton observations 3,544 3,508 3,508 3,577 3,577
Communities 20,784 20,843 20,843 21,052 21,052
Countries 33 33 33 33 33
Birth year range (min) 1985 1985 1985 1985 1985
Birth year range (max) 2018 2018 2018 2018 2018

C. Long-run effects (female)
Resource shock 0.001 0.011 0.000 0.010 -0.007

(0.002) (0.007) (0.001) (0.005) (0.003)
[0.664] [0.133] [0.988] [0.069] [0.022]

Mean (dep.var.) 0.138 -0.310 0.082 -1.386 0.301

Identifying observations 298,436 324,160 324,160 327,124 327,124
Singleton observations 757 554 554 683 683
Communities 22,613 22,635 22,635 22,848 22,848
Countries 32 32 32 32 32
Birth year range (min) 1972 1972 1972 1972 1972
Birth year range (max) 2003 2003 2003 2003 2003

Note. Estimates based on equation (1). Dependent variables are reported in the column’s header. Underweight is an indicator
variable equal to 1 if the child has an abnormally low weight-for-age (Panels A and B) or the adult has an abnormally low body
mass index (Panel C), and 0 otherwise. Weight-for-height and height-for-age are z-scores from a reference scale. Wasted is an
indicator variable equal to 1 for an for an abnormally low weight-for-height. Stunted is an indicator variable equal to 1 for an
abnormally low height-for-age, and 0 otherwise. The resource shock is the average pH (multiplied by a factor of 100) in the ocean’s
cell closest to the individual’s community during the 9 months before the birth of the child (Panels A and B) or the woman (Panel
C). The sample is restricted to coastal areas (see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data
point, p-values are reported in brackets. In Panels A and B, specifications include community FEs, birth year by birth month
FEs, country by birth year FEs, country by birth month FEs, and control variables. In Panel C, specifications include community
FEs, mother’s birth year by mother’s birth month FEs, country by mother’s birth year FEs, country by mother’s birth month FEs,
and control variables (see Section 3). Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures. All panels exclude the survey(s) for Indonesia, Pakistan, and the Philippines because information is not available in
the correspondent surveys. Panel C further excludes the survey for Angola for the same reasons.

On the other hand, a scarring effect, i.e., a worsening of indicators in response to a

shock. This channel is more prevalent among female children and persists into adult-

hood. Overall, the magnitude of effects remains relatively small, making it likely that

these small differences would remain unobserved by parents.
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To understand further the long-run effect of the shock among adult women, Table 4

focuses on other adult-level outcomes that are directly or indirectly related with hu-

man capital accumulation. We focus on fertility (reported as number of births), years

of schooling, cognitive skills (determined by the ability to read a sentence). In addi-

tion, while income is not available at our level of analysis, we also look at economic

well-being by focusing on whether the woman is working at the time of the interview,

and on wealth, measured with an asset-based index known to be capturing household’s

longer-run economic well-being (Jean et al., 2016). Columns (1)–(4) refer to the full

sample of women aged 15–49. To avoid issues with family heterogeneity and study

household-level outcomes like wealth, columns (5)–(6) select only women that are ei-

ther a household head or their partner (labeled as main).

Table 4: The long-run effects on fertility, schooling and economic well-being
Dependent variables: FERTILITY EDUCATION ECONOMIC WELLBEING

Number of
children

Schooling Cognitive
skills

Work Work Wealth

Women in the household: All All All All Main Main
(1) (2) (3) (4) (5) (6)

Resource shock -0.008 0.030 0.000 0.006 0.014 0.016
(0.004) (0.034) (0.002) (0.004) (0.007) (0.009)
[0.049] [0.389] [0.951] [0.130] [0.036] [0.062]

Mean (dep.var.) 1.552 7.183 0.771 0.425 0.513 3.096

Identifying observations 497,982 433,480 414,000 429,173 190,665 212,741
Singleton observations 536 538 794 549 2,256 1,161
Communities 30,429 27,878 26,824 27,859 24,720 25,432
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2003 2003 2003 2003 2003 2003

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Number of children is the
number of births per woman. Schooling is the number of completed years of education. Cognitive skills is an indicator variable
equal to 1 if the respondent is able to read a whole sentence in her native language or has completed at least secondary schooling,
and 0 otherwise. Work is an indicator variable equal to 1 if the respondent is working at the time of the interview, and 0 otherwise.
Wealth is a household-level asset-based index which ranges from 1 (poorest) to 5 (richest). The resource shock is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the woman’s community during the 9 months before her birth. The
sample is restricted to coastal areas (see Section 2), and in columns (5)–(6) to women in the household that are household head
or their partner. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets.
All specifications include community FEs, mother’s birth year by mother’s birth month FEs, country by mother’s birth year FEs,
country by mother’s birth month FEs, and control variables (see Section 3). Column (2)–(4) have a reduced number of observations
because, for comparability of estimates, we include only the random sub-sample of women that completed both the education and
the work modules. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Resource shocks have long-run consequences that are not limited to anthropometrics. A

negative shock leads to a significant increase in fertility, relatively small in magnitude

as a 0.01 negative shock causes a decrease in the number of births per woman of 0.01

children. This is possibly associated with a decrease in schooling, even though this
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effect is not statistically significant and we do not observe any impact on cognitive

ability. More importantly, resource shocks have a significant impact on economic well-

being: a 0.01 negative shock causes a decrease by 1.4 percentage point in the probability

of the main woman in the household to work and by 1.6 percentage points in the wealth

index. From the sample means, these effects corresponds to a decrease by 2.7 percent

in the share of main women working and a 0.5 percent decrease in wealth.

4.2 Resource exploitation and mortality: mechanisms

Section 4.1 provides evidence in favor of a mortality selection mechanism centered

around maternal health, as the main effects operate through exposure while in utero.

This section tests alternative mechanisms that could explain this results.

Income shocks. Dependency on the exploitation of fish can be identified purely out of

distance from water bodies, with proximity with the ocean’s shore and with estuaries

indicating higher dependency (FAO, 2020). Figure 6 shows estimates of the effect of

resource shocks on neonatal mortality allowing the effect to vary flexibly with distance

from water bodies. Panel A focuses on distance from the ocean’s shore, and Panel B on

distance from other water bodies (lakes, ponds in islands within lakes, and all rivers).16

The largest effect on neonatal mortality is observed at the shore, while the estimate

converges to zero as distance increases. On the contrary, the effect is homogeneous

with respect to distance from other water bodies. These results confirms that impacts

are concentrated in communities that rely more heavily on ocean’s resources. Areas in

high proximity to the ocean–within 10 km from the shore–are also areas with higher

population densities. Estimates are robust to potential sources of measurement error

associated with distances (Appendix B.1).

16Freshwater ecosystems are also acidifying, but proximity to the shore is negatively correlated with
proximity to other water bodies. Estimates are robust to excluding estuaries (Appendix B2).
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Figure 6: Early-life mortality and dependence on water bodies
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Note. Marginal effect of the resource shock on NMR as a function of distance from the shore (Panel A), and of distance from
another water body (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life
and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of 100) in the ocean’s
cell closest to the child’s community during the 9 months before birth. Estimates are based on equation (1) introducing interactions
between the shock and a cubic polynomial in distance. The specification includes community FEs, birth month by birth year FEs,
country by birth year FEs, country by birth month FEs, and control variables (see Section 3). The sample is restricted to the coastal
area (see Section 2). Standard errors are clustered at the ocean raster data point. The 90% confidence interval is indicated by dotted
lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate
a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.

While these findings highlight the importance of marine resources, they do not exclude

whether the shock operates as an income shock. We thus turn our attention to hetero-

geneity with respect to resource exploitation. Figure 7 plots the marginal effects on

neonatal mortality at different intensities of extractive (Panel A) and inclusive exploita-

tion (Panel B). Areas characterized by high intensity of extractive exploitation presents

a significantly larger effect as compared to areas where extractive exploitation is absent.

On the contrary, the effect is homogeneous along the intensity of inclusive exploitation.

Formal tests of heterogeneous impacts confirm these results. We estimate equation (1)

using both the benchmark and the within-sibling specifications and adding interaction

terms between the resource shock and a function of the intensity of exploitation. We

perform three tests assuming a linear, quadratic and cubic functions, and computing

p-values for the joint tests of equality to 0 of the coefficients on the interaction term(s).

For extractive exploitation, p-values are always smaller than 0.01, while for inclusive

exploitation they are in the range of 0.68–0.97.
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Figure 7: Early-life mortality and resource exploitation

-16

-14

-12

-10

-8

-6

-4

-2

0

2

N
M

R
 (

de
at

hs
 p

er
 1

,0
00

 b
irt

hs
)

0 .25 .5 .75 1

Intensity of extractive exploitation

A. Extractive exploitation

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 .25 .5 .75 1

Intensity of inclusive exploitation

B. Inclusive exploitation

Benchmark Within-sibling

Note. Marginal effect of the resource shock on NMR as function of intensity of extractive exploitation (Panel A), and of inclusive
exploitation (Panel B). Intensities range between 0 (no presence) and 1 (high). Estimates based on equation (1) introducing in-
teraction terms between the resource shock and a quadratic polynomial in the corresponding intensity. The dependent variable is
a dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. The
resource shock is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the individual’s community during
the 9 months before birth. The sample is restricted to coastal areas (see Section 2). Standard errors are clustered at the ocean raster
data point. Confidence intervals at 90% level. All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 3). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures. We exclude surveys for Peru as information for the intensity of inclusive
exploitation is not available (see Appendix A.1).

As extractive exploitation depletes resources with limited redistribution of income among

local populations, these results exclude a channel associated with fishing-related income

and corroborate the importance of overexploitation as a factor amplifying short-run re-

source shocks. To confirm this result, we perform additional checks. First, we look at

satellite-based nightlight luminosity. We use panel data for the coastal area covered by

DHS at the yearly temporal resolution and at the 0.5°×0.5° spatial resolution. Table 5

presents estimates of the effect of the shock on average nightlight using equation (2).

Columns (1)–(4) includes all cells, while columns (5)–(8) restrict the sample to cells

with positive luminosity. Not only estimates are very small, but they are also never sig-

nificantly different from zero. While we cannot exclude that climate change and ocean

acidification influence aggregate income in the long run, we exclude that in the short

run resource shocks have an impact on economic well-being.

