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Abstract

Poor air quality is known to be bad for health. How do air pollution’s health effects

on workers translate into economic costs? And do firms adapt via their payroll deci-

sions? We answer these questions by combining French administrative data on sickness

leave episodes and workers’ flows with fine-grained pollution and weather data. We

exploit short-term variations in wind direction as an instrument for exposure to par-

ticulate matter (PM2.5) pollution. A one standard deviation increase in weekly PM2.5

increases the share of workers starting a sickness leave that week by 4.5%. Respect-

ing the pollution thresholds recommended by the World Health Organization - which

implies decreasing pollution by 18% on average over the study period - would have

avoided 3 million days of sickness leave every year. This would have saved an annual

e88 million in publicly-funded benefits, e110 million in employer-funded benefits, and

e391 million in foregone production valued at the wage level. According to prelimi-

nary analyses at the establishment level, a one standard deviation increase in monthly

PM2.5 decreases new workers’ inflow rate in the current and following two months by

19%. The effect is driven by a decrease in both permanent hires and in the transfer of

workers from other establishments of the same firm.
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1 Introduction

It is widely acknowledged that air pollution has detrimental effects on human health.1 Even

in Europe, where air pollution has been regulated for several decades, an annual 307,000

premature deaths are attributed to PM2.5 pollution (European Environment Agency, 2020).

Many papers have documented a plausibly causal relationship between exposure to air pollu-

tion and a variety of health outcomes, such as emergency admissions (Schlenker and Walker,

2016; Deryugina et al., 2019), medical expenditures (Deschênes et al., 2017), sickness leave

(Holub et al., 2021), or mortality (Deryugina et al., 2019). Furthermore, people breathing

polluted air may suffer from a wide range of diseases, which may impair their productivity

(Graff Zivin and Neidell, 2012; Chang et al., 2016; Lichter et al., 2017; Meyer and Pagel,

2017; He et al., 2019; Chang et al., 2019; Fu et al., 2021; Adhvaryu et al., 2022), reduce their

labour supply (Aragón et al., 2017), and lead to aggregate economic costs (Dechezleprêtre

et al., 2019).2

In this paper, we jointly examine how air pollution affects the incidence of sickness leave

among French workers, and the economic and employment outcomes of firms employing

them. To the best of our knowledge, this paper is the first to jointly consider worker-level

and firm-level responses to a pollution shock in the context of a developed country with

institutionalized sickness leave. Recent papers focusing on developing countries or settings

where workers are paid by the hour found that a pollution-induced negative health shock

impacts workers’ productivity primarily via a decrease in output per hour, rather than a

decrease in the number of hours worked (Chang et al., 2016; Adhvaryu et al., 2022). In

a developed country with institutionalised sickness leave, being absent from work is not

very costly, so we expect that the channel will differ. Pollution shocks will likely increase

workers’ propensity for calling in sick, while potentially also affecting the productivity of

1According to the World Health Organization (WHO) (WHO, 2014), air pollution is the world’s largest
single environmental health risk. Exposure to fine particulate matter (PM2.5), for instance, causes approxi-
mately 4.2 million premature deaths every year globally.

2For instance, Dechezleprêtre et al. (2019) found that a 10% increase in PM2.5 pollution reduces real
GDP by 0.8% in Europe.
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those workers not calling in sick. Firms are likely to see their output and profits decrease due

to the pollution-induced productivity shock. Firms may also try to adapt to the absenteeims

and the production shock by adjusting their employment decisions in the short term.

We pair detailed data on sickness leave episodes from a random sample of French private

sector employees with data on payroll decisions for a subset of establishment employing

them, and granular measures of air pollution exposure at the location of the establishment

where workers are employed. We plan to add monthly data on sales from mandatory VAT

declarations, observed at the firm level, to capture the effect of pollution on sales.

We begin by showing that fairly large air pollution shocks in fine particulate matter

(PM2.5), exceeding WHO recommended thresholds, are quite common in our setting, and

that workers take sickness leaves in response to these shocks. We rely on a panel of roughly

400,000 employed individuals followed over the 2009-2015 period, with records of all sickness

leave episodes at the daily level. Workers are geolocated based on their workplace’s post-

code and attributed a certain level of air pollution exposure from their workplace location,

using gridded reanalysis pollution data. To recover plausibly causal estimates, we adopt an

instrumental variable approach exploiting within-grid-cell changes in wind direction, similar

to Deryugina et al. (2019).

We find that a one standard deviation change in weekly exposure to PM2.5 increases the

share of workers starting a sickness leave that week by 4.5%. We calculate the benefits in

terms of avoided sickness leave payment if France had respected the daily exposure threshold

recommended by the World Health Organization between 2009 and 2015 - this corresponds

to a decrease by 18% of observed pollution levels. Based on our estimates, respecting the

thresholds would have avoided at least 2.9 million days of sickness leave every year, saving

e88 million in publicly-funded sickness benefits (1.3% of total sickness leave payments over

the period) and e110 million in employer-funded sickness benefits.

Crucial to our research question is the ability to link workers taking sick leaves to their

employer’s characteristics and decisions. In our matched dataset, we identify the exact

2



establishment where individuals work. Thus, we conduct an analysis at the establishment

level identifying firms’ response to the pollution shock in terms of direct effect on sales, and

payroll and hiring vs firing decisions. The analysis on sales is ongoing. Regarding payroll

adjustments, we find that a one standard deviation change in monthly exposure to PM2.5

decreases the inflow rate of new workers by 19% in the current and following two months,

while there is not significant effect on the outflow rate. The effect is driven by a decrease in

permanent hires and transfers of workers from other establishments. One interpretation is

that establishments faced with a productivity shock freeze new hires rather than adjusting

pollution-induced absenteeism with new workers.

The primary contribution of this study is to the literature examining the effect of air

pollution on economic activity. A growing literature examines how pollution impacts workers,

in terms of health-related absenteeism (Holub et al., 2021), productivity (Graff Zivin and

Neidell, 2012; Chang et al., 2016; Lichter et al., 2017; Meyer and Pagel, 2017; He et al., 2019;

Chang et al., 2019; Adhvaryu et al., 2022), decision-making (Meyer and Pagel, 2017; Dong

et al., 2019; Aguilar-Gomez et al., 2022) and labour supply (Aragón et al., 2017). Some of

these papers consider firm-level consequences of such worker-level effects, but they are often

based on a small and non-representative sample. To our knowledge, only one paper, by Fu

et al. (2021), examines firm-level productivity effects of pollution for a large representative

sample of firms. But it is based on a high-pollution context (China) and only examines

manufacturing firms; firms’ margins of adjustment and the estimated elasticity of output to

pollution are probably different in a developed, low-pollution country.

Furthermore, our paper contributes to the burgeoning economic literature that uses

micro-level data to estimate the cost of air pollution. Such cost estimates are essential

for policy appraisals and cost-benefit analysis more broadly. In many developed countries

where air pollution levels have decreased in the past two decades, it is not necessarily clear

that further emission reductions would bring net benefits. Accurately estimating how much

air pollution costs to society today is all the more needed. Recent plausibly causal estimates
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are almost exclusively based on the health costs for the individuals. For example, Deryugina

et al. (2019) estimate the benefits from pollution reductions induced by the US Clean Air

Act to around $24 billion annually, based on the monetary value of the reduced number of

years lost for the elderly. Based on social security data, (Mink, 2022) estimate that meeting

European standards for nitrogen dioxide (NO2) would save an annual 5.2 billion in healthcare

costs in France. Observing sickness leave and its effects on firms allows us to estimate an

additional component of the benefits from avoided pollution, namely the avoided detrimental

effects on workers and firms.

Closer to this aim, Holub et al. (2021) examine the benefits of recent improvements in

air quality in Spain in terms of avoided production loss, also using sickness leave data. Their

analysis is based on PM10, while we focus on PM2.5, a pollutant with more severe health

effects and more likely to affect individuals in their working environment Krebs et al. (2021).

Holub et al. (2021) proxy the cost of a day of sickness leave with the daily wage. In contrast,

we are able to decompose the cost in several components: the cost borne by taxpayers in

terms of publicly funded sickness leave benefit spending; that borne by firms in terms of

privately-funded sickness leave benefit spending; and the cost borne by firms in terms of

foregone sales (this third analysis is ongoing). Foregone sales are likely to differ from the

foregone production proxied with the daily wage for two reasons: first, within an establish-

ment, the workers who do not enter sickness leave are presumably also affected by pollution,

both in a direct and indirect way: even if they do not take sickness leave, their health and

cognitive performances are probably also directly affected by pollution. At the same time,

their productivity and labour supply may be indirectly affected by the absenteeism of their

co-workers via spillover effects or conscious task reallocation - as evidenced in Adhvaryu et al.

(2022). Second, as discussed, firms may cushion the effect of absenteeism on production via

their payroll decisions.

The paper is organised as follows. Section 2 presents the French setting with air pollution

regulation and institutionalised sickness leave. Section 3 presents the data, section 4 describes
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the empirical strategy, section 5 presents the main results, and section 6 some robustness

checks.