Second, we test whether our main estimates are affected by including (potentially-

endogenous) controls capturing income processes at the time in which resource shocks

are measured. We control for the chlorophyll concentration in coastal waters, a proxy
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Table 5: The effect on nightlight luminosity
Dependent variable: Nightlight luminosity (per 100,000 inhabitants)

Sub-sample: All cells Cells with positive values
(1) (2) (3) (4) (5) (6)

Resource shock (yearly) 0.017 0.021 0.022 0.030 0.033 0.034
(0.078) (0.079) (0.079) (0.079) (0.080) (0.080)
[0.824] [0.789] [0.786] [0.703] [0.676] [0.673]

Mean (dep.var.) 0.080 0.080 0.080 0.082 0.082 0.082

Identifying observations 30,864 30,864 30,864 30,421 30,421 30,421
Singleton observations 229 229 229 238 238 238
Grid cells 1,470 1,470 1,470 1,470 1,470 1,470
Year range (min) 1992 1992 1992 1992 1992 1992
Year range (max) 2012 2012 2012 2012 2012 2012

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes

Note. Estimates based on equation (2). The dependent variable is the satellite-based nightlight luminosity at year t in the cor-
responding grid cell i. Luminosity ranges between 0 (lowest) and 1 (highest), and is normalized by population in the cell. The
resource shock is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the grid cell i. All specifications in-
clude grid cell FEs and 5°×5° cell by year FEs. Weather controls include rainfall, temperature and the interaction between rainfall
and temperature, (residual) dissolved oxygen concentration, while demographic controls include dpopulation size and its square
value. We include only cells in coastal areas where at least one DHS community is found (see Section 2). Appendix A.1 provides
further information on the variables, and the list of surveys included in the study.

for the presence of nutrients release linked with economic activity.17 In addition, we

include controls for the presence and intensity of conflict. Finally, we control for other

adverse weather events which are experienced more frequently in communities living

on the shore and that could negatively impact their income, such as heat and storms.

The inclusion of these controls does not affect our main estimates, further confirming

the absence of an income shock in the short run (Appendices B.7 and B.12).

Evidence on the importance of fish-dependence to explain the effect on early-life se-

lection, in absence of any effect on income, supports a channel that is exclusive to the

nutritional content of fish which is harvested and used for consumption. This mech-

anism is further supported by evidence of larger effects in areas with overall greater

dependency on fish for nutrition: where fish represent a higher percentage of total an-

imal proteins consumed, and where artisanal fisheries are a central activity, such as in

proximity to reefs (Appendix B.2).

Behavioral adaptation. While income remains unaffected by the shock, it is impor-

tant to study behavior to understand not only whether adaptation limits or amplifies the

17In presence of economic activity, coastal waters get contaminated from pollutants deriving from
fossil fuels and industrial production, and nutrients from agriculture. Higher concentrations favor algae
abundance, which negatively impacts marine life. Resource shocks are measured in open ocean’s waters
rather than coastal waters to avoid this confounding effect.
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magnitude of the effects, but also whether lack of adaptation confirms that shocks are

unobserved. Table 6 looks at adaptation contemporaneous to the shock using birth-level

information on parental health investments. Antenatal investments refer to attendance to

health visits during pregnancy and to the presence of health professionals during these

visits. Delivery investments refer to the presence of health professionals during the de-

livery and to whether delivery is performed in a health center. Both variables range

from 0 (no investment) to 2 (high investment). Appendix B12 provides evidence on the

individual indicators composing these variables. For postnatal care, we look at atten-

dance to postnatal health checks and the completion of the cycle of basic vaccinations

according to the World Health Organization (WHO). In addition, because sub-optimum

breastfeeding is recognized as a primary cause of neonatal mortality (Black et al., 2013),

we focus on whether the child has ever been breastfed.18

Table 6: Behavioral adaptation
Dependent variables: Antenatal

investment
Delivery

investment
Postnatal investment

Healthcare Breastfed Vaccinated
(1) (2) (3) (4) (5)

Resource shock 0.004 -0.004 0.004 0.001 -0.005
(0.007) (0.004) (0.009) (0.003) (0.005)
[0.590] [0.374] [0.630] [0.691] [0.317]

Mean (dep.var.) 1.698 1.299 0.441 0.972 0.293

Identifying observations 263,697 256,548 101,075 206,350 210,372
Singleton observations 1,100 1,191 3,078 2,336 2,212
Communities 29,942 29,822 18,445 28,029 27,964
Countries 36 36 34 36 36
Birth year range (min) 1985 1985 2002 1987 1987
Birth year range (max) 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Antenatal investment and
delivery investment range from 0 (no investment) to 2 (larger investment). For postnatal investment, healthcare is an indicator
variable equal to 1 if the mother or the child younger than 2 years old received postnatal care within 2 days of birth. Breastfed
is an indicator variable equal to 1 if the mother reports ever breastfeeding the child, and 0 otherwise. Vaccinated is an indicator
variable equal to 1 if the mother reports or the vaccination card shows the completion of the basic cycle of vaccinations according
to the WHO, and 0 otherwise. The resource shock is the average pH (multiplied by a factor of 100) in the ocean’s cell closest
to the child’s community during the 9 months before birth. The sample is restricted to coastal areas (see Section 2). Standard
errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. For cross-survey comparability,
the sample in columns (1)–(3) is restricted to the last birth, independently from the child being alive, while in columns (4)–(5) is
restricted to living children under three years old. All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 3). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures. Column (3) excludes the survey(s) for Indonesia and Morocco because
information is not available in the corresponding surveys.

For both antenatal and delivery investments, we do not observe any significant effect.
18For cross-survey comparability, the sample for variables relative to antenatal and delivery invest-

ments and to postnatal visits is restricted to the last birth, independently from the child being alive at the
time of the interview. For the remaining variables, the sample is restricted to living children under three
years old and can therefore be affected by mortality selection.
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The effect is also homogeneous in the birth order and gender of the child, two predictors

of differential parental investments in presence of adverse shocks (Baird et al., 2011).

Because antenatal care is also a strong predictor of nutrient supplementation plans dur-

ing pregnancy, we also exclude this channel. In addition, we do not observe any effect

on postnatal care, which indicates that, during the period in temporal proximity to birth,

parental adaptation following the observation of child health is limited.

Adjustments in consumption. In response to shocks, individuals can also change their

consumption patterns by reverting to markets, especially if the relative prices of fish or

nutritious food are impacted. In L&MICs, this possibility is somehow limited because

these countries tend to export high-quality fish caught in their waters and supplement

local demand with imports of low-quality fish (Pauly and Zeller, 2016). In fact, we

highlight larger effects on neonatal mortality in countries with positive trade balance

for fish products (Appendix B.2). However, higher ability to purchase more nutritious

food has only a minor contribution in explaining the main effect: poorer households

exhibit a slightly larger effect in terms of neonatal mortality, but we cannot identify any

statistically significant heterogeneous effect with respect to wealth.19

To verify this channel, we look at fish markets and study the effect of exposure to higher

or lower fish prices while in utero. Focusing on markets allows testing not only the role

of prices, but also the role of aquaculture and of other local market imperfections (see,

e.g., Jensen, 2007). For this analysis, we restrict our analysis to the Philippines, a

unique setting in our context: its coastline is the 5th largest in the world, it is home

to 9% of global coral reef, and depends highly on fish. Using retail fish prices at the

province level, we compute the average fish price while in utero for each birth using

dates of births and matching DHS communities with the provinces where prices are

recorded. Table 7 presents estimates of equation (1) using the benchmark specification

and controlling for the in-utero exposure to average retail fish (log-)prices.

First, the effect of the resource shock on NMR is significant for the Philippines. Re-

19The effect is homogeneous across a wide array of individual characteristics, such as the sex of the
child, the birth order and the year of birth (Appendix B.11). Higher (but not statistically significant)
vulnerability is observed among male children, children born from younger and less educated mothers
living in poorer households.

32



Table 7: Fish prices and early-life mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5)
Resource shock -4.887 -4.997 -4.643 -4.728

(2.620) (2.630) (2.629) (2.685)
[0.064] [0.059] [0.079] [0.080]

Fish price (in utero) 7.274 7.361 7.243 7.580
(3.445) (3.443) (3.436) (3.368)
[0.036] [0.034] [0.036] [0.026]

Mean (dep.var.) 15.410 15.410 15.410 15.410 15.412

Identifying observations 82,739 82,739 82,739 82,739 82,730
Singleton observations 9 9 9 9 9
Communities 2,751 2,751 2,751 2,751 2,751
Countries 1 1 1 1 1
Birth year range (min) 1990 1990 1990 1990 1990
Birth year range (max) 2017 2017 2017 2017 2017

Weather controls - - - Yes Yes
Demographic controls - - - - Yes

Note. Estimates based on equation (1) using the benchmark specification. The dependent variable is an indicator variable equal to
1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Fish price
(in utero) is the average fish price (including all available prices and reported in logarithms) in the province of birth of the child
during the 9 months before birth. The sample is restricted to communities in the coastal area of the Philippines (see Section 2) and
to the period 1990–2018 (due to data availability; see Appendix B.14). Standard errors are reported in parenthesis and clustered
at the district by ocean raster data point, p-values are reported in brackets. All specifications include community FEs, birth year
by birth month FEs, district by birth year FEs, and district by birth month FEs. The full list of controls is presented in Section 3.
Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

sults correspond to approximately 0.75 deaths per 1,000 live births in response to a

one-standard-deviation negative shock. At the same time, a 1 percent increase in fish

prices while in utero leads to an increase in NMR by 0.07 per 1,000 live births. As

higher prices capture the capacity of households to purchase and consume it, a posi-

tive estimate on NMR is a clear indication of the link between fish consumption and

maternal health. However, conditional on the set of FEs, the two channels operate in-

dependently on mortality: estimating equation (1) with both the resource shock and the

average fish price in utero as independent variables does not have a major influence on

the estimates of both effects. The presence of a channel for the resource shock that is

independent from market mechanisms reinforces the finding of an unobservable dete-

rioration of natural resource quality, i.e.,the nutritional content of fish. While recorded

information about maternal nutrition during each pregnancy is not available, in periods

with negative shocks in the ocean’s acidity, women’s probability of consuming fish is

in fact unaffected, further supporting this channel (Appendix B.13).
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5 The aggregate effect of ocean acidification

The ocean’s chemical composition is influenced by climate change, which characterizes

the long-run process of acidification. While we cannot identify the causal effect of

ocean acidification directly, we provide evidence using counterfactual estimates and

focusing on long-run adaptation. Appendix C details the results for this analysis.