2 Background

2.1 Particulate matter air pollution in France

Five pollutants enter the air quality index that is used to monitor local air quality on a

daily basis in France:3 particulate matter with a diameter below 2.5 micrometers (PM2.5),

particulate matter with a diameter below 10 micrometers (PM10), nitrogen dioxide (NO2),

sulphur dioxide (SO2), and ozone (O3). While each of these pollutants has some detrimental

effects on human health, fine particulate matter (PM2.5) is the one driving the most signifi-

cant health problems (European Environment Agency, 2020). According to epidemiological

evidence, short- and long-term exposure to PM2.5 is associated with increased mortality and

cardiovascular diseases, even at low levels of exposure. While PM2.5 is included in PM10,

the former is deadlier because smaller-sized particles penetrate deeper into the respiratory

system. Furthermore, PM2.5 can easily penetrate indoors and affect indoor exposure to pol-

lution (Krebs et al., 2021), while PM10 cannot (Thatcher and Layton, 1995; Vette et al.,

2001). There is growing evidence that health effects from PM2.5 manifest even after very

short-term exposure, such as the hourly level (World Health Organization, 2016). Focusing

on these short-term effects, Deryugina et al. (2019) found that in the US, a 1 µg/m3 increase

in PM2.5 exposure for one day causes 0.69 additional deaths per million elderly individuals

over the three following days.

PM2.5 can be emitted directly or formed in the atmosphere. “Primary” particles are

directly emitted from different sources: in France, in 2015 52% of such PM2.5 emissions

come from the residential and tertiary sector (in particular from heating and wood burning),

20% from transport, 18% from manufacturing and 11% from agriculture (CITEPA, 2021).

3See https://atmo-france.org/lindice-atmo/ for more information.
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“Secondary” particles form in the atmosphere and result from the chemical reactions of

gaseous pollutants, including SO2 and NO2. PM2.5 can travel far (hundreds of kilometres)

and remain in the atmosphere for a long period of time (US EPA, 2018).

While the severe effects of PM2.5 justify our focus on this specific pollutant, the effect

of other pollutants are worth mentioning, especially since pollutants are often correlated

(see section 4 for a discussion of these correlations in the context of our study). Short-

term exposure to NO2 causes respiratory issues, and long-term exposure is associated with

respiratory diseases such as asthma and a potential increase in lung cancer. Short-term

exposure to SO2 also causes respiratory issues, but evidence on the effects of long-term

exposure are more mixed. For ozone, evidence on the effect of short-term exposure is mixed

- potentially due to the confounding effect of other pollutants in a multi-pollutant context.

Long-term exposure has been linked with cardiovascular, reproductive and developmental

effects, and to an increased risk of cancer and total mortality (World Health Organization,

2016).

In France, air quality is regulated via command-and-control regulation taking the form

of maximum concentration thresholds, both at the annual and 24-hour level. The legal

thresholds are defined at the European level and transposed into French law.4

Table 1 shows that the European standards were higher than the WHO recommenda-

tions for annual exposure to PM2.5. The average annual exposure in France was below the

European standards but more than twice higher than the WHO recommended thresholds in

2015. It was also 50% higher than exposure in the US, comparable to exposure in Germany,

and much lower than exposure in India and China.

Figure 1 shows aggregate trends in PM2.5 concentrations between 2009 and 2015, using

the pollution data presented in the next section. While concentrations have been decreasing

over time, they remained higher than the WHO threshold of 5 µg/m3 in almost all grid cells

4The French government must comply with these thresholds or risk incurring sanctions: in 2020, France
has been referred to the Court of Justice of the European Union for exceeding the daily thresholds for
particulate matter PM10 (European Commission, 2020)
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Table 1: PM2.5: legal standards and population-weighted exposure in 2015

Annual (µg/m3) 24-hour (µg/m3)

WHO recommendation 5 15

European standard 25 -

2015 exposure: France 12.5

Germany 12.7

United States 8.2

India 67.2

China 50.3

Notes: source for WHO standards: https://apps.who.int/iris/handle/10665/345329 ; source
for European standards: https://www.eea.europa.eu/themes/air/air-quality-concentrations/

air-quality-standards; source for population-weighted exposure in 2015: https://www.who.int/data/

gho/data/themes/air-pollution/modelled-exposure-of-pm-air-pollution-exposure

in 2015. Concentrations are especially high in areas such as the Centre-North (Paris area

and further North), the East (Alsace region) and the South-East (near the Alps and Rhone

region). Figures A.1 to A.3 show similar figures for the other pollutants.

2009 2011

2013 2015

(22,24]
(20,22]
(18,20]
(16,18]
(14,16]
(12,14]
(10,12]
(8,10]
[6,8]

Figure 1: Average annual concentrations of PM2.5 (µg/m3)

2.2 Sickness leave in France

In France, any worker who does not show up to work must provide a justification for her

absence. An absence caused by a sickness must be justified by a medical certificate, which
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must indicate the length of the leave and can be renewed if necessary. All private sector

employees are eligible to publicly funded sickness leave benefits (hereafter SLB) starting from

the fourth day of the sickness leave episode (hereafter SLE), as long as (i) they provide a

medical certificate; (ii) they have worked at least 150 hours in the past three months. The

daily SLB amounts to 50% of the daily gross wage, with a salary cap fixed at 1.8 times the

daily equivalent of the minimum wage. In 2015, the implied daily SLB cap was e43. The

SLB can be received for up to 365 days (and up to 3 years in the case of a long-standing

disease).

In addition to the publicly funded benefit, there exists an employer-funded allowance

with two components, one mandatory and one optional. The mandatory allowance is paid

to workers having worked at least one year for the company from day 8 of the sickness

leave. The allowance initially represents 40% of the daily gross wage, and decreases to 16%

after a period of between 30 and 90 days, depending on the workers’ seniority in the firm.

The allowance is paid for a maximum of between 60 and 180 days, again depending on the

worker’s seniority.

The optional allowance is negotiated in collective agreements at the firm- or industry-

level. It can cover any amount not already covered by the public or mandatory employer-

funded allowances. It is paid by the employer via an insurance fund (prévoyance entreprises).

According to survey evidence in Pollak (2015), two-thirds of private sector employees receive

this optional allowance, which most of the time guarantees a 100% replacement rate: typically

the allowance covers 100% of the daily wage in the first three days of leave, and the difference

between the daily wage and the other benefits from day 4 on.

To sum up, for a sickness leave episode of 29 days - the average duration in our sample -, a

worker working at a firm with an optional allowance receives 100% of her wage for the whole

period. A worker working at a firm with no optional allowance receives nothing between day

1 and day 3, the minimum between 50% of her wage and 43e between day 4 and day 8, and

the minimum between 90% of her wage and 43e+40% of her wage from day 8. Compared
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to countries without sickness leave coverage, the income loss associated with being sick is

low, especially for workers with generous collective agreements and optional allowance. This

might give workers an incentive to take sickness leave even with mild symptoms. In our

sample, 21% of workers have at least one SLE during a given year.

3 Data

3.1 Sickness leave episodes

We obtain data on sickness leave episodes (SLE) from the Hygie dataset. Hygie is a panel

dataset made of a random sample of former and current private sector employees born

between 1935 and 1989, having worked at least for one quarter. It combines administrative

data on health from the organization managing the public health insurance (CNAM) with

administrative data on employees’ careers from the organization managing the public pension

system (CNAV). We follow roughly 900,000 employees during the period 2009-2015.

For each individual, we know the exact start date and duration of each SLE, as well as

some characteristics such as age, gender, annual wage, contract type, and annual medical

expenditures. If the individual is employed, we have information on her exact workplace via

an establishment-level identifier used by all French administrations and called SIRET. This

has two advantages. First, it allows us to precisely geolocate the workplace and allocate

pollution exposure. Second, we can use this identifier to combine the Hygie panel with other

establishment-level data sets.

To build our sample of analysis, we make three restrictions. First, we only keep indi-

viduals to whom we are able to assign a place of work based on the establishment’s unique

identifier5. Second, we discard individuals whose establishment identifier corresponds to a

5This makes us discard two types of individuals: first, individuals with no employment history declared
between 2009 and 2015, who represent 25% of the sample. Although we cannot check the exact reason
(apart from those retired), these individuals are probably retired, unemployed or out of the labour force
over the whole period. Two-thirds of them should be retired in 2009 given their age; second, individuals
for whom we do not have an establishment identifier despite the fact that they did work and contribute
to the pension system over the 2009-2015 period, who represent 6% of the sample. Two third of these
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public institution such as hospital or schools, because we want to focus the analysis on pri-

vate sector employees6. Third, we discard the few individuals who did not work enough to

contribute to the public pension system for any of the years included in the period7. We

assign each individual to the postcode of her workplace (there are around 6,000 postcodes in

France). Figure A.5 shows the geographic distribution of the employees’ workplaces in 2009,

which is consistent with the distribution of the French population across the territory.

3.2 Workers’ flows

We use administrative data on workers’ flows called DMMO. All establishments having more

than 50 employees must report all workers’ inflows and outflows every quarter as well as the

type of inflow/outflow. Total inflows are the sum of hires on a permanent contract, hires

on a fixed-term contract, and transfers from another establishment of the same firm. Total

outflows are the sum of in the case of outflows, whether the worker resigns, is fired, retires, or

whether her fixed-term contract just comes to an end). We use the exact entry and exit dates

reported for each flow to build a monthly panel. The data also includes rich information on

the establishment’s sector of activity as well as the number of workers at the start and end

of each quarter. The process used to collect this administrative data changed in 2015, so

we only include the 2009-2014 period in our analysis. Over that period, there appears to be

some under-reporting of inflows and outflows for temporary contracts of less than a month.

Accordingly, we may not be able to accurately capture firms’ employment decisions for very

short-term contracts. Flows of temporary workers employed via an external temp agency

do not appear in the data, but establishment separately declare their stock of temp workers

every quarter.

individuals have zero employers declared over the period. They may have switched to the public sector or
to the agricultural sector or started their own business; or they may work in the domestic care sector, where
there is no establishment-level identifier (since these workers work for private individuals).