First, we produce counterfactual estimates of NMR under the assumption that children

in the sample were exposed in utero to the ocean’s conditions of 1975 throughout the

period. NMR attributed to the change in the ocean’s chemical composition is com-

puted as the community-level average difference between the predicted NMR under

real conditions and its counterfactual prediction. In all selected countries, acidification

is responsible for an increase in neonatal deaths. In coastal areas, NMR attributed to

acidification is lowest in countries ranges in aggregate terms from 3.0 deaths per 1,000

births in the coastal area of the DR of Congo to 9.0 in the Philippines and 11.9 in the Co-

moros Islands. This result highlights considerable heterogeneity, as the average NMR

in the corresponding period is 49.4 in the coastal area of the DR of Congo, 14.8 in the

Philippines and 26.8 in the Comoros Islands. Relative to average NMR, contributions

of acidification are larger in countries that are more dependent on the ocean’s resources.

Second, to understand whether acidification shocks drives our results, similar to De-

schênes and Greenstone (2011), we implement an analysis based of binned variation of

pH rather than continuous. We estimate equation (1) replacing the ocean’s pH while

in utero with the share of time children were exposed to values of the ocean’s pH in a

specific range during their gestation period. The effect is driven by exposure to pH in

the bottom part of the distribution, confirming that our findings are indeed related with

negative shocks in water acidity.

Finally, following Dell et al. (2014), we focus on long-run adaptation estimating equa-

tion (1) and interacting the ocean’s pH while in utero with the spatially-specific initial

conditions, proxied by the 1972–1975 (standardized) average pH in the correspondent

ocean’s data point. The effect of resource shocks on NMR is systematically larger in

locations that have been historically exposed to more acidic waters. Because it is ex-
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actly these areas that would have had more time to adjust to acidification shocks, these

differences further support lack of adaptation in the long-run.

6 Conclusions

Climate change is putting under severe pressure animal species that already suffer from

human overexploitation. Because biodiversity provides a source of insurance, we must

prioritize its conservation. Our results show that this is particularly important for the

communities that are more dependent on natural resources for survival, and therefore

more vulnerable to variation in nature’s wealth. United Nations (2012) highlight as pri-

orities to ‘regulate the industrial fishing sector to protect the access rights of traditional

fishing communities’ and ‘introduce exclusive artisanal fishing zones and user rights for

small-scale and subsistence fisheries’. However, the weak natural resource governance

in L&MICs complicates the feasibility of these goals.

In absence of effective mechanims to incentivize conservation, policymakers need to

channel resources efficiently to the communities that need mitigation support the most.

By showing that negative shocks to nature’s wealth behave as exogenous reductions in

the availability of nutrients that can be consumed, our results provide a rationale for

investing in targeted nutritional interventions early in life. These interventions have

shown to mitigate not only the short-run consequences of malnutrition, but also its

long-term effects (Hoddinott et al., 2013; Gertler et al., 2014). Ocean acidification will

impact commercial and subsistence fishing, with negative consequences beyond the

short-run effects highlighted in this paper. As the IPCC (2013) predicts a decrease in

average ocean’s pH at surface of 0.32 units by 2100, we should be wary of large effects,

even in the face of an improved mitigation capacity.
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GRÖGER, A. AND Y. ZYLBERBERG (2016): “Internal Labor Migration as a Shock

Coping Strategy: Evidence from a Typhoon,” American Economic Journal: Applied

Economics, 8, 123–153.

HEFT-NEAL, S., J. BURNEY, E. BENDAVID, AND M. BURKE (2018): “Robust rela-

tionship between air quality and infant mortality in Africa,” Nature, 559, 254.

HENDERSON, J. V., A. STOREYGARD, AND D. N. WEIL (2012): “Measuring eco-

nomic growth from outer space,” American Economic Review, 102, 994–1028.

HEUTEL, G., N. H. MILLER, AND D. MOLITOR (2017): “Adaptation and the mortality

effects of temperature across US climate regions,” NBER working paper no. 23271,

National Bureau of Economic Research.

HICKS, C. C., P. J. COHEN, N. A. GRAHAM, ET AL. (2019): “Harnessing global

fisheries to tackle micronutrient deficiencies,” Nature, 574, 95–98.

HODDINOTT, J., H. ALDERMAN, J. R. BEHRMAN, ET AL. (2013): “The economic

rationale for investing in stunting reduction,” Maternal & child nutrition, 9, 69–82.

HORNBECK, R. AND P. KESKIN (2014): “The historically evolving impact of the ogal-

lala aquifer: Agricultural adaptation to groundwater and drought,” American Eco-

nomic Journal: Applied Economics, 6, 190–219.

HSIANG, S. M. AND A. S. JINA (2014): “The causal effect of environmental catastro-

phe on long-run economic growth: Evidence from 6,700 cyclones,” NBER working

paper no. 20352, National Bureau of Economic Research.

IPCC (2013): “Working group I contribution to the Intergovernmental Panel on Cli-

mate Change Fifth Assessment Report Climate Change 2013: The Physical Science

Basis,” Summary for Policymakers - IPCC WGI AR5.

40



ISEN, A., M. ROSSIN-SLATER, AND W. R. WALKER (2017): “Every breath you

take—every dollar you’ll make: The long-term consequences of the clean air act

of 1970,” Journal of Political Economy, 125, 848–902.

JAYACHANDRAN, S. (2013): “Liquidity constraints and deforestation: The limitations

of payments for ecosystem services,” American Economic Review, 103, 309–13.

JEAN, N., M. BURKE, M. XIE, ET AL. (2016): “Combining satellite imagery and

machine learning to predict poverty,” Science, 353, 790–794.

JENSEN, R. (2007): “The digital provide: Information (technology), market perfor-

mance, and welfare in the South Indian fisheries sector,” The Quarterly Journal of

Economics, 122, 879–924.

KEELING, R. F., A. KÖRTZINGER, AND N. GRUBER (2010): “Ocean Deoxygena-

tion in a Warming World,” Annual Review of Marine Science, 2, 199–229, pMID:

21141663.

KREMER, M. AND C. MORCOM (2000): “Elephants,” American Economic Review, 90,

212–234.

KROODSMA, D. A., J. MAYORGA, T. HOCHBERG, ET AL. (2018): “Tracking the

global footprint of fisheries,” Science, 359, 904–908.

KUDAMATSU, M. (2012): “Has democratization reduced infant mortality in Sub-

Saharan Africa? Evidence from micro data,” Journal of the European Economic

Association, 10, 1294–1317.

MAIRE, E., N. A. GRAHAM, M. A. MACNEIL, ET AL. (2021): “Micronutrient supply

from global marine fisheries under climate change and overfishing,” Current Biology,

31, 4132–4138.

MAJID, M. F. (2015): “The persistent effects of in utero nutrition shocks over the life

cycle: Evidence from Ramadan fasting,” Journal of Development Economics, 117,

48–57.

41



MALTHUS, T. R. (1872): An Essay on the Principle of Population.

MCGOVERN, M. E., A. KRISHNA, V. M. AGUAYO, AND S. SUBRAMANIAN (2017):

“A review of the evidence linking child stunting to economic outcomes,” Interna-

tional journal of epidemiology, 46, 1171–1191.

MILLER, D. L., N. SHENHAV, AND M. Z. GROSZ (2021): “Selection into identifi-

cation in fixed effects models, with application to Head Start,” Journal of Human

Resources, forthcoming.

OSTROM, E. (2003): “How types of goods and property rights jointly affect collective

action,” Journal of theoretical politics, 15, 239–270.

PAULY, D. AND D. ZELLER (2016): “Catch reconstructions reveal that global marine

fisheries catches are higher than reported and declining,” Nature Communications, 7,

10244.

PAXSON, C. AND N. SCHADY (2005): “Child health and economic crisis in Peru,” The

World Bank Economic Review, 19, 203–223.

RAZZAQUE, A., N. ALAM, L. WAI, AND A. FOSTER (1990): “Sustained Effects of

the 1974–5 Famine on Infant and Child Mortality in a Rural Area of Bangladesh,”

Population Studies, 44, 145–154, pMID: 11612523.
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Alex Armand, Ivan Kim Taveras

A Data and methodological procedures

A.1 Variables, data sources and the selection of DHS surveys

Variable Description
Altitude Communities’ elevation in meters from the SRTM–Digital Elevation Model for the specified coordi-

nate location. The variable is available in the DHS surveys (ICF, 2019).
Basemaps Basemaps were created using ArcGIS® software by Esri®. Basemaps are used in line with the Esri

Master License Agreement, specifically for the inclusion of screen captures in academic publications.
We use the World Topographic Map.

Behavioral adaptation Information is based on parental health investments obtained from the DHS Program (ICF, 2019).
We homogenize information across surveys and make use of the following variables:
Antenatal investment is equal to 0 if no antenatal visit is completed, 1 if at least one visit is completed
but without health professional, 2 if at least one visit is completed with a health professional. In
Appendix B.10, this indicator is split into individual variables. Any visit is an indicator variable
equal to one if the mother attended any visit during pregnancy for antenatal care, and 0 otherwise.
Number of antenatal care visits is the number of visits attended during pregnancy for antenatal care
(reported in logarithms, adding one unit to allow for zero values). With health professional is an
indicator variable equal to one if the mother was attended by a health professional (doctor, nurse or
other professional) during pregnancy, and 0 otherwise.
Delivery investment is equal to 0 if delivery is performed outside a health center without a health
professional, 1 if performed outside a health center with a health professional, and 2 if delivery is
performed in a health center with a health professional. In Appendix B.10, this indicator is split into
individual variables. In health center is an indicator variable equal to one if the mother gave birth
in a health center, and 0 otherwise. With health professional is an indicator variable equal to one if
delivery was attended by a health professional (doctor, nurse or other professional), and 0 otherwise.
For postnatal investment, healthcare is an indicator variable equal to 1 if the mother or the child
younger than 2 years old received postnatal care within 2 days of birth. Breastfed is an indicator
variable equal to 1 if the mother reports ever breastfeeding the child, and 0 if the mother reports
having never breastfed the child. For cross-survey comparability, the sample is restricted to children
who live with their mother and are alive, and are less than three years old. Vaccinated is an indicator
variable equal to 1 if the mother reports or shows a vaccination card for the following doses: BCG, 3
doses of DPT-containing vaccines, 3 doses of polio vaccine (excluding polio vaccine given at birth),
and 1 dose of MCV. The sample is restricted to children under three years old for comparability (Croft
et al., 2018).