6Some individuals working in these institutions have a private sector type of contract and are thus eligible
to enter the Hygie sample.

7Each year these individuals worked less than 150 equivalent hours valued at the minimum wage per
year, which is the minimum to contribute to public pension. With such a low labour supply, they are unlikely
to experience sickness leave episodes.
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We only include establishments reporting in DMMO which also appear in the final dataset

on sickness leave (using the establishment identifier), having in mind to link the workers’

absenteeism response to the establishment’s employment decisions. We discard the estab-

lishments for which we do not observe any worker in the sickness leave dataset. We then

build a monthly panel including, for each establishment, the stock of workers at the start of

the month and flow of entries and exits broken down by cause. We assign each establishment

to its postcode.

3.3 VAT declarations

We obtained the exhaustive set of French firms’ monthly VAT records, where we observe the

gross VAT paid every month and the components used to calculate it. Firms’ sales is one of

these components. The analysis of this dataset is ongoing.

3.4 Pollution and Weather

We use air pollution data from the French National Institute for Industrial Environment and

Risks (INERIS), which provides gridded reanalysed historical pollution data for metropolitan

France (Real et al., 2021). Using a kriging method that combines background measurements

of air quality from monitoring stations and modeling with the chemistry-transport model

CHIMERE, Real et al. (2021) produce hourly concentrations of PM2.5, PM10, NO2, and O3

with a spatial resolution of approximately 4 km x 4 km for the period 2000-2015. We refer

to the grid scale of this pollution data as delimited by the “Chimere grid cell”. There are

33,252 Chimere grid cells in metropolitan France.

Gridded reanalysed pollution data are better suited to capture the average pollution

exposure for the residents in a grid cell than pollution-monitor readings. Indeed, monitors

are often sparsely placed and may capture locally produced pollution that does not reflect

the pollution exposure of all the residents in a given grid cell. By contrast, reanalysed data

combine these monitor readings with a chemistry-transport model that takes account of all
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sources of pollution to give a measure of average exposure. As a result, these data probably

suffer less from measurement error. It is particularly suited to examine PM2.5 exposure as

the network of PM2.5 monitoring stations is even more sparse than for other pollutants in

France: over the study period, there are between 62 and 105 background monitoring stations

measuring PM2.5 concentrations; between 173 and 251 measuring PM10, between 318 and

385 measuring ozone, and between 282 and 337 measuring NO2. The reanalysis takes into

account the correlation between PM2.5 and PM10 using a co-kriging method, allowing the

PM2.5 estimation to benefit from the higher density of PM10 monitoring stations.

We use gridded weather data derived from satellite observations, coming from two sources.

We obtain daily average precipitations, minimum, maximum and average temperatures at

the 11 km x 11 km scale from the E-OBS dataset of the Copernicus Climate Change Service

(C3S), an information service provided by the Copernicus Earth Observation Programme

of the European Union.8 There are 6,453 Copernicus grid cells in metropolitan France.

Finally, we obtain hourly wind speed and wind direction data at the 50 km x 50 km scale

from MERRA (the Modern-Era Retrospective analysis for Research and Applications), a

NASA research project providing satellite-derived reanalysis data.9 There are 247 Merra

grid cells in metropolitan France. We average wind speed at the daily level. For wind

direction, we sum the number of hours in the day where wind blows in a given direction,

with four directions: North (direction below 45°or above 315°), East (between 45° and 135°),

South (between 135° and 225°) and West (between 225° and 315°). In total, we have three

different grid cell sizes across the different weather and pollution data: from the smallest

to the largest, Chimere (pollution), Copernicus (temperature and precipitation) and Merra

8We acknowledge the E-OBS dataset from the EU-FP6 project UERRA (https://www.uerra.eu) and the
Copernicus Climate Change Service, and the data providers in the ECA&D project (https://www.ecad.eu).
The data can be downloaded from: https://surfobs.climate.copernicus.eu/dataaccess/access_

eobs.php
9We acknowledge using the data from Global Modeling and Assimilation Office (GMAO) (2015),

MERRA-2 tavg1 2d flx Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Surface Flux Diag-
nostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES
DISC), Accessed: January 2021, 10.5067/7MCPBJ41Y0K6. See https://disc.gsfc.nasa.gov/datasets/
M2T1NXFLX_5.12.4/summary.

12

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
https://disc.gsfc.nasa.gov/datasets/M2T1NXFLX_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXFLX_5.12.4/summary


(wind direction and wind speed). Figure A.10 gives an idea of the relative size of the different

grids for one of the 22 French regions.

3.5 Final datasets

Weekly worker-level dataset: In the weekly dataset, we combine the sickness leave

data with the pollution and weather data based on the workplace postcode and a spatial

matching between postcodes, Chimere, Copernicus and Merra grids (we assign one single

Chimere and one single Merra grid to each postcode, based on the postcode’s centroid). We

thus allocate pollution exposure based on the location of work, rather than on the place

of residence, which we do not observe. We expect the difference in exposure at workplace

and at place of residence to be small because most workers live close to their workplace.

We compare the distribution of pollution exposure on the workplace and on the place of

residence for the population of French workers (of which our worker-level dataset is drawn)

using exhaustive matched employer-employee data (called DADS-Postes). As shown on

figure 2, the two distributions almost overlap, which indicates that our measure of workers’

exposure is probably very close to their exposure at home10.

Whether measured at the workplace or at the place of residence, any static measure

of exposure introduces a measurement error in the attribution of exposure to air pollution

because it neglects exposure from all other places visited during the day. As previously

noted in the literature, this measurement error likely produces an attenuation bias in the

estimation of pollution impacts. We discuss this issue further in section 4.

We aggregate daily observations at the weekly level to ease computational require-

10We also compare exposure between workplace and residence for each quintile of the wage distribution,
having in mind that different income groups sort differently across space and that this may introduce a greater
measurement error for some groups than others. For example, if high-income workers work predominantly in
dense polluted city centres but live predominantly in green low-pollution suburban areas while low-income
workers live closer to their workplace, the error in the allocation of exposure would be larger for high-income
workers. Figure A.4 shows the difference in exposure by quintile of hourly wage in 2009. The distributions
are again very close for all quintiles, with a slightly higher exposure at work than the place of residence for
the top quintile
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Figure 2: Distribution of weekly PM2.5 exposure on the workplace vs the place of residence
(µg/m3), all French workers, 2009

Notes: the sample includes all private sector workers from the exhaustive matched employer-employee data
of 2009, who work in a postcode where we observe at least one individual from the sickness leave dataset
(N≈13,000,000). For reasons of statistical confidentiality, the few postcodes with fewer than 11 workers were
dropped (<0.4% of workers).
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ments.11. The final sample is a weekly unbalanced panel of around 450,000 individuals

working in close to 430,000 private sector establishments over the period considered. The

annual sample size varies from around 367,000 in 2009 to 317,000 in 2015, as the panel ages

and more and more individuals reach retirement age. Table 2 shows summary statistics for

the weekly sample at the individual level. Employees in our sample are 55 percent male, 40

years old on average, earn an average annual gross wage of 25,865 euros and 75 percent are

full time employed.

We use the exhaustive matched employer-employee data to compare the characteristics

of our sample of workers to the characteristics of the whole population of private sector

employees. If we apply the same age restrictions to the exhaustive matched employer-

employee data12, we find that those workers representing the population from which our

sample is drawn are 55% male, 41 on average, and earn an average annual gross wage of

26,204 euros. Thus, the average individual in our final worker sample is very close to the

average private sector employee.

At the postcode level, the average PM2.5 exposure over the study period is 15.3 µg/m3.13.

Figure 3 shows the distribution of weekly exposure. The recommended threshold of 15µg/m3

for daily exposure set by the WHO is often exceeded, as that level is already exceeded at the

weekly level for 39% of the worker-weeks. The threshold is exceeded at least once in every

single postcode.

21 percent of employees take at least one sickness leave episode within a year14. The

average sickness leave episode lasts 29 days and costs 808 euros in public sickness leave

11Access to the data is obtained through the CASD (Secure Data Access Center), which provides the
service of making confidential data sets available to researchers using a secured server, for which there are
constraints on the size devoted to each project, thereby computational constraints.

12keeping only private sector employees, only workers born between 1935 and 1989 and removing those
older than 71, who should be retired. Note that in the matched employer-employee data, a worker having
two different employers appears twice. We aggregate wage information at the worker level, summing up the
wages she receives from different employers.

13In 2015, it is 12.5 µg/m3 in 2015, the same as the population-weighted annual exposure reported by the
WHO for that year (see Table 1)

14A national survey on Working Conditions estimated that 28 percent of private sector em-
ployees in France took at least one sick leave during 2013. Source: https://www.fonction-
publique.gouv.fr/files/files/statistiques/rapports annuels/2015/RA2015 dossier 1.pdf
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benefits, whereas the median duration is only 9 days and the median spending 183 euros.

On average, the number of workers starting a sickness leave episode on a given week is 5.9

per 1,000 workers. The number of sick days associated with weekly entry in sickness leave

is 168 per 1,000 workers, and the associated spending is 4,742 euros per 1,000 workers.

Table 2: Summary statistics at the worker (top), sickness leave episode (middle), and post-
code (bottom) level, 2009-2015

Mean Sd Median Count

Share men 0.55 0.50 2,408,715

Age 40.44 10.98 40 2,408,715

Annual gross wage (e) 25,865 26,155 22,467 2,408,715

Share full-time employed 0.75 0.43 2,408,715

Share with at least one SLE in a year 0.21 0.40 2,408,715

Nb. SLE per year.worker 0.31 0.73 2,408,715

SLE duration (days) 29 69 9 753,522

SLE benefits (publicly-funded component) (e) 808 2,291 183 753,522

Weekly exposure to PM2.5 at workplace, average 2009-2015 (µg/m3) 15.3 8.4 13.0 1,875,939

Nb. workers starting sickness leave episode per week (per 1,000 workers) 5.9 9.7 4.1 1,875,939

Nb. sickness days starting per week (per 1,000 workers) 168 755 53 1,875,939

Sickness leave benefits starting per week (per 1,000 workers) 4,742 23,549 1,085 1,875,939

Notes: We add median values for the continuous variables only. For statistics at the postcode level (bottom),
observations are weighted with the number of individuals working in that postcode.

Monthly establishment-level dataset In the monthly dataset, we combine establishment-

level information on the monthly inflow and outflow of workers, broken down by category,

with weather and pollution information averaged at the monthly level. The two main out-

comes are the total monthly inflow of workers joining an establishment and the total monthly

outflow of workers leaving the establishment. We also examine specific categories of inflows

and outflows which we expect to be affected by a pollution shock.

If establishments experience a decrease in output and profits on a polluted month, we

expect them to adjust by slowing down new hires, especially those on a permanent contract,

and potentially try to increase the outflow of workers. Although firing workers is costly in

France, firms can decrease payroll by i)not renewing an expiring temporary contract ii)letting
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Figure 3: Workers’ weekly exposure to PM2.5 (µg/m3), 2009-2015

Notes: The red vertical line shows the 24-hour WHO recommended threshold at 15µg/m3.

go workers after a probation period.

If, on the other hand, establishments try to compensate worker absenteeism, one margin

of adjustment would be to hire more workers on temporary contracts. Another margin could

be to decrease separation from existing workers. We might then observe an increase in

the inflow of workers on temporary contracts and/or a decrease in the outflow of workers.

Overall, the effect of a pollution shock on labour flows is ambiguous. It probably affects as

well as is affected by the elasticity of output/sales to pollution, which we will examine with

the VAT data.

The final sample is a monthly unbalanced panel of around 55,000 establishments over

2009-2014. Table 3 shows summary statistics for the establishment-level sample. The average

establishment has 166 employees, with monthly inflows and outflows of 7-8 workers. 70% of

the establishments are active in the service sector, 25% in the manufacturing sector, 7% in

the construction sector and 0.03% in the agriculture sector. Monthly exposure to pollution

of their workers is close to the exposure observed for the worker-level dataset. The higher

median is probably explained by the fact that the 50+ workers establishments are located

in denser and more polluted areas than smaller establishments.
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Table 3: Summary statistics, establishments with more than 50 workers employing at least
one individual from the Hygie dataset, 2009-2014

Mean Sd Median Count

Stock of workers 166 299 97 2,509,197

Sector (%): Agriculture 0.03 2,509,197

Construction 7.0

Manufacturing, of which: 25.0

Manufacture of food products, beverage and tobacco 3.6

Manufacture of coke and refined petroleum products 0.08
Manufacture of computer, electronic and

optical products, machinery and equipment 4.0

Manufacture of transport equipment 1.5

Manufacture of other products 13.3
Mining, quarrying, energy and water supply

, waste management 2.2

Service, of which: 70.0
Wholesale and retail trade;

repair of motor vehicles and motorcycles 17.1

Transportation and storage 7.3

Accommodation and food service activities 2.5

Information and Communication 4.4

Financial and insurance activities 4.1

Real estate activities 1.1
Professional, scientific and technical activities;
administrative and support service activities 12.6
Public administration and defence; compulsory social security;

education, health and social work 16.5

Other service activities 2.5

Monthly inflow of workers, of which: 7.7 34.5 2 2,509,197

hires temporary contract (%) 58.4

hires permanent contract (%) 35.0

transfers (%) 6.6

Monthly outflow of workers, of which: 7.2 32.7 2 2,509,197

temporary contracts coming to an end (%) 43.2

resignations (%) 17.5

lay-offs (%) 16.0

pre-retirements or retirements (%) 7.3

transfers (%) 7.2

others (%) 4.0

Mutual agreement layoff (%) 4.8

Quarterly stock of workers from temp agencies 5.4 22.5 0 2,598,879

Monthly exposure to PM2.5, 2009-2014 (µg/m3) 15.6 6.4 13.9 2,598,879
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4 Empirical strategy

4.1 Air Pollution Impacts on Sickness Leave Episodes

Our first objective is to estimate the impact of short-run exposure to fine particulate matter

on sickness leave outcomes, net of any potentially confounding factors. We aggregate the

data at the grid cell level to ease computational requirements. The grid cell level is also the

scale at which we observe pollution. We focus on three sickness leave outcomes at the grid

cell level: the number of workers starting a SLE, per 1,000 workers ; the associated number

of sick days per 1,000 workers, and the associated sickness leave benefit spending.

We model this relationship using the following equation:

Yg,t = α + βPM2.5g,t +Wg,tγ + hd,tδ + νg + θq,y + ϵg,t, (1)

where the dependent variable Yg,t is the sickness leave outcome measured at time t and in

grid cell/postcode g . the parameter of interest is β, the coefficient on weekly PM2.5g,t

concentration in grid cell g.

The high granularity of our data allows us to include multiple sets of high-dimensional

fixed effects. We generate indicators for weekly average of the daily maximum temperatures

falling into 1 of 8 bins15. We do the same for wind speed and rainfall, for which we compute

indicators for each quintile of these variables. We then generate a set of indicators for all

possible interactions of these weather controls and include it in all our regressions as Wg,t.

Our estimates also include a vector of departement-level time-varying variables hd,t, including

school holiday dummies and the estimated number of flu cases per 100,000 individuals in

the departement d where grid cell g falls into (where the departement is an administrative

and jurisdictional unit).16 The grid cell fixed effects νg control for cross-sectional geographic

15The bins span 5°C each, except for the first bin including all negative temperatures, and for the eighth
bin including all temperatures above 30 °C

16In metropolitan France, the median size of a departement is 5 880 km2, which is equivalent to 3.5 times
the size of a median US country.
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differences in working population and pollution at a very fine level (approximately 4 km by

4 km). Finally, quarter-by-year fixed effects θq,y control flexibly for common time-varying

shocks, such as those induced by regulation. We cluster all standard errors ϵg,t at the grid

cell level and weight all estimates by the number of workers present in the grid cell a given

year.

Since our identification relies on within-grid cell variations, we need to have enough

variation in pollution over time within a grid cell. Figure A.9 shows the week-on-week

variations in PM2.5 levels for four grid cells, two in urban areas and two in rural areas. In

cities, the average week-on-week variation is around 6 µg/m3, which represents 80% of the

SD for the whole sample. Pollution levels are lower on average in rural areas but week-on-

week variations are still quite high, around 4 µg/m3 on average, which represents 50% of an

SD.

OLS estimates of equation (1) are prone to bias because exposure to PM2.5 is likely to

be measured with error and not to be randomly assigned. Indeed, as mentioned above, pol-

lution exposure based on the workplace location is a static measure that potentially suffers

from a classical measurement error which gives rise to an attenuation bias. Also, individuals

may take into account air pollution concentrations when choosing where to live, and this

sorting behavior may induce a bias in the OLS estimates upward or downward, depending

on how individuals sort.17 There may be an upward bias if, for example, poorer individuals

with a usually worse health status live (and work) in relatively more polluted areas, where

housing prices are lower. There may also be a downward bias if individuals who are more

vulnerable to pollution sort themselves into places that are less affected by pollution. Addi-

tionally, there may be other omitted variables influencing both the formation of pollutants

and health. For example, ozone formation is more frequent under high temperatures, and

high temperatures can lead to heat waves having detrimental effects on health. Finally, there

17This has been well-documented in the literature on residential sorting (see, eg. Banzhaf et al. 2019;
Lee and Lin 2018). To the extent that pollution levels at the workplace and at the place of residence are
correlated, residential sorting implies that pollution levels at the workplace is also not randomly assigned.
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may be a simultaneity bias if high absenteeism levels lead to a lower economic activity and

lower commuting, thereby decreasing local pollution levels.

We can partly address these concerns with the use of appropriate fixed effects and control

variables. In particular, controlling for weekly variations in temperature, precipitation or

wind speed at the grid cell level absorbs the joint effect of weather conditions on pollution

and health. Similarly, local school holidays may influence pollution concentrations and the

propensity to start a SLE. Controlling for quarter-by-year and departement-week fixed effects

is important to capture time-specific shocks influencing both pollution and absenteeism - an

example of such shock is the Covid-19 epidemic and associated lockdowns or the flu epidemic.

In our main specification, we control for grid cell fixed effects to capture time-invariant area-

specific characteristics, such as the demographic and socio-economic composition of an area

(gender, age profile, socio-economic status); but, in a robustness test, we also control for

grid-year fixed effects to allow for this composition to vary over the years.18

To address remaining potential biases, we rely on an instrumental variable approach

exploiting week-to-week variations in wind direction at the grid cell level, in the spirit of

Deryugina et al. (2019); Anderson (2020). The validity of our IV estimation rests on two

conditions. First, pollution needs to be sufficiently correlated with changes in wind direction.