Child mortality Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’
full birth history and includes information on all children’s year and month of birth, sex, birth order,
whether they are twins, and the date of death when it applies. Note that only live births are recorded.
This information is also used to create age at first delivery, and fertility (the number of live births at
the time of the interview). We build mortality rates by multiplying the following indicators by 1,000
(the variables are set to missing if the date of the interview is before the end of the period considered
for defining mortality):
Neonatal (NMR): indicator equal to 1 if the child died before their first month of life, and 0 otherwise.
Note that the DHS Program reports two ages of death. The first is self-reported, while the second
gives a calculated age from reported information. When dates of birth are not disclosed, these are
imputed by the DHS Program (Croft et al., 2018). We also use 67 special cases of self-reported age
of death (198 and 199, which indicate that age at death was reported as a number of days and that
the exact number is unknown), but results are robust to dropping these cases.
Post-neonatal (PMR): indicator equal to 1 if the child died between the ages of 1–11 months, and 0
otherwise.
Child (CMR): indicator equal to 1 if the child died between the ages of 12–59 months, and 0 other-
wise.
Infant (IMR): indicator equal to 1 if the child died between the ages of 0–11 months, and 0 otherwise.
Under-5 (U5MR): indicator to 1 if the child died between the ages of 0–59 months, and 0 otherwise.

(continued on next page)
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Variable Description
Chlorophyll Concentration in coastal waters is measured in mg/m3 (AWV weights). We use data from the Glob-

Colour project (d’Andon et al., 2009), which provides monthly global rasters for the period 1997–
2018 at the 25-meter resolution by merging satellite imaging from five different sources made avail-
able by the European Space Agency and NASA.

Conflict Number of violent events (and fatalities) in each cell for a specific year. The data are obtained from
the Uppsala Conflict Data Program (UCDP) (Sundberg and Melander, 2013).

Distances For shorelines, distance (in straight line) between the DHS cluster and the closest shoreline. Water
bodies are identified from the GSHHG database (Wessel and Smith, 1996). . We use the following
two bodies. For the ocean’s shoreline, we consider level 1 (continental land masses and ocean islands,
except Antarctica). For other water bodies, we consider levels 2, 3 and 4 (lakes, islands in lakes, and
ponds in islands within lakes and all levels included in the river database). See Appendix A.2 for
details about the procedure. For coral reefs, distance (in straight line) between the DHS cluster and
the closest coral reef. Geographical distribution of warm-water coral reefs is obtained from UNEP-
WCMC (2018).

Fish dependency Average fish protein supply as proportion of all animal protein supply. The data are obtained from
the FAOSTAT database (FAO, 2019).

Fish prices Monthly retail price for fish at the province level from 1990 to nowadays. The series is provided by
the Philippine Statistics Authority (2020) provides. See Appendix B.14 for details.

Extractive exploitation Total number of hours from industrial fishing activities in the cell built using data from the Global
Fishing Watch (Kroodsma et al., 2018), which tracks more than 70,000 industrial fishing vessels from
2012 to 2016. Because variation is available only for the period 2012–2016, we first compute total
fishing hours in a global grid at 1°×1° resolution and then average each cell over the available period.

Inclusive exploitation We use Automatic Boat Identification System for VIIRS Low Light Imaging Data (Elvidge et al.,
2015) to identify detections. The algorithm detects boats using nightlight captured from satellite
imaging (Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band). Using individual daily
detections (which include geolocation), we build a 1°×1° global grid with the sum of detections for
the period 2017–2019. We select as boats only strong detections (quality flag rating equal to 1).
To avoid false positives, data are not available over the South Atlantic Anomaly, and are therefore
missing for DHS surveys for Peru.

Human capital We make use of schooling, i.e., the number of completed years of education based on the respondent’s
self-reported highest level of education (comparable across countries), and of cognitive skills, i.e., an
indicator variable of whether the respondent is able to read a whole sentence in her native language
(as observed by enumerators) or has, at least, completed secondary schooling.

Marriage DHS surveys collect respondents’ civil status, date of birth and, when available, their partner’s age
in years. We make use of the following variables. Married is an indicator variable equal to 1 if the
respondent is currently married or living in an union, and 0 otherwise. Age difference with partner is
the difference in years between the respondent and her partner.

Nightlight Average nighttime light emission from the 0.5°×0.5° DMSP-OLS Nighttime Lights Time Series
Version 4 calibrated (Elvidge et al., 2014). Values range between 0 (lowest luminosity) and 1 (highest
observed value). The times-series are available from 1992–2012 from the PRIO-GRID database
(Tollefsen et al., 2012). Data are spatially merged to DHS clusters using their geolocation.

Nutritional indicators The DHS records objective measurements performed by the DHS data collection team. Standardized
distributions are the CDC Standard Deviation-derived Growth Reference Curves (Croft et al., 2018).
The following indicators are used:
Underweight is, for chidren, an indicator variable equal to 1 if the weight-for-age z-score is smaller
than 2 (for children) or the BMI is lower than 18.5 (for adults), and 0 otherwise.
Weight-for-height is the z-score from the reference curve, while wasted is an indicator variable equal
to 1 if the weight-for-height z-score is smaller than 2, and 0 otherwise.
Height-for-age is the z-score from the reference curve, while stunted is an indicator variable equal to
1 if the height-for-age z-score is smaller than 2, and 0 otherwise.

Ocean chemistry Data are obtained from the Hadley Global Environment Model 2 - Earth System model (Jones et al.,
2011), provided by the European Space Agency’s Pathfinders-OA project (Sabia et al., 2015). Data
are provided as monthly global raster data at the 1°×1° resolution for a series of chemical features
of the ocean in open waters. We use two variables: pH at surface and dissolved O2 concentration.

Ocean’s features We obtain SST, wind speed, total precipitations and air (2-meter) temperature in areas covered by the
ocean using the ERA5 dataset (C3S, 2017). ERA5 provides hourly and monthly estimates of several
atmospheric, land and oceanic climate variables combining model data with observations from across
the world. It provides a 0.25º x 0.25º hourly gridded dataset. For all variables, we average daily values
to monthly data and spatially merge it to DHS clusters using their geolocation and each child’s birth
date.

Population It measures population size as the number of persons in 1990, 1995, 2000, and 2005 within the
PRIO-GRID grid cell. Information is obtained from the Gridded Population of the World version 3.
The data are downloaded from the PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector
grid network with a resolution of 0.5°×0.5° covering all terrestrial areas of the world, and spatially
merged to DHS clusters using their geolocation.

(continued on next page)
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Variable Description
Protein consumption Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’

food consumption for a variety of items. This information is available only for a restricted number
of surveys: Cambodia (2005), Dominican Republic (2007), Egypt (2008), Ghana (2008), Guatemala
(2015), Guyana (2009), Haiti (2006), Liberia (2007), Madagascar (2008), Namibia (2006), Nigeria
(2008), Philippines (2008), Sierra Leone (2008), and Timor-Leste (2009 and 2016). We focus on two
indicator variables: fish is an indicator variable that equals 1 if the female respondent ate fresh or
dried fish or shellfish, or foods containing those ingredients, during the day previous to the interview,
and 0 otherwise.; meat and dairy is an indicator variable that equals 1 if the female respondent ate any
meat (beef, pork, lamb, or chicken), eggs, dairy products (cheese, yogurt, or other milk products), or
foods containing those ingredients during the day previous to the interview, and 0 otherwise.

Trade balance Sum of exports and re-exports of fish products, minus the sum of imports of fish products. The data
are obtained from the FAOSTAT database (FAO, 2019). In the analysis of heterogeneity of the effect
of the ocean’s acidity, we opt for a time-invariant version for the period 1976-2017.

Wealth The DHS records information on asset ownership and provide an asset-based wealth index ranging
from 1 (poorest) to 5 (richest).

Weather Yearly total amount of precipitation (in millimeters) in the cell is based on monthly meteorological
statistics from the GPCP v.2.2 Combined Precipitation Data Set, which is available for the years
1979–2014. Yearly mean temperature (°C) in the cell is based on monthly meteorological statistics
from GHCN/CAMS, which is available for the period 1948–2014. Data are downloaded from the
PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector grid network with a resolution of
0.5°×0.5° covering all terrestrial areas of the world, and spatially merged to DHS clusters using their
geolocation.

Work Indicator variable equal to 1 if the respondent is working, and 0 otherwise. DHS surveys record the
employment status of respondents at the time of the interview.

Note. For time-varying variables, missing values are linearly interpolated.

Table A2 presents the Demographic and Health Surveys (DHS) included in the analysis.

The availability of multiple surveys for some countries can lead to issues related to

survey selection. Table A3 presents estimates of equation (1) assuming different rules

for the selection of surveys. When including multiple surveys for the same country, each

observation is weighted by the product of the DHS sampling weight with a re-weighting

factor, i.e., the ratio between the sum of the DHS sampling weights at the country-

survey level and the sum of the DHS sampling weights at the country level. For adult-

level estimates, we re-weight observations following the same procedure, repeating the

computation of weights for different variables because the inclusion in each survey is

variable-dependent. For adult outcomes relative to schooling and work, we include only

observations that completed both the education and work module. This selection affects

only the India 2015–2016 survey, for which we select only the women that completed

the so-called state module), and we use the weights corresponding to this sample (IIPS

and ICF, 2017).
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Table A2: Sampled countries
Country DHS surveys available Birth years matched Number of births
Angola 2015 1978-2016 42002
Bangladesh 2000, 2004, 2007, 2011, 2014 1972-2014 183734
Benin 1996, 2001, 2012 1972-2012 84351
Cambodia 2000, 2005, 2010, 2014 1972-2014 150872
Cameroon 1991, 2004, 2011 1972-2011 81516
Colombia 2010 1973-2010 89317
Comoros 2012 1975-2012 10957
DR Congo 2007, 2013 1972-2014 83313
Côte d’Ivoire 1994, 1998, 2012 1972-2012 57785
Dominican Republic 2007, 2013 1972-2013 76051
Egypt 1992, 1995, 2000, 2005, 2008, 2014 1972-2014 303549
Gabon 2012 1974-2012 22908
Ghana 1993, 1998, 2003, 2008, 2014 1972-2014 74319
Guatemala 2015 1978-2015 54993
Guinea 1999, 2005, 2012, 2018 1972-2018 104910
Guyana 2009 1974-2009 10538
Haiti 2000, 2006, 2012, 2016 1972-2017 106348
Honduras 2011 1974-2012 48315
India 2015 1975-2016 1308794
Indonesia 2003 1972-2003 75228
Kenya 2003, 2008, 2014 1972-2014 127484
Liberia 2007, 2013 1972-2013 52464
Madagascar 1997, 2008 1972-2009 68446
Morocco 2003 1972-2004 32256
Mozambique 2011 1974-2011 37946
Myanmar 2016 1980-2016 22989
Namibia 2000, 2006, 2013 1972-2013 51966
Nigeria 1990, 2003, 2008, 2013, 2018 1972-2018 394614
Pakistan 2006 1972-2007 38542
Peru 2000, 2004, 2005, 2006, 2007, 2008, 2009 1972-2009 182648
Philippines 2003, 2008, 2017 1972-2017 104246
Senegal 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016 1972-2016 216204
Sierra Leone 2008, 2013 1972-2013 68370
Tanzania 1999, 2010, 2015 1972-2016 77212
Timor-Leste 2009, 2016 1974-2016 64620
Togo 1998, 2013 1972-2014 51612

Note. From all DHS surveys available on May 2020, we include only surveys for countries with direct access to the ocean and
surveys with available geocoding of primary sampling units. The number of births is computed as the total number of observations
in the birth histories (DHS birth recode).

Table A3: Robustness to selection of surveys
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)
DHS survey selected: All Latest Largest Random

(1) (2) (3) (4)
Resource shock -1.491 -1.420 -1.803 -1.609

(0.664) (0.701) (0.654) (0.675)
[0.025] [0.043] [0.006] [0.018]

Mean (dep.var.) 30.474 26.601 27.328 29.036

Identifying observations 1,581,815 794,713 861,938 757,132
Singleton observations 25 32 35 30
Communities 31,380 17,389 18,476 16,416
Countries 36 36 36 36
Birth year range (min) 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. All specifications include community FEs,
birth year by birth month FEs, country x birth year FEs, country x birth month FEs, and controls (see Section 3). In column (1),
observations are re-weighted to correct for oversampling of countries surveyed multiple times (see Appendix A.1). Standard errors
(in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. “Latest” indicates that only the latest
survey is selected, “Largest” indicates that the survey with the largest number of observations is selected, “Random” indicates that
one random survey is selected among the available ones. Appendix A.1 provides further information on the variables and the list
of surveys included in the study.
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A.2 Distances

The computation of distances are based on the geocoding of DHS clusters. For each

household, distance is the minimum straight distance to the coast and closest alterna-

tive water source computed using v.distance function in GRASS. Table A4 presents

descriptive statistics for households living within and beyond 100 km from the shore.

Figure A1 presents an example of the procedure for West Africa. We discuss robustness

of main findings to measurement error in the geolocation in Appendix B.1.

Table A4: Descriptive statistics for coastal and inland areas
Coastal area Inland area

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.92 0.27 0.91 0.29 4555492
Child is female 0.48 0.50 0.48 0.50 4555492
Birth order 2.54 1.81 2.66 1.84 4555492
Number of twins born with the child 0.03 0.23 0.03 0.22 4555492
Years since birth 12.28 7.87 12.09 7.76 4555492
Mother’s age at birth 24.43 5.77 24.16 5.54 4555492
Ocean’s pH (in utero) 8.05 0.03 8.06 0.03 4555492

B. Adult women
Age at first delivery 20.88 4.23 20.45 3.82 1385467
Current age 30.65 9.80 29.97 9.76 1951250
Years of schooling 7.25 4.84 6.04 4.90 1376076
Ocean’s pH (in utero) 8.06 0.03 8.07 0.03 977187
Primary education or less 0.41 0.49 0.49 0.50 1951201
Married 0.67 0.47 0.70 0.46 1950104
Working 0.54 0.50 0.55 0.50 1304776
Household head is female 0.22 0.41 0.17 0.38 1951247
Household head’s age 46.10 13.11 46.37 13.17 1949918
Household members 5.62 3.03 6.06 3.11 1951250
Household wealth 3.72 1.28 3.22 1.39 1776572
Living in urban area 0.53 0.50 0.34 0.47 1951250
Distance from shore 31.26 30.21 462.44 289.57 1951250
Distance from another water body 47.32 102.12 24.87 23.98 1951250
Altitude 190.22 408.72 489.97 613.08 1951244
Temperature (° C) 26.09 3.21 24.92 3.70 1951250
Precipitations (mm) 1557.41 674.18 1298.33 673.22 1951250
Intensity of extractive exploitation 0.06 0.20 0.05 0.13 1951250
Intensity of inclusive exploitation 0.09 0.20 0.08 0.16 1951250

C. Mortality rates
Neonatal 27.51 163.55 37.24 189.34 4545390
Postneonatal 23.67 152.02 24.28 153.90 4200570
Child 21.69 145.68 27.67 164.02 3265547
Infant 50.66 219.30 60.78 238.93 4355601
Under-five 74.22 262.12 89.55 285.54 3504461

Note. Descriptive statistics by proximity to the ocean for all communities in selected countries with access to ocean. Coastal area
includes all communities within 100 km from the ocean’s shore (see Section 2). Inland area includes all communities that are
farther away than 100 km from the ocean’s shore. Means are reported in columns (1) and (3), standard deviations are reported
in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is measured at the time of the
interview and is independent from the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero)
is the average pH in the ocean’s cell closest to an individual’s community during the 9 months before birth; it refers to the date
of birth of the child in Panel A and to the date of birth of the woman in Panel B. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.
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Figure A1: Distance to ocean and other water sources: an example

A. All DHS communities B. Distance from shore

Note. Geolocation of DHS communities (Panel A) and closest points to the ocean’s shore (Panel B). Lines represent straight
distance from a community to the closest point on the coast’s shoreline or on the shoreline of another water body. Basemap
source: Esri. See Appendix A.1 for data sources and attributions.

A.3 Coloring of shaded graphs

In selected graphs, the color intensity is reflecting the share of observations at a specific

distance (or time). For Figures 5 and B4, the color intensity is the ratio between the

difference between the (smoothed) density of the distribution of the number of obser-

vations in a specific iteration and 0.7 × the lower bound of the same distribution for

all iterations, and the difference between the 99th percentile of the distribution of the

number of observations in all iterations and 0.7 × the lower bound of the same distri-

bution for all iterations. For Figures 6 and B5, the color intensity is defined as the ratio

between the square root of the (smoothed) density of the distribution of the number of

observations by distance from shore and the square root of the 90th percentile in the

same distribution. Parameters are chosen to guarantee visibility.

B Supplementary results

B.1 Falsification and placebo tests

Balance across mother characteristics. Table B1 presents estimates of equation (1)

without control variables where the dependent variable is replaced by demographic con-

trols. None of the estimates is statistically significant, supporting the exogeneity of the

shock with respect to observable characteristics.
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Table B1: Placebo test: balance on observable characteristics
Dependent variable: Age at

first
delivery

Age at
delivery

Age at
inter-
view

Schooling Primary
educ. or

less

Married Working Wealth

(1) (2) (3) (4) (5) (6) (7) (8)

Resource shock 0.009 0.002 0.002 0.014 0.000 -0.000 -0.001 0.002
(0.016) (0.021) (0.021) (0.016) (0.002) (0.001) (0.002) (0.003)
[0.558] [0.934] [0.935] [0.382] [0.981] [0.787] [0.654] [0.396]

Mean (dep.var.) 20.094 25.086 36.682 4.916 0.669 0.887 0.558 3.120

Identifying observations 1,583,706 1,583,706 1,583,706 1,583,065 1,583,630 1,583,705 1,454,950 1,339,312
Singleton observations 25 25 25 25 25 25 28 31
Communities 31,380 31,380 31,380 31,380 31,380 31,380 28,828 27,039
Countries 36 36 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1) without control variables. The dependent variable is a dummy variable equal to 1 if the child
died within the first month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied
by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to
coastal areas (see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in
brackets. The full set of controls is reported in the bottom panel of the table, control variables are excluded. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

Measurement error in the distance from the ocean. To ensure respondents’ confiden-

tiality, GPS coordinates for all DHS surveys are randomly displaced within a maximum

of 2 km for urban neighborhoods, and 10 km for rural villages. We simulate a random

error in the measurement of the distance of ± 10 km, ± 30 km, and ± 50 km. We iter-

ate the simulation 1,000 times, each time generating a new distance from the ocean and

estimating (1) for households that were left within 100 km from the shoreline. Figure

B1 shows the distribution of the coefficients in all iterations.

Figure B1: The effect on neonatal mortality, by magnitude of measurement error
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Note. Distribution of the marginal effect of a resource shock on NMR, estimated using (1) and introducing measurement error in
the distance from the ocean. The procedure performs 1,000 iterations. The vertical line represents our benchmark point estimate
(column 3 in Table 2). The distribution fits are estimated non-parametrically using kernel density estimation and assuming an
Epanechnikov kernel function. Bandwidths are estimated by Silverman’s rule of thumb. The sample is restricted to the coastal
area (see Section 2). Appendix A.1 provides further information on the variables and the full list of surveys included in the study.
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B.2 Fish dependency

Figure B2 presents descriptive statistics for fish dependency, defined as the share of

total proteins of animal origin coming from fish. Figure B3 presents the estimates of

the heterogeneous effect of the resource shock on neonatal mortality distinguishing by

a country’s fish dependency in Panel A, and by trade balance for fish products from the

FAOSTAT database (FAO, 2019) in Panel B.

Figure B2: Fish dependency amd trade balance for fish products
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Note. Average value of fish proteins as share of total animal proteins by selected area (Panel A) or by country (Panel B). In Panel
A, aggregate measures are computed by averaging the value of fish dependency in each country included in the group, weighted by
population. In Panel B, vertical lines indicate the world’s average (solid) and the average among the selected countries (dashed).

Figure B3: Fish dependency and heterogeneous effect of resource shocks on NMR
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Note. Heterogeneous effect by dependency on fish proteins as a % of total animal proteins (Panel A), and by trade balance for fish
products (Panel B). Marginal effects are estimated using equation (1) restricting the sample to the corresponding group. In Panel
A, dependency is high if the country is in the top tercile of the sample distribution of the 1960–2013 average fish dependency. In
Panel B, trade balance is high if the country is in the top tercile of the sample distribution of the 1976–2017 average trade balance
for fish products. Standard errors are clustered at the ocean raster data point. Confidence intervals at 90% level. All specifications
include community FEs, birth year by birth month FEs, 5°×5° grid cell by birth year FEs, 5°×5° grid cell by birth month FEs, and
control variables (see Section 3). Section 2 provides definitions of coastal and vulnerable coastal areas. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

As a separate measure of fish dependency, we focus on proximity to coral reefs, a proxy

for dependency on artisanal fishing. Figure B4 shows marginal effects of a resource
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shock on neonatal mortality as a function of distance from the closest coral reef. Dis-

tance (in straight line) between the community and the closest coral reef obtained from

UNEP-WCMC (2018), subtracting the distance from the ocean’s shore. Panel A shows

the marginal effects assuming a zero distance from the ocean’s shore, while Panel B

assumes a distance of 40km.