Intuitively, pollution travels in the air and pollution particles are very light, such that wind

direction is likely to influence pollution concentrations. Suppose that for each grid cell, there

is one main source of pollution (e.g., a power plant or a manufacturing firm), hence only the

direction of the wind that comes from that source will increase pollution concentration. Sec-

ond, the exclusion restriction requires that wind directions should only affect the propensity

to start a SLE via its effect on air pollution. The specification of our first stage is:

18Ideally, we would take advantage of the individual panel dimension and use individual-fixed effects.
However, the resulting dataset is very large and all the regressions need to be run from a secure server with a
limited computational capability. We have been unable to run regressions with individual fixed effects thus
far.
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PM2.5g,m,t = α +
4∑

j=2

K∑
k=1

βjkWINDj,k,t1(k = m) +Wg,tγ + hg,d,tδ + νg + θq,y + ϵg,m,t (2)

where PM2.5g,m,t is the average PM2.5 concentration in grid point g located in Merra grid

m at time t. The excluded instruments are WINDj,k,t1(k = m), where each variable in the

set WINDj,k,t corresponds to the number of hours in week t where the wind comes from

direction j, with j = 1 being wind blowing from the South (omitted category), j = 2 from

the West, j = 3 from the North, and j = 4 from the East.19 The variable 1(k = m) is an

indicator for Chimere grid cell g to be included in Merra grid cell m, with K being the total

number of Merra grids. The coefficient on their interactions, βjk, is the parameter of interest

for the first stage and is allowed to vary across Merra grid cells. The other control variables

are defined as in equation (1).

For the identification of the βjk, we rely on the week-to-week variation in wind direction

within a Merra grid cell and a quarter-year. Figure 4 illustrates the magnitude of these

short-term variations. For example, the upper left panel indicates that in Merra grid cell

#1, wind blew disproportionately more from the South and the West, and less from the

East, in January 2009 (red bar) compared to the average first quarter of 2009; by contrast,

the lower left panel indicates that, for the same grid in a different month (June), wind

blew disproportionately more from the East and less from the North and the West in 2015

compared to the average of the quarter (light blue), while variations were more limited in

2009 (red) and 2012 (dark blue). The patterns differ across Merra grid cells within a given

month. This Figure suggests there is a large amount of variation in wind direction within a

given Merra grid cell within a quarter.

Weak instrument bias is not a concern in our setting. We formally show that local

variations in wind direction are a strong predictor for local PM2.5 concentrations. Figure 5

19We decompose the 360 degrees of a compass into 90-degree quadrants corresponding to a main direction.
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Figure 4: Variation in wind direction

Notes: Figure shows the number of hours in a month in which the wind blows from a given direction,
demeaned by the average for the quarter that month is part of, for three different Merra grid cells (1, 100,
and 200), two different months (January or Month 1 in the upper panel and June or Month 6 in the lower
panel), and three different years (2009, 2012, 2015).

plots the magnitude of the 711 β̂jk coefficients (3 wind directions x 237 Merra grids) obtained

with an OLS regression on equation (4), against their t-stat. Only few point estimates are

not statistically significant at the 95% level, and most coefficients have a large t-stat. The

F-statistic of the first stage is 4,077, way above the recommended threshold value of 104.7

for weak instrument detection (Lee et al., 2021).

Figure 6 shows a map of the estimated coefficients. Compared to wind from the South

(the omitted category), winds blowing from the West (coming from the Atlantic ocean)

significantly decrease pollution levels in all grid cells, which is quite intuitive since the ocean

does not contain many sources of air pollution. By contrast, winds blowing from the East

increase pollution in the North-West, and decrease pollution in the South, relatively to

Southern winds. Note that wind blowing from the South may bring dust from the Sahara,

thereby increasing the PM2.5 concentrations.20

20France does not report these dust events to the EU even though there is a EU directive that allows
countries to do so to disentangle external pollution from nationally produced pollution.

23



-.1

-.05

0

.05

.1

Po
in

t E
st

im
at

e

0 100 200 300 400
t-stat

Wind from West Wind from North Wind from East

Figure 5: Point estimates and t-stat for each β̂jk

Notes: The estimated coefficients β̂jk express the average increase in weekly PM2.5 in a given Merra grid
when wind blows one additional hour from direction j compared to blowing from the South. The red vertical
line is set at x=1.96 and the black horizontal line at y=0.

In our context, the biggest threat to the exclusion restriction is that other pollutants that

also affect health co-vary with wind direction. Of the four other regulated air pollutants (SO2,

NO2, PM10 and ozone) that may impact sickness leave, SO2 and NO2 are primary pollutants

that convert to particulate matter within two or three days; thus we cannot estimate their

effect on health independently given our aggregation of the pollution data at the weekly

level. PM10 is highly correlated with PM2.5 (Pearson correlation coefficient: ρ=0.93) and

actually includes PM2.5. Finally, ozone is a pollutant that is typically anti-correlated with

other pollutants due to how it is formed in the atmosphere: ozone results from the chemical

reaction between solar radiation, nitrogen oxide and volatile organic compound (Nasa Earth

Observatory, 2003). In our data, the correlation coefficient between weekly PM2.5 and ozone

is ρ=-0.3. Figures A.6-A.8 illustrate this anti-correlation by showing the seasonality of ozone,

PM2.5 and NO2 concentrations: while PM2.5 and NO2 concentrations peak in winter, ozone

peaks in spring and summer. In section 6.1, we check whether our results change when we
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Figure 6: Map of the β̂jk

Notes: The estimated coefficients β̂jk express the average increase in weekly PM2.5 in a given Merra grid
when wind blows one additional hour from direction j compared to blowing from the South.
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add ozone as an additional endogenous regressor in the two-stage least square estimation.

In Appendix A.1, we test whether our results are robust to specicying a Poisson model,

assuming non-linear effects of pollution on health, instead of a linear model.

4.2 Plant-Level Response to Air Pollution Shocks

Our strategy to examine plant-level responses to pollution differs from the weekly analysis

described above in two ways:: first, we now rely on month-to-month variation in wind

direction and pollution, instead on week-to-week variations. Second, we allow pollution to

affect labour flows with a lag. This seems realistic given that a hiring or separation process

takes some time. In practice, we examine the relationship between pollution on month t and

the average of labour flows over month t, t+ 1 and t+ 2. We also aggregate the data at the

grid cell level g given computational constraints.

We model the relationship between monthly pollution PM2.5g,t on month t and grid cell

g and workers’ flows Yg,t in establishments located in that grid as follows:

Yg,t = α + βPM2.5g,t +Wg,tγ + hd,tδ + νg + θq,y + ϵg,t, (3)

Yg,t represents the average of the labour flow outcome over month t, t + 1 and t + 2.

The labour flow outcome observed at month t, for all t, is the flow measured in number of

workers divided by the sock of workers in the establishment at the beginning of the month.

In terms of flow types, we examine total inflows, total outflows, as well as specific categories

of inflows and outflows which we expect may be affected by a pollution shock.

The vector Wg,t is now a set of weather indicators combining all the possible interactions

between bins of monthly average of daily maximum temperature and quintiles of monthly

wind speed and monthly precipitation. The vector of departement-level time-varying vari-

ables hd,t now includes the share of days in the month where there are school holidays in that

departement and the share of incidence of flu in the departement d where grid cell g falls into.
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Like in the specification at the weekly level, the grid cell fixed effects νg control for cross-

sectional geographic differences in working population and pollution, and quarter-by-year

fixed effects θq,y control flexibly for common time-varying shocks. We cluster all standard

errors ϵg,t at the grid cell level and weight all estimates by the number of establishments in

each grid cell-month.

To avoid that the effect of pollution on labour flow in the following two months captures

changes in weather, holiday and flu conditions in these two months, we also control for two

leads of the instrument and two leads of the holiday and flu epidemic variables.

The specification of the first stage is now:

PM2.5g,m,t = α +
4∑

j=2

K∑
k=1

βjkWINDj,k,t1(k = m) +Wg,tγ + hd,tδ + νg + θq,y + ϵg,m,t (4)

where PM2.5g,m,t is the average PM2.5 concentration in grid point g located in Merra grid m

in month t. The excluded instruments are still WINDj,k,t1(k = m), but now each variable

in the set WINDj,k,t corresponds to the number of hours in a month t where the wind comes

from direction j rather than a week. The variable 1(k = m) is an indicator for Chimere grid

cell g to be included in Merra grid cell m, with K being the total number of Merra grids.

The βjk is the parameter of interest for the first stage at the monthly level and is allowed to

vary across Merra grid cells. The other control variables are defined as in equation (3).

In spite of aggregating at the monthly level, we still have a strong first stage. The F-

statistic is 1,036, and 84% of the β̂jk coefficients are statistically significant at the 5% level.

The estimated coefficients are also consistent across the two estimations: for a given Merra

grid cell, they have the same sign in the monthly as in the weekly specification in 99% of the

cases for the wind direction West, 59% of the cases for the wind direction North, and 64% of

the cases for the wind direction South. The monthly-level first stage does not include 2015

while the weekly-level dataset does, so the two are not completely comparable.
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5 Results

5.1 Pollution and Sickness Leave

Main results Table 4 reports the OLS and 2SLS estimates of the relationship between

PM2.5 concentration and the three sickness leave outcomes. While the OLS coefficients

reported in odd-numbered columns are relatively small in magnitudes and not always statis-

tically different from zero, the IV coefficients reported in even-numbered columns are positive

and quite precisely estimated. From column (2), an increase by 1 µg/m3 of weekly PM2.5

concentrations is predicted to increase the number of workers starting a sickness leave that

week by 0.03 per 1,000 workers, starting from a baseline average of 5.9 per 1,000 workers.