Figure B4: In utero exposure, NMR and distance to coral reefs
A. At the shore B. At 40km from the shore
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Note. Marginal effect of a resource shock on NMR as a function of shortest distance from a coral reef and assuming 0 distance from
the ocean’s shore (Panel A), or a distance of 40 km (Panel B). The dependent variable is a dummy variable equal to 1 if the child
died within the first month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied
by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Estimates are based on
equation (1) introducing interactions between the shock and a cubic polynomial in distance. The specification includes community
FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see Section 3).
The sample is restricted to the coastal area (see Section 2). Standard errors are clustered at the ocean raster data point. The 90%
confidence interval is indicated by dotted lines, beyond which the intervals are progressively shaded up to the 99% level. Within
confidence bounds, darker colors indicate a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed
information on variables, selected surveys, and weighting procedures.

B.3 Robustness to alternative definitions of coastal area

Table B2 shows how estimates of the effect of the resource shock on NMR vary under

different criteria for defining coastal areas.

Proximity. We define coastal area using a proximity criteria based on 100km from

the ocean’s shore. Panel A of Figure B5 shows that the total number of live births

considered is clearly affected by the distance bound. Panel B shows estimates of the

effect of the resource shock on neonatal mortality by varying the distance bound from 20

to 250 km, allowing x to increase by 1 unit after each iteration. The largest magnitude

is observed when distance is constrained at 40 km, which we label as the vulnerable

coastal area. The less vulnerable areas is the one extending 40–100 km from the shore.

Panel A of Figure B6 maps communities according to this criteria.
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Table B2: The effect on neonatal mortality: varying sample selection criteria
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Altitude criteria: ≤ 100m ≤ 100m - - ≤ 100m ≤ 100m
Distance restriction: - - ≤ 40km ≤ 40km ≤ 40km ≤ 40km

Exclusion of estuaries: - Yes - Yes - Yes
(1) (2) (3) (4) (5) (6)

Resource shock -1.627 -1.593 -2.923 -3.072 -2.942 -3.071
(0.776) (0.759) (0.797) (0.944) (0.836) (0.996)
[0.037] [0.036] [0.000] [0.001] [0.000] [0.002]

Mean (dep.var.) 31.116 31.431 29.489 29.631 29.938 30.113

Identifying observations 1,137,356 978,016 1,061,342 893,056 845,155 685,815
Singleton observations 19 15 25 21 22 18
Communities 22,612 18,801 21,682 17,616 17,600 13,789
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas (see
Section 2) and according to the criteria reported in column’s header. Estuaries are defined as communities that are at a distance
of 10 km or less from the ocean’s shore and at the distance of 10 km or less from another water source. All specifications include
community FEs, birth year by birth month FEs, country by birth year FEs, country by birth month FEs, and control variables (the
full list of controls in Section 3). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported
in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Figure B5: Sample selection by distance from shore

A. Number of live births B. Effect of pH (in utero)
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Note. Number of live births (decomposed by region) included in the dataset by distance from the shore (Panel A), and marginal
effects of the resource shock on NMR by sample selection according to proximity to the shore (Panel B). Estimates are based on
equation (1) when the sample is selected according to bounds (reported in the horizontal axis). Appendix A.2 details the procedure
for computing distances. Each specification includes community FEs, birth year by birth month FEs, country by birth year FEs,
country by birth month FEs, and control variables (see Section 3). The 90% confidence interval is indicated by dotted lines, beyond
which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate a larger number
of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.

Altitude and estuaries. Panel B of Figure B6 shows communities in coastal areas

according to the criteria of Christian and Mazzilli (2007), who select the land margin

within 100 km of the coastline or less than 100 meters above the mean low tide. In

addition, we can include or exclude areas where the ocean’s chemical composition has

a higher probability of human contamination, such as estuaries.
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Figure B6: Sample selection

Note. Communities in coastal areas distinguished by vulnerability (Panel A), or by altitude (Panel B), and corresponding
examples (Panel C and Panel D). The full list of countries and surveys included in the study is reported in Appendix A.1. See
Section 2 for a definition of coastal area.

B.4 Recall bias

Table B3 replicates Table 2 by restricting the sample to recent births (at most 10 years

prior to the interview.) Estimates are robust to restricting the sample to more recent

births, such as within 5 years.

Table B3: The effect on neonatal mortality: restricting the sample to recent births
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
Resource shock -2.552 -2.418 -2.460 -2.059 -2.055 -2.142

(1.316) (1.331) (1.307) (1.143) (1.149) (1.133)
[0.053] [0.070] [0.060] [0.072] [0.074] [0.059]

Mean (dep.var.) 26.914 26.914 26.917 26.914 26.914 26.918

Identifying observations 746,982 746,982 745,962 746,960 746,960 745,940
Singleton observations 142 142 142 164 164 164
Communities 31,183 31,183 31,183 31,182 31,182 31,182
Countries 36 36 36 36 36 36
Birth year range (min) 1980 1980 1980 1980 1980 1980
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1) restricting the sample to births within 10 years of the interview. The dependent variable
is a dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000.
Resource shock is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9
months before birth. The sample is restricted to the coastal area (see Section 2). All specifications include community FEs, birth
year by birth month FEs, country by birth year FEs, and control variables (see Section 3). Controls for local seasonality are either
country by birth month FEs or 5°×5° cell by birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data
point, p-values are reported in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.
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B.5 Selective migration

Table B4 shows estimates of the effect of resource shocks on the probability that the

mother migrated to the community of the interview within the first five years following

delivery. This period corresponds to the time period considered for under-5 mortality.

Table B4: Post-delivery selective migration
Dependent variable: Mother migrated to community 0-4 years after delivery of child

(1) (2) (3) (4) (5) (6)
Resource shock -0.000 -0.000 -0.000 0.001 0.002 0.002

(0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
[0.958] [0.908] [0.988] [0.840] [0.612] [0.627]

Mean (dep.var.) 0.112 0.112 0.112 0.112 0.112 0.112

Identifying observations 1,016,246 1,016,246 1,015,068 1,016,242 1,016,242 1,015,064
Singleton observations 15 15 15 19 19 19
Communities 21,884 21,884 21,884 21,884 21,884 21,884
Countries 28 28 28 28 28 28
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the mother of the child migrated to
the community of the interview in the first 5 years of life of the child, and 0 otherwise. Resource shock is the average pH (multiplied
by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted
to the coastal area (see Section 2). All specifications include community FEs, birth year by birth month FEs, country by birth year
FEs, and control variables (see Section 3). Controls for local seasonality are either country by birth month FEs or 5°×5° cell by
birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets.
Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

B.6 Issues related to identification

Figure B7 presents the between and within decomposition of the overall variation of the

ocean’s pH while in utero (Panel A) and NMR (Panel B) in the sample.

Figure B7: Between and within variation decomposition
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Note. Decomposition of the sample standard deviation of the ocean’s pH experienced in utero (Panel A), and of NMR (Panel
B). The sample is restricted to the coastal area (see Section 2). Geographical and time variables for which the decomposition is
computed are reported at the bottom of each figure. Appendix A.1 provides further information on the variables and the list of
surveys included in the study.
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The identifying assumptions in the within-sibling specification can lead to non-random

sample selection (Miller et al., 2021). Table B5 shows the observable differences be-

tween mothers with a single child (excluded in the within-sibling specification) and

mothers with multiple children. To verify the validity of our estimates of the effect of

resource shocks on neonatal mortality to the inclusion of mother-specific FEs, columns

(1)–(3) in Table B6 estimate the benchmark specification restricting the sample to the

identifying observations in the within-sibling specification. Columns (4)–(6) provide

estimates of the effect using the identifying sample of the within-sibling specification

and re-weighting as in Miller et al. (2021) to recover the overall effect on the population

of interest (mothers with at least one birth). The re-weighting procedure is based on ob-

servable characteristics. To estimate the probability to be in the identifying sample of

the within-sibling specification, we use a probit model and include mother and weather

characteristics.

Table B5: Comparison of mothers with a single child versus multiple children
One child Multiple children

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.97 0.16 0.92 0.27 1587285
Child is female 0.47 0.50 0.49 0.50 1587285
Birth order 1.00 0.00 2.68 1.82 1587285
Number of twins born with the child 0.00 0.00 0.04 0.24 1587285
Years since birth 6.04 6.55 12.86 7.73 1587285
Mother’s age at birth 22.51 4.71 24.61 5.82 1587285

B. Adult women
Age at first delivery 22.51 4.71 20.37 3.94 495310
Current age 28.54 7.99 36.19 7.66 495310
Years of schooling 8.39 4.62 5.99 4.82 441192
Primary education or less 0.31 0.46 0.55 0.50 495286
Married 0.81 0.40 0.89 0.31 495309
Working 0.54 0.50 0.60 0.49 425306
Household head is female 0.23 0.42 0.19 0.39 495310
Household head’s age 45.04 15.18 44.62 11.97 494936
Household members 5.13 3.08 5.72 2.89 495310
Household wealth 3.82 1.25 3.58 1.32 434418
Living in urban area 0.57 0.49 0.49 0.50 495310
Distance from shore 31.14 30.00 32.47 30.23 495310
Distance from another water body 39.07 81.02 46.61 100.49 495310
Altitude 179.28 396.98 187.48 401.10 495310
Temperature (° C) 26.17 3.12 26.19 3.06 495310
Precipitations (mm) 1609.01 659.60 1549.09 683.53 495310
Intensity of extractive exploitation 0.06 0.20 0.06 0.19 495310
Intensity of inclusive exploitation 0.09 0.19 0.09 0.20 495310

Note. Descriptive statistics by the number of children of the mother (reported in column’s header). Means are reported in columns
(1) and (3), standard deviations in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is
measured at the time of the interview and is independent from the child being alive. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.
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Table B6: The effect on neonatal mortality: identification checks
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Check: Benchmark specification with Re-weighting procedure
within-sibling identifying sample
(1) (2) (3) (4) (5) (6)

Resource shock -1.939 -1.950 -2.000 -2.740 -2.785 -2.883
(0.792) (0.790) (0.776) (0.996) (1.001) (0.990)
[0.015] [0.014] [0.010] [0.006] [0.006] [0.004]

Mean (dep.var.) 31.476 31.476 31.476 31.478 31.478 31.478

Identifying observations 1,474,941 1,474,941 1,474,941 1,474,349 1,474,349 1,474,349
Singleton observations 0 0 0 108,741 108,741 108,741
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes

Note. In columns (1)–(3), estimates are based on equation (1) using the benchmark specification and restricting the sample to the
identifying sample in the within-sibling specification. In columns (4)–(6), estimates are based on equation (1) using the within-
sibling specification and the re-weighting procedure of Miller et al. (2021). The dependent variable is a dummy variable equal to
1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Resource shock is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to coastal areas (see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values
are reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and
5°×5° cell by birth month FEs. The full list of controls is presented in Section 3. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.

B.7 Climate- and weather-related variables

Ocean’s acidity. Figure B8 shows descriptive statistics of pH at surface averaged at

global level. Table B7 shows descriptive statistics of the measure of shock under the

different specifications presented in Table 2, and the correspondent standardized effect.

Figure B8: Variation in the ocean’s acidity for communities in the coastal area
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B. Seasonality

Note. Average pH at surface in the period 1972–2018 (Panel A), and monthly comparison between mean pH for each year
in the left axis, and median pH for the whole period in the right axis (Panel B). Variation is restricted to cells matched to the
sample’s communities. In Panel A, the solid red line shows the quadratic trend in the series.

Other ocean’s characteristics. First, because the process of changing ocean biochem-

istry is not uniquely characterized by pH, we also focus on the role of dissolved O2

concentration at the ocean’s surface. To isolate the effect of the ocean’s pH in equation
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Table B7: Resource shocks and standardized effects
Benchmark specification Within-sibling specification

Mean Std.
dev.

Effect Std.
effect

Mean Std.
dev.

Effect Std.
effect

(1) (2) (3) (4) (5) (6) (7) (8)
Shock (specification 1) -0.00 0.38 -1.42 -0.54 0.00 0.30 -2.06 -0.63
Shock (specification 2) -0.00 0.37 -1.42 -0.53 0.00 0.30 -2.13 -0.64
Shock (specification 3) -0.00 0.37 -1.49 -0.56 0.00 0.30 -2.23 -0.67
Shock (specification 4) -0.00 0.26 -2.12 -0.55 -0.00 0.22 -2.46 -0.53
Shock (specification 5) -0.00 0.25 -2.09 -0.53 -0.00 0.21 -2.50 -0.53
Shock (specification 6) -0.00 0.25 -2.08 -0.53 -0.00 0.21 -2.61 -0.55

Note. Descriptive statistics of the resource shock under the benchmark and the within-sibling specifications. Columns (3) and (7)
refer to the point estimates in Table 2. The standardized effect is rescaling point estimates in terms of standard deviations in the
residual variation of the resource shock. Residual variation is obtained from the residuals of a linear regression using the ocean’s
pH experienced in utero as dependent variable and the set of FEs used in equation (1) as independent variables.

(1), we include the estimated residuals of a linear regression of dissolved O2 concentra-

tion (multiplied by 1,000, so that coefficients relate to an increase of 0.001 µmol/kg),

oxymtvc, on pH. Second, Figure B9 presents the time series and the seasonality compo-

nent for a variety of ocean’s characteristics obtained from the ERA5 dataset. Table B8

presents estimates of the effect of the resource shock on NMR using equation (1) and

controlling for these additional variables.

Figure B9: Additional weather characteristics in the ocean’s matched areas
A. Sea surface temperature B. 2-meter temperature
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Note. Descriptive statistics of weather characteristics measured in the same point where ocean’s acidity is measured. Variation
is restricted to cells matched to the sample’s communities. Each community is assigned with a value using the nearest cell in
the ocean. Information is obtained from the ERA5 and is available for the period 1989–2018. Appendix A.1 provides further
information on the variables.
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Table B8: NMR, ocean’s characteristics in utero and weather in the location of birth
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6) (7)
Closest point in the ocean
Resource shock -2.034 -2.192 -2.140 -2.084

(0.745) (0.744) (0.741) (0.743)
[0.007] [0.003] [0.004] [0.005]

Sea surface temperature (in utero) 1.467 1.695 1.549
(0.925) (0.918) (1.064)
[0.113] [0.066] [0.146]

Wind speed (in utero) 1.752 1.596 2.159
(1.510) (1.505) (1.547)
[0.247] [0.290] [0.164]

Total precipitations (in utero) 0.008 0.007 0.009
(0.008) (0.008) (0.008)
[0.289] [0.351] [0.265]

2-meter temperature (in utero) 0.674 0.902 0.040
(0.898) (0.892) (1.039)
[0.453] [0.312] [0.969]

Residual dissolved O2 (in utero) -0.069
(0.306)
[0.822]

Location of birth
Temperature (year of birth) -0.121

(0.427)
[0.778]

Total precipitations (year of birth) -0.003
(0.002)
[0.126]

Mean (dep.var.) 29.645 29.645 29.645 29.645 29.645 29.645 29.645

Identifying observations 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357
Singleton observations 23 23 23 23 23 23 23
Communities 31,380 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36 36
Birth year range (min) 1979 1979 1979 1979 1979 1979 1979
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs, 5°×5° grid cell by birth month
FEs, and demographic controls (see Section 3). Appendix A.1 provides detailed information on variables, selected surveys, and
weighting procedures.

Quality of coastal water. Table B9 shows estimates of equation (1) controlling for the

(potentially-endogenous) quality of coastal waters, proxied by the chlorophyll concen-

tration in the closest ocean data point from the community. We do not use coastal water

quality in the main text due to the potential endogeneity of chlorophyll concentration

with idiosyncratic shocks related to child mortality.
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Table B9: The effect on neonatal mortality: control for quality of coastal waters
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Sub-sample Coastal area Vulnerable coastal area
(1) (2) (3) (4) (5) (6)

Resource shock -1.568 -1.747 -1.809 -2.791 -2.982 -3.218
(1.017) (1.151) (1.093) (1.295) (1.451) (1.375)
[0.124] [0.130] [0.099] [0.032] [0.040] [0.020]

Chlorophyll concentration 0.487 0.599 0.406 0.293 0.404 0.281
(0.521) (0.521) (0.520) (0.548) (0.546) (0.551)
[0.351] [0.252] [0.435] [0.593] [0.459] [0.611]

Mean (dep.var.) 25.497 25.497 25.502 24.735 24.733 24.740

Identifying observations 780,920 780,904 779,925 523,719 523,710 522,989
Singleton observations 470 486 487 350 359 361
Communities 28,670 28,670 28,669 19,838 19,838 19,837
Countries 36 36 36 36 36 36
Birth year range (min) 1998 1998 1998 1998 1998 1998
Birth year range (max) 2018 2018 2018 2018 2018 2018

Weather and demographic controls - - Yes - - Yes
Seasonality Country Cell Cell Country Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock and chlorophyll concentration are the average
acidity (reported in pH and multiplied by 100) and the average chlorophyll concentration in the ocean’s cell closest to the child’s
community during the 9 months before birth. The sample is restricted to the coastal area in columns (1)–(3) and to the vulnerable
coastal area in columns (4)–(6) (see Section 2). Due to data availability, the sample is also restricted to children born between
1998 and 2018. All specifications include community FEs, birth year by birth month FEs. Controls for local seasonality are either
country by birth month FEs or 5°×5° cell by birth month FEs. The full list of controls is presented in Section 3. Standard errors
(in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. Appendix A.1 provides detailed
information on variables, selected surveys, and weighting procedures.

B.8 Robustness to alternative assumptions about standard errors

Table B10 shows estimates of equation (1) for NMR using different assumptions for the

clustering of standard errors (reported in column).

Table B10: Robustness to assumptions about standard errors
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Level of clustering: None 1°x1° grid
cell

Matched
ocean cell

5°x5° grid
cell

Country x
survey year

Community

(1) (2) (3) (4) (5) (6)
Resource shock -1.491 -1.491 -1.491 -1.491 -1.491 -1.491

(0.664) (0.625) (0.359) (0.667) (0.645) (0.610)
[0.025] [0.017] [0.000] [0.026] [0.023] [0.015]

Mean (dep.var.) 30.474 30.474 30.474 30.474 30.474 30.474

Identifying observations 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815
Singleton observations 25 25 25 25 25 25
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of 100)
in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to the coastal area
(Section 2). All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by birth
month FEs, and control variables (see Section 3). Standard errors are reported in parenthesis, p-values are reported in brackets.
Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.
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B.9 Early-life mortality

Table B11 presents estimates of the effect of the resource shock on early-life mortality.

Table B11: The effect on early-life mortality rates (per 1,000 live births)
Dependent variables: Post-neonatal (PMR) Child (CMR) Infant (IMR) Under-5 (U5MR)

(1) (2) (3) (4) (5) (6) (7) (8)
Resource shock 1.169 1.076 -0.104 -0.044 -0.275 -0.407 -0.370 -0.435

(0.479) (0.490) (0.320) (0.330) (0.707) (0.666) (0.821) (0.795)
[0.015] [0.028] [0.746] [0.895] [0.698] [0.542] [0.652] [0.585]

Mean (dep.var.) 27.927 27.919 26.950 26.932 57.550 57.543 82.949 82.925

Identifying observations 1,535,443 1,533,608 1,492,560 1,490,789 1,583,706 1,581,815 1,583,706 1,581,815
Singleton observations 25 25 26 26 25 25 25 25
Communities 31,378 31,378 31,377 31,377 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018 2018 2018
Weather and demographic controls - Yes - Yes - Yes - Yes

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. The resource shock is the
average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth.
The sample is restricted to coastal areas (see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point,
p-values are reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by birth year
FEs, country by birth month FEs. The full list of controls is presented in Section 3. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.

B.10 Detailed parental investments and postnatal outcomes

Table B12 shows estimates of the effect of resource shocks on parental health invest-

ments and on health outcomes associated with poor contemporaneous nutrition.

Table B12: Parental investments and postnatal nutritional outcomes
ANTENATAL DELIVERY NUTRITION

Dependent variables: Number of
visits

w/ health
professional

In health
center

w/ health
professional

Morbidity Anemia

(1) (2) (3) (4) (5) (6)

Resource shock -0.001 0.004 0.003 -0.003 -0.002 0.002
(0.009) (0.002) (0.002) (0.003) (0.004) (0.006)
[0.940] [0.025] [0.067] [0.221] [0.677] [0.741]

Mean (dep.var.) 1.643 0.442 0.355 0.638 0.391 0.558

Identifying observations 263,819 494,305 494,375 267,900 339,407 114,370
Singleton observations 1,099 131 131 1,032 871 1,437
Communities 29,943 31,304 31,304 30,031 29,932 15,844
Countries 36 36 36 36 36 27
Birth year range (min) 1985 1972 1972 1985 1985 1995
Birth year range (max) 2018 2018 2018 2018 2018 2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Morbidity is an indicator
variable equal to one if the child has experienced fever, cough or diarrhea in the weeks previous to the interview, and 0 otherwise.
Anemia is an indicator variable equal to one if the child has haemoglobin levels below 110 g/L, and 0 otherwise. Resource shock is
the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth.
The sample is restricted to coastal areas (see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point,
p-values are reported in brackets. For cross-survey comparability, the samples are restricted to the last birth, independently from the
child being alive. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by
birth month FEs, and control variables (see Section 3). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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B.11 Heterogeneous effects

Figure B10 presents estimates of heterogeneous effects for children and mothers’ de-

mographics (Panel A) and for location characteristics (Panel B).