This corresponds to a 0.55% increase. Put differently, a one standard deviation increase in

PM2.5 increases the share of workers starting a SLE that week by 4.6%. The results by Holub

et al. (2021) – the closest paper to ours – indicate that a one standard deviation increase in

PM10 increases the weekly absence rate by 1.4%. Since PM2.5 is known to be more damaging

for health than PM10, it would be logical to obtain a larger magnitude in our case. However,

we cannot directly compare the two results because Holub et al. (2021) use a different IV

strategy and measure the share of sickness leaves by including all sickness leaves (even ones

that started earlier) whereas we only consider the share starting sickness leave on a given

week.

Columns (3) and (4) report the OLS and 2SLS estimates of the relationship between

PM2.5 concentration and the average number of sickness leave days per worker. An increase

by 1 µg/m3 in weekly PM2.5 pollution is predicted to increases the number of sickness leave

days by 0.943 days per 1,000 workers. This corresponds to a 0.56% increase compared to

the variable mean.

Finally, columns (5) and (6) report the OLS and 2SLS estimates of the relationship

between PM2.5 concentration and the average amount of public sickness leave benefit per

worker. We can expect the result on sickness leave benefit to differ from the result on sickness
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Table 4: Pollution and sickness leave outcomes - OLS and IV

Workers starting
sickness leave

Number of
sickness days

Sickness leave
benefit

(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

PM2.5 0.00388** 0.0321*** 0.194 0.943*** 7.37* 28.3***

(0.00137) (0.00299) (0.100) (0.24) (3.30) (7.97)

Weather controls Yes Yes Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes Yes Yes

Quarter-year FE Yes Yes Yes Yes Yes Yes

Chimere grid cell FE Yes Yes Yes Yes Yes Yes

Dependant variable mean 5.9 5.9 168 168 4,742 4,742

N 1,869,578 1,869,578 1,869,578 1,869,578 1,869,578 1,869,578

1st stage F-statistic 6,538 6,538 6,538

Notes: The unit of observation is the postcode x week. All estimates are per 1,000 workers. Estimates are
weighted by the number of workers in each postcode. Robust standard errors clustered at the chimere grid
cell level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

leave days due to two factors: first, the first three days of leave are not compensated, so we

could see a lower increase in sickness benefits than in sickness days if the pollution-induced

leaves are predominantly short. Second, the amount of sickness benefit is linked to the

worker’s wage, as explained in section 2. If pollution-induced sickness leave spells affect

more high-wage workers than the average sickness leave spell, we could see a higher increase

in sickness benefits compared to the increase in sickness leave days. We find that an increase

by 1 µg/m3 in weekly PM2.5 pollution increases the average sickness leave benefit spending

per 1,000 worker by 28.3e. This corresponds to a 0.6% increase compared to the variable

mean, slightly higher than the percent change in terms of sickness leave days.

Benefits of reduced pollution A back-of-the-envelope calculation illustrates the policy

relevance of these results. In particular, we can estimate the benefits of meeting the WHO

targets in terms of avoided sickness days and avoided sickness leave benefit spending. Over

our 7-year study period, the 15µg/m3 threshold is exceeded for 39% of the worker-weeks (the

part of the distribution to the right of the red line on Figure 3), corresponding to close to 52

millions worker-weeks. We compute, for each grid cell-week, (i) the decrease in PM2.5 that
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is required to meet the 15 µg/m3 threshold; (ii) the associated number of avoided sickness

days; (iii) the associated avoided sickness leave benefit spending.

Regarding step (i), bringing each grid cell-week exceeding the 15µg/m3 threshold to a

PM2.5 level of 15µg/m3 implies decreasing pollution by 7.6 on average for those observations.

For the entire sample, such a decrease would imply a 18% decrease in annual pollution

concentrations, compared to the levels observed over 2009-2015.

To calculate (ii) and (iii) for a given grid cell-week, we simply multiply the estimated

coefficient from columns (4) and (6) of table 4, respectively, by the required decrease. This is

conservative because estimates from table 4 is the average marginal effect estimated from the

whole distribution of PM2.5 levels ; actually, the marginal effect of pollution on the number

of sickness days is likely to be non-linear and increasing with the initial level of pollution.

We estimate that 63,426 days of sickness leave would have been avoided every year if none

of the grid cell-weeks had had pollution above 15 µg/m3. Scaling it to the actual population

of 18,730,000 private sector employees, this corresponds to 2.9 million sickness days per

year21.In terms of sickness leave benefit, not exceeding this threshold would have avoided 88

million euros of spending every year, at population scale. Given that total benefits related

to sickness leaves amounted to e7,091 million each year over the period (DREES, 2020),

respecting the WHO standard could have saved 1.2% of that cost. This is only including

the short-term effects of pollution on absenteeism. Respecting the WHO standards would

probably also have long-term health benefits translating in reduced absenteeism, a benefit

that we are unable to capture in the present analysis.

In addition to the publicly funded SLB, employers pay the mandatory employer-funded

allowance, and the optional allowance for 2/3 of the employees. With an average SLE

duration of 29 days and an average daily wage at 71e in our sample, we calculate that

meeting the WHO threshold would have saved an annual 110 million euros for firms, only

21Our sample has on average 344,052 individuals per year, 1.84% of the total population of private sector
employees, 18,730,000 workers in 2015. (See INSEE: https://www.insee.fr/fr/statistiques/2496914).
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in terms of avoided sickness benefit spending.22

There is an additional cost to the spending related to sickness leave insurance: that in

terms of foregone production due to workers’ absenteeism. In the second part of the analysis,

we focus on outcomes at the establishment level. Some of these results are still preliminary,

so it is useful to value this foregone production at the daily wage rate, in a first step. Valued

at a daily wage of 133 euros per working day23, the cost of failing to meet the WHO standards

is 391 million euros in terms of foregone production.

5.2 Pollution and workers’ flows

Main results Tables 5 and 6 show the results from running a 2SLS regression on the

model described in equation 3. From column (1) of table 5, a one-unit increase in average

PM2.5 levels on month t decreases workers’ inflow rate by 0.21 percentage points on average

over the current and following two months. This corresponds to a 3% decrease relative to

the average inflow rate of 6.8 percent. Put differently, a one standard deviation increase in

monthly PM2.5 decreases the inflow rate of new workers by 19%.

The decrease is driven by a small decrease in the hiring rate of workers on permanent

contracts (column (3)) and by a large decrease in the rate of transfers of workers from

other establishments belonging to the same firm (column (4)). Establishments faced with a

pollution-induced productivity/production shock seem to cope by reducing the most costly

and long-term labour inflows. For multi-establishment firms, slowing down transfers from

other establishments is another way to cope.

From table 6, we fail to detect any effect of pollution on workers’ outflows. The results by

category of outflow suggest rather a decrease in outflows, especially those at the discretion

of the employer: we see a small significant decrease in the separation rate due to a failed

22the avoided 2.9 million of sick days per year correspond to 2, 900, 000/29 = 101, 484 avoided sickness
leave episodes. The average daily wage in our sample is 25, 865/365 = 71e. Thus, the benefit of avoiding
one 29-day SLE for private sector employers is approximately (29− 7) ∗ 0.4 ∗ 71+ (2/3)[3 ∗ 71+ 4 ∗ 0.5 ∗ 71+
(29− 7) ∗ 0.1 ∗ 71] =e1,084. The avoided spending is 1, 084× 101, 484 = 110, 008, 656

23This measure of wage is per working day, with 260 working days per year, while the measure of hourly
wage used for calculating sickness leave benefit is per calendar day
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Table 5: Pollution and workers’ inflows - IV

(1) (2) (3) (4)

Total

Temporar
contract
hires

Permanent
contract
hires Transfers

PM2.5 -0.204** -0.0327 -0.0159* -0.156**

(0.0747) (0.0499) (0.00686) (0.0561)

Weather controls Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes

Quarter by Year FE Yes Yes Yes Yes

Chimere grid FE Yes Yes Yes Yes

Dependent variable mean 6.8 5.3 1.0 0.5

N 255,500 255,500 255,500 255,500

1st stage F-statistic 1,036 1,036 1,036 1,036

Notes: Estimates are weighted by the number of establishments in each grid cell. Robust standard errors

clustered at the chimere grid level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. Outcomes and

point estimates have been scaled by a factor 100 to improve readability. The outcomes are standardized by

the stock of workers. For example, the inflow outcome designate the share of new workers in the plant as a

share of the stock of workers in the beginning of the month.

probation period or a layoff, and a decrease in transfers to other establishments.

One interpretation could be that establishments faced with a pollution shock cope with

the associated absenteeism by retaining existing workers more. Analyses by sector and taking

into account the vulnerability of establishments to pollution-induced absenteeism (based on

their workers’ characteristics) are ongoing. They will help explain the mechanisms at play.

5.3 How are the costs distributed? Heterogeneity analysis

5.3.1 Heterogeneity of the pollution-sickness leave response

By initial health status: We expect to see a stronger effect of pollution on sickness leave

for individuals with an initially poorer health status. While we do not observe workers’

health status, we observe their annual healthcare costs in terms of medical visits (except

hospitalisations and dentists) and medical drug purchase. Importantly, we observe both

the total healthcare costs and the out-of-pocket payments, from which we can infer the
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Table 6: Pollution and workers’ outflows - IV

(1) (2) (3) (4) (5)

Total Resign
End of
contract

End of
probation
and layoff Transfers

PM2.5 -0.0363 -0.0011 -0.0099 -0.0032** -0.0044**

(0.0502) (0.00084) (0.0024) (0.0083) (0.00145)

Weather controls Yes Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes Yes

Quarter-year FE Yes Yes Yes Yes Yes

ID Chimere FE Yes Yes Yes Yes Yes

Dependent variable mean 6.2 0.5 4.7 0.4 0.2

N 255,500 255,500 255,500 255,500 255,500

1st stage F-statistic 1,036 1,036 1,036 1,036 1,036

Notes: Estimates are weighted by the number of establishments in each grid cell. Robust standard errors
clustered at the chimere grid level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. Outcomes and
point estimates have been scaled by a factor 100 to improve readability. The outcomes are standardized
by the stock of workers. For example, the outflow outcome designate the share of workers leaving the
establishment as a share of the stock of workers in the beginning of the month.

healthcare costs covered by the public health insurance. Total healthcare costs are probably

not a great proxy for health status: all else equal, healthcare costs are likely to increase

with income because the price of a medical visit is not regulated for all doctors in France.

On the other hand, the amount covered by the public health insurance is regulated, capped

for each medical visit and drug type, and does not vary with income level (except for rare

exceptions). It is thus a better reflection of actual health status. We define quintiles of

healthcare utilization based on the healthcare costs covered by the public health insurance

in 2009 as a proxy for initial health status. We then build five grid cell-level datasets, each

only including individuals of a given quintile. We run the 2SLS estimation from equation 1,

using the number of workers starting a sickness leave per 1,000 workers as an outcome.

We restrict the regression period to 2010-2015, because pollution in 2009 may affect the

composition of each quintile via its effects on healthcare spending that year.

Table A.4 shows the composition of each quintile in terms of healthcare costs covered by

the public health insurance in 2009, and mean PM2.5 exposure and average gross wage over
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the 2010-2015 period. Healthcare costs covered by the public health insurance are almost

300 times larger for Q5 than Q1 on average. On the other hand, there is little difference in

pollution exposure and annual gross wage across the different quintiles.

Table 8 reports the 2SLS estimates from equation 1 for the whole sample over 2010-2015,

and by quintile of covered healthcare costs. Sickness leave incidence increases with our proxy

of initial health status, which makes sense. The marginal effect of pollution on sickness leave

is low and not statistically significant for the 20% of workers with the lowest healthcare

utilization in 2009, while it is 50% larger than the average effect for the quintiles quintiles 3,

4 and 5. The effect for quintiles 3 and 4 is significantly different from that of quintile 1. The

fact that pollution increases sickness leave incidence even for workers with a median health

status implies that pollution effects go well beyond the vulnerable individuals. Taken as a

percent change relative to the mean, the effect is strongest for quintile 3.

Table 7: Number of workers starting sickness leave per 1,000 workers - heterogeneity analysis
by quintile of covered healthcare costs - IV regression

(1) (2) (3) (4) (5) (6)

All Q1 Q2 Q3 Q4 Q5

PM2.5 0.0253∗∗∗ 0.0078 0.014∗ 0.037∗∗∗ 0.041∗∗∗ 0.037∗∗∗

(0.00329) (0.00599) (0.00651) (0.00798) (0.00865) (0.0104)

Dependent variable mean 5.9 3.3 4.7 6.1 7.6 9.6

Effect relative to mean 0.43% 0.24% 0.30% 0.61% 0.54% 0.39%

N 1,601,310 1,342,109 1,326,507 1,323,835 1,315,133 1,281,716

Notes: Robust standard errors clustered at the chimere grid level. ∗ p < 0.05, ∗∗ p < 0.01 ∗∗∗p < 0.001.
Estimates are weighted by the number of workers in each grid cell. Quintiles are based on the distribution of
social security reimbursements for medical appointments and drug purchase in 2009. The regression analysis
is restricted to the 2010-2015 period. All regressions include weather, holiday and flu controls, Chimere
grid cell fixed effects and quarter-by-year fixed effects. Quintile categories take into account the number
of individuals by grid cell, hence different quintiles have a different number of grid cells and regression by
quintiles have different N .

By wage level: We may expect the pollution-sickness leave relationship to vary by wage

levels via several mechanisms. First, lower-income individuals have been found to incur

more damages from air pollution in a variety of contexts (Hsiang et al., 2019). These higher
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damages can be due to two factors: a higher exposure combined with increasing marginal

damages from pollution, and/or a higher vulnerability for a given exposure. In the case

of sickness leaves, another mechanism may explain heterogeneous effects along the wage

dimension: facing the same health shock, high-wage and low-wage individuals may have

a different propensity to actually take a sickness leave. Low-wage individuals in precarious

contracts may be less willing to take a sickness leave if it endangers their job security. On the

other hand, high-wage individuals have a lower replacement rate given the cap on publicly

funded sickness leave benefits, so they may be less willing to enter sickness leave. Overall, the

effect of wage on the marginal effect of pollution on sickness leave depends on how high-wage

and low-wage individuals differ in terms of i)their exposure to pollution ii)their vulnerability

to pollution iii)their propensity to take a sickness leave for a given health shock.

We test for heterogeneous effects along the wage dimension based on wage quintiles from

2009 and restricting the analysis to 2010-2015. We only consider workers who are full-time

employed and have an annual wage at least equal to the minimum wage in 2009, to avoid

misclassifying a high-wage part-time worker in a low-wage quintile. Like above, we run the

2SLS estimation from equation 1 on five grid cell-level datasets, each including individuals

from a given wage quintile.

Table A.5 shows the composition of each quintile in terms of annual gross wage in 2009,

and PM2.5 exposure and covered healthcare costs (the same variable as the one used in the

heterogeneity analysis above) averaged over the 2010-2015 period by wage quintile. Workers

in the top wage quintile earn close to three times as much as the ones in the bottom quintile

on average. They are also the most exposed to pollution. While this may partly reflect a

greater discrepancy in our measure of exposure (as mentioned in section 3.5), this is also

consistent with the top quintile’s higher exposure based on the place of residence reported

in table A.3 and figure A.4e. In contrast, covered healthcare costs are fairly similar across

wage quintiles, suggesting that differences in initial health status may be quite low.

Table 8 reports the 2SLS estimates from equation 1 for the five different wage quintiles.
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Note that individuals in the bottom quintile of the wage distribution are twice as likely to

start a sickness leave on a given week than individuals in the top quintile. Given that both

quintiles have similar healthcare costs from table A.5, indicative of a similar initial health

status, this may reflect the fact that high-wage individuals are less willing to enter sickness

leave. The marginal effect of pollution on sickness leave follows an inverted U-shaped curve

with respect to the wage quintile: it is lowest for the bottom and top quintiles and highest

for the middle quintile. However, the magnitudes are not statistically significant from each

other. The interplay of the mechanisms mentioned above may explain the shape of the curve:

the higher exposure to pollution of the top wage quintile may be compensated by a lower

willingness to enter sickness leave or/and a lower vulnerability to pollution.

Table 8: Share of individuals starting sickness leave - heterogeneity analysis by wage quintile
- IV regression

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

PM2.5 0.024∗ 0.044∗∗∗ 0.044∗∗∗ 0.036∗∗∗ 0.019∗

(0.0120) (0.0113) (0.0102) (0.0092) (0.00754)

Dep. var. mean 7.9 7.4 6.8 5.9 3.8

Effect vs. mean 0.30% 0.59% 0.65% 0.61% 0.50%

N 1,239,872 1,241,642 1,168,443 1,048,142 893,582

Notes: Robust standard errors clustered at the chimere grid level. ∗ p < 0.05, ∗∗ p < 0.01 ∗∗∗p < 0.001.
Estimates are weighted by the number of workers in each grid cell. quintiles are based on the distribution of
wages in 2009. The regression analysis is restricted to the 2010-2015 period. Compared to the full sample,
wage quintile categories only include individuals with a full-time job and earning at least the equivalent of a
full time minimum wage in 2009. All regressions include weather, holiday and flu controls, Chimere grid cell
fixed effects and quarter-by-year fixed effects. Quintile categories take into account the number of individuals
by grid cell, hence different quintiles have a different number of grid cells and regression by quintiles have
different N .

5.3.2 Heterogeneity of the pollution-labour flow response

Forthcoming.
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6 Robustness checks

6.1 Worker-level analysis

Varying specifications: We test the robustness of our main results to a different set of

weather controls and fixed effects. Columns (1)-(3) of table 9 report the results. Column

(1) reports the main 2SLS estimate on the relationship between PM2.5 and the share of

individuals starting a sickness leave. In Column (2), weather controls take the form of

three continuous variables – one for the average daily maximum temperature, one for wind

speed and one for total weekly rainfall – rather than a set of interactions, as in the main

specification. In column (3), we add Chimere grid cell by year fixed effects to capture

changes in the composition of Chimere grid cells over time (these changes arise both because

our individual panel is not balanced and because individuals may change workplace over

time). The estimates are not too far from the main coefficient estimate reported in column

(1). Appendix A.2 also shows our the coefficient estimate varies when we add controls

progressively.

Adding other pollutants: One concern with interpreting our estimates as the causal

effects of PM2.5 is that other pollutants, ozone in particular, may also be influenced by

wind direction but are omitted in our main specification. We exploit the fact that these

pollutants are not perfectly co-transported and that they can be produced by sources located

in different places and carried differently by the wind. Hence, our empirical strategy allows

us to instrument separately for several pollutants. As described above, two pollutants, SO2

and NO2 are precursors to PM2.5 and convert to particulate matter within two to three days,

whereas PM10 includes PM2.5. Given our specification of weekly concentration in PM2.5, we

are not able to distinguish the independent effects of these pollutants from those of PM2.5.