Figure B10: Heterogeneous effect of the resource shock on NMR
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Note. Heterogeneous effects of ocean’s pH while in utero on NMR by child and mother’s demographics (Panel A), and by location’s
characteristics (Panel B). Marginal effect are estimated using equation (1) restricting the sample to the corresponding group. For
mother’s age at birth, wealth index, agricultural land, population, fish as a % of animal proteins, and fishing hours, we create a
dummy variable indicating whether an observation is above or below the full sample’s median of the variable of interest. Agricul-
tural land and population are set at the 1970 level. Standard errors are clustered at the ocean raster data point. Confidence intervals
at 90% level. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by birth
month FEs, and control variables (see Section 3). Appendix A.1 provides detailed information on variables, selected surveys, and
weighting procedures.

B.12 Adding controls for the presence of conflict

Using information about conflict events from the Uppsala Conflict Data Program (UCDP)

database at the 5°×5° resolution, we estimate equation (1) adding controls for the pres-

ence and the intensity of conflict while in utero. Table B13 presents estimates of the

effect on NMR. Due to data availability, the birth year range is reduced to children born

after 1984. For comparability, columns (3) and (6) are therefore restricted to the sample

included in column (1) and (4), respectively.
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Table B13: Comparing the effect size of ocean acidification and conflict
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
Resource shock -1.006 -1.014 -1.010 -1.603 -1.614 -1.612

(0.629) (0.632) (0.629) (0.799) (0.796) (0.799)
[0.110] [0.109] [0.109] [0.045] [0.043] [0.044]

At least 1 violent event (in utero) 1.702 1.715
(1.107) (1.128)
[0.125] [0.129]

Fatalities (in utero) 1.591 1.616
(0.848) (0.840)
[0.061] [0.055]

Mean (dep.var.) 27.657 27.657 27.657 27.657 27.657 27.657

Identifying observations 1,257,991 1,257,991 1,257,991 1,257,984 1,257,984 1,257,984
Singleton observations 82 82 0 89 89 0
Communities 31,284 31,284 31,284 31,284 31,284 31,284
Countries 36 36 36 36 36 36
Birth year range (min) 1984 1984 1984 1984 1984 1984
Birth year range (max) 2018 2018 2018 2018 2018 2018

Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. The resource shock is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and control variables (see Section
3). Controls for local seasonality are either country by birth month FEs or 5°×5° cell by birth month FEs. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

B.13 Protein consumption: fish versus meat and dairy
Table B14 shows the effect of the resource shock on the female respondent’s consump-

tion of animal proteins. Data are available for a subset of surveys (see Appendix A.1).

Table B14: Protein consumption at the time of the interview
Dependent variable: Female respondent consumed [food] in the day previous to the interview

Sub-sample: All women Mothers with ≥ one child under 3 y.o.
(1) (2) (3) (4)

A. Fish

Resource shock (time of interview) 0.016 0.003 0.013 0.004
(0.017) (0.017) (0.017) (0.018)
[0.333] [0.862] [0.448] [0.838]

Observations 49045 49043 36226 36223
Grid cells 239 239 239 239

B. Meat and dairy

Resource shock (time of interview) 0.000 0.004 0.008 0.008
(0.015) (0.016) (0.013) (0.014)
[0.996] [0.817] [0.554] [0.551]

Observations 49037 49035 36212 36209
Grid cells 239 239 239 239
Seasonality Country Cell Country Cell

Note. Estimates based on equation (1). The resource shock is the average pH (multiplied by a factor of 100) in the ocean’s cell
closest to the female respondent’s community in the month of the interview. The sample is restricted to coastal areas (see Section
2) and in columns (5)–(8) to households with at least a child under 3 years old (due to cross-survey comparability, Croft et al.,
2018). All specifications include location FEs using grid cells at the 1°×1° resolution, year by birth month FEs, and country by
interview year FEs, and control variables (see Section 3, weather controls are meaasured at the time of interview). Controls for local
seasonality are either country by interview month FEs or 5°×5° cell by interview month FEs. Standard errors (in parenthesis) are
clustered at the ocean raster data point, p-values are reported in brackets. Appendix A.1 provides detailed information on variables,
selected surveys, and weighting procedures.
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B.14 Fishing and fish prices

For extractive and inclusive exploitation, Figure B11 shows an example of the geo-

graphical variation. For fish prices, the Philippine Statistics Authority (2020) provides

monthly retail prices at the province-species level. Figure B12 shows the evolution of

prices and spatial distribution of the median fish price for the period 1990 – 2018.

Figure B11: Geographical distribution of extractive and inclusive exploitation
A. Extractive exploitation B. Inclusive exploitation

Note. Example of the geographical distribution of the intensity of extractive (Panel A) and inclusive exploitation (Panel B). The
resolution is 0.25°×0.25° in Panel A and 0.1°×0.1° in Panel B. Color scales are based on quantiles. Appendix A.1 provides further
details about the variables.

Figure B12: Time series and spatial distribution of retail price for fish
A. Time series B. Spatial distribution of the median
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Note. Evolution over time of the province-level fish prices (Panel A) and spatial distribution of the 1990 – 2018 median fish price
(Panel B). Prices are obtained for the following species: indian mackerel, milkfish, threadfin bream, blue crab, caesio, anchovies,
frigate tuna, tilapia, tiger prawn, slipmouth, and roundscad. Prices in Philippine Peso per kg are converted in constant US$ (base
2010) using exchange rates and CPI from IMF (2020). In Panel A, each price is the (unweighted) average of all available prices.
Missing data are imputed using linear interpolation for each province and species.
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C Aggregate effects of ocean acidification
Counterfactual estimates. We predict birth-level NMR (N̂MRikmtvc) using equation

(1) allowing for a flexible form in the distance from shore. The counterfactual pre-

diction (N̂MR
1975

ikmtvc) is obtained by imposing in utero exposure to ocean’s chemical

composition at the 1975 level (allowing for seasonal variation) keeping other variables

constant. NMR attributed to acidification (∆ikmtvc) is computed as the community-level

average of N̂MRikmtvc − N̂MR
1975

ikmtvc. Figure C1 presents summary statistics.

Figure C1: Counterfactual estimates of NMR attributed to acidification
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Note. Country-level average NMR in the coastal area (left bar) and average NMR attributed to acidification (right bar).

Acidification shocks and adaptation. Figure C2 presents estimates of equation (1)

replacing the ocean’s pH while in utero with the share of time children were exposed

to values of the ocean’s pH in a specific range during their gestation period. The effect

is mainly driven by exposure to pH in the bottom part of the distribution, suggesting

our findings relate to an increase in acidity. In addition, to test for adaptation, Table C1

re-estimates Table 2 interacting the ocean’s ph while in utero with a location’s initial

conditions, namely the (standardized) average ocean’s pH from 1972–1975.
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Figure C2: Resource shocks and neonatal mortality: binned analysis
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Note. Estimates based on equation (1) where the resource shock is substituted by the share of time children were exposed in utero
to different levels of the ocean’s pH. We classify values in four bins (presented in the horizontal axis). The excluded category is the
third bin, which includes the historical median and mean of the resource shock in sampled areas. The lowest and highest values in
the range are the historical minimum and maximum in the sample. The dependent variable is a dummy variable equal to 1 if the
child died within the first month of life and 0 if the child survived, multiplied by 1,000. The right vertical axis presents the average
share of time of exposure in utero for each bin. The specification includes community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 3). The sample is restricted to coastal areas (see
Section 2). Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Table C1: The effect on neonatal mortality: initial conditions
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

Resource shock -1.970 -2.017 -2.195 -2.273 -2.302 -2.329
(0.717) (0.697) (0.685) (0.783) (0.785) (0.771)
[0.006] [0.004] [0.001] [0.004] [0.004] [0.003]

× initial conditions 1.110 1.106 1.303 1.119 1.095 1.299
(0.322) (0.325) (0.319) (0.329) (0.329) (0.315)
[0.001] [0.001] [0.000] [0.001] [0.001] [0.000]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range (min) 1972 1972 1972 1972 1972 1972
Birth year range (max) 2018 2018 2018 2018 2018 2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. Resource shock is the average pH (multiplied by a factor of 100) in the
ocean’s cell closest to the child’s community during the 9 months before birth. Initial conditions refer to a location’s (standardized)
average between 1972–1975. The sample is restricted to coastal areas (see Section 2). Standard errors (in parenthesis) are clustered
at the ocean raster data point, p-values are reported in brackets. All specifications include community FEs, birth year by birth month
FEs, country by birth year FEs. Controls for local seasonality are either country by birth month FEs or 5°×5° cell by birth month
FEs. The full list of controls is presented in Section 3. Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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SABIA, R., D. FERNÁNDEZ-PRIETO, J. SHUTLER, ET AL. (2015): “Remote sensing

of surface ocean PH exploiting sea surface salinity satellite observations,” in 2015

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 106–109.

SUNDBERG, R. AND E. MELANDER (2013): “Introducing the UCDP georeferenced

event dataset,” Journal of Peace Research, 50, 523–532.

TOLLEFSEN, A. F., H. STRAND, AND H. BUHAUG (2012): “PRIO-GRID: A unified

spatial data structure,” Journal of Peace Research, 49, 363–374.

UNEP-WCMC (2018): “Global distribution of coral reefs,” UNEP World Conserva-

tion Monitoring Centre and the WorldFish Centre.

WESSEL, P. AND W. H. SMITH (1996): “A global, self-consistent, hierarchical, high-

resolution shoreline database,” Journal of Geophysical Research: Solid Earth, 101,

8741–8743.

25

openstat.psa.gov.ph

	Fish dependence and exploitation in L&MICs
	Data
	Empirical strategy
	Results
	Mortality and human capital accumulation
	Resource exploitation and mortality: mechanisms

	The aggregate effect of ocean acidification
	Conclusions
	Data and methodological procedures
	Variables, data sources and the selection of DHS surveys
	Distances
	Coloring of shaded graphs

	Supplementary results
	Falsification and placebo tests
	Fish dependency
	Robustness to alternative definitions of coastal area
	Recall bias
	Selective migration
	Issues related to identification
	Climate- and weather-related variables
	Robustness to alternative assumptions about standard errors
	Early-life mortality
	Detailed parental investments and postnatal outcomes
	Heterogeneous effects
	Adding controls for the presence of conflict
	Protein consumption: fish versus meat and dairy
	Fishing and fish prices

	Aggregate effects of ocean acidification