The other pollutant left, ozone (O3), is anti-correlated with PM2.5 and may have independent

effects that we can capture. In column (4) of table 9, we consider both the effects of PM2.5

37



Table 9: Varying specifications - share starting sickness leave - 2SLS

(1) (2) (3) (4) (5)

Main
Continuous
weather

ID Chimere
by year FE

With
ozone

Ozone
only

PM2.5 0.0321*** 0.0489*** 0.0286*** 0.0370***

(0.00299) (0.00331) (0.00289) (0.00316)

O3 0.0179*** -0.00113

(0.00514) (0.00492)

Weather Yes Continuous Yes Yes Yes

Holiday and flu control Yes Yes Yes Yes Yes

Quarter by Year FE Yes Yes No Yes Yes

Chimere grid FE Yes Yes No Yes Yes

Chimere grid x Year FE No No Yes No No

Quarter FE No No Yes No No

Dependent variable mean 5.9 5.9 5.9 5.9 5.9

N 1,869,578 1,869,578 1,869,578 1,869,578 1,869,578

Notes: The unit of observation is the postcode x week. All estimates are per 1,000 workers. Estimates are
weighted by the number of workers in each postcode. Robust standard errors clustered at the chimere grid
cell level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

and ozone in the 2SLS regression by adding ozone as an endogenous regressor. The point

estimate on PM2.5 is close to the main estimate. This suggests that our main result is not

driven by the confounding role of ozone. In column (5), we run the analysis considering only

ozone as an endogenous regressor. We fail to detect an impact on sickness leave incidence,

which may be due to the fact that wind direction changes are not a valid instrument for

ozone, or to the fact that ozone does not affect sickness leave incidence (high ozone levels are

mostly found in summer, where many French workers take holidays and are thus less likely

to take sickness leave).

6.2 Establishment-level analysis

This part is preliminary.

Placebo test We conduct a falsification test where we test the effect of pollution at month

t+4 on our worker’s flows outcomes at t (which is the average of flows at t, t+1 and t+2).
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We should not detect any effect. To ease computational requirement, instead of using wind

direction changes at t+4 as an instrument for pollution at t+4, we use the control function

approach described in Appendix 1: we first estimate the first stage at the monthly level

and save the residuals. We then test whether the (endogenous) measure of pollution at

t + 4, PM2.5g,t+4, controlling for the estimated first stage residual ϵ̂g,t+4, has a significant

impact on workers’ flows. The other covariates are the same as in the main specification

from equation 3.

Tables 10 and 11 show the results. Except for an imprecisely estimated effect and very

low effect on transfers into the establishment and resignations, we do not detect an effect of

pollution at t+ 4 on workers’ flows at t.

Table 10: Placebo test - Pollution at t+ 4 and workers’ outflows at t - IV

(1) (2) (3) (4)

Total

Temporar
contract
hires

Permanent
contract
hires Transfers

PM2.5t+4 0.000731 -0.0000656 0.000174 0.000622*

(0.000465) (0.000345) (0.000114) (0.000279)

ϵ̂t+4 -0.000140 0.000219 -0.000243 -0.000116

(0.000713) (0.000480) (0.000150) (0.000469)

Weather controls Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes

Quarter by Year FE Yes Yes Yes Yes

Chimere grid FE Yes Yes Yes Yes

Dependent variable mean 6.8 5.3 1.0 0.5

N 246,310 246,310 246,310 246,310

Notes: Estimates are weighted by the number of establishments in each grid cell. Robust standard errors

clustered at the chimere grid level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. Outcomes and

point estimates have been scaled by a factor 100 to improve readability. The outcomes are standardized by

the stock of workers. For example, the inflow outcome designate the share of new workers in the plant as a

share of the stock of workers in the beginning of the month.
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Table 11: Placebo test - Pollution at t+ 4 and workers’ outflows at t - IV

(1) (2) (3) (4) (5)

Total Resign
End of
contract

End of
probation
and layoff Transfers

PM2.5 t+ 4 0.000120 0.0000198** 0.0000624 0.00000947 -0.000000964

(0.000352) (0.00000738) (0.000347) (0.00000886) (0.0000136)

ϵ̂ t+ 4 0.0000166 -0.0000135 0.0000355 0.0000114 0.00000386

(0.000487) (0.00000915) (0.000482) (0.0000103) (0.0000186)

Weather controls Yes Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes Yes

Quarter-year FE Yes Yes Yes Yes Yes

ID Chimere FE Yes Yes Yes Yes Yes

Dependent variable mean 6.2 0.5 4.7 0.4 0.2

N 246,310 246,310 246,310 246,310 246,310

Notes: Estimates are weighted by the number of establishments in each grid cell. Robust standard errors
clustered at the chimere grid level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. Outcomes and
point estimates have been scaled by a factor 100 to improve readability. The outcomes are standardized
by the stock of workers. For example, the outflow outcome designate the share of workers leaving the
establishment as a share of the stock of workers in the beginning of the month.
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A Appendix

A.1 Worker-level specification - Pseudo-Poisson Maximum Like-

lihood estimator

Given the large number of zeros for SLEs per grid cell-week and the fact that the linear prob-

ability model is not necessarily the most accurate representation of the impacts of pollution

when there are non-linearities, we alternatively use a Pseudo-Poisson Maximum Likelihood

(PPML) estimator, in a robustness exercise. It rests on the following assumption for the

conditional expectation of the outcome:

E[Yg,t|PM2.5g,t,Wg,t, hg,d,t, νg, θq,y] = exp(α + βPM2.5g,t +Wg,tγ + hg,d,tδ + νg + θq,y) (5)

As a result, we can no longer apply 2SLS to equation (1), using the wind direction x Merra

grid interaction terms as excluded instruments. Instead, we adopt a control function ap-

proach recommended by Wooldridge (2015): we first run the OLS regression of the first

stage and obtain OLS residuals ϵ̂g,t. We then run an augmented second stage where we

include both the endogenous regressor PM2.5g,t and the residuals ϵ̂g,t, using a Poisson pseu-

domaximum likelihood (PPML) estimator. Specifically, we use the ppmlhdfe command

(Correia et al., 2020) to accommodate high-dimensional fixed effects. By separately run-

ning the first and second stages, the standard errors of the second stage are underestimated

(Wooldridge, 2015); hence, we must bootstrap in order to obtain the right standard errors.

In this preliminary version, we present the results with non-bootstrapped standard errors.

Table A.1 reports the PPML estimates of the relationship between PM25 and the sick-

ness leave outcomes, as described in equation 5. The difference in the estimated coefficients

for PM2.5 before and after controlling for first stage residuals ϵ̂g,t is similar to the difference

between the OLS and IV coefficients reported in table 4: without controlling for first-stage

residuals, the coefficients on the endogenous PM2.5 are close to zero and not significant,
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Table A.1: Pollution and sickness leave outcomes - PPML

Workers starting
sickness leave

Number of
sickness days

Sickness leave
benefit

(1) (2) (3) (4) (5) (6)

PM2.5 0.000460* 0.00586*** 0.00113* 0.00595*** 0.00146* 0.00626***

(0.000200) (0.000496) (0.000540) (0.00144) (0.000635) (0.00169)

ϵ̂ -0.00646*** -0.00579*** -0.00576**

(0.000556) (0.00154) (0.00178)

Weather controls Yes Yes Yes Yes Yes Yes

Holiday and flu controls Yes Yes Yes Yes Yes Yes

Quarter-year FE Yes Yes Yes Yes Yes Yes

Chimere grid cell FE Yes Yes Yes Yes Yes Yes

Dependant variable mean 5.9 5.9 168 168 4,742 4,742

N 1,824,688 1,824,688 1,824,688 1,824,688 1,824,688 1,824,688

Notes: The unit of observation is the postcode x week. All estimates are per 1,000 workers. Estimates are
weighted by the number of workers in each postcode. Robust standard errors clustered at the chimere grid
cell level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

while they are positive and significant after controlling for the first stage residuals (even-

numbered columns). The fact that the estimates associated to ϵ̂g,t are statistically significant

indicates that ppml estimates without the control function suffer from an endogeneity bias.

Not including this correction term would result in biased estimates of the effect of pollution.

The estimate from column (2) suggests that an increase by 1 µg/m3 of weekly PM2.5 con-

centrations is predicted to increase the average number of individuals starting a SLE on the

same week by (e0.00586 − 1) ∗ 100 = 0.59%. This is close to the 2SLS estimate expressed as a

percent change in the mean outcome. For now, the standard errors are underestimated given

the two-step estimation procedure. However, the coefficient is relatively precisely estimated.

Once standard errors are corrected, it will likely remain significantly different from zero at

conventional levels of statistical significance.

Regarding the number of sickness leave days and amount of sickness leave benefit, es-

timates from columns (4) and (6) indicate that on average, an increase by 1 µg/m3 of

weekly PM2.5 concentrations is predicted to increase the number of sickness leave days

per worker by (e0.00113 − 1) ∗ 100 = 1.1%, and the amount of sickness leave benefits by
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(e0.00146 − 1) ∗ 100 = 1.5%. These two results are larger than the IV estimates reported as

a percent increase from the mean, which suggest that non-linearities may be worth taking

into account for these two outcome variables.

A.2 Worker-level specification - Adding controls and fixed effects

progressively:

Table A.2 shows how the OLS and IV estimates vary when controls are added progressively,

for the main sickness leave outcome (number of workers entering sickness leave). Columns (1)

to (4) progressively add controls when running an OLS estimation. Column (2) shows that

the positive association between PM2.5 and sickness leave incidence, conditional on holiday

status and flu incidence, is stable after controlling for weather characteristics. However,

when the time trend is controlled for with the quarter by year fixed effects in column (3),

the effect fades out. It may be that part of the effect from column (2) was driven by the

seasonal effects influencing pollution (such as that the fact to use more heating in winter) but

also sickness leave (even controlling for flu, there are other diseases that are more prevalent

in winter). In addition, with the time controls, much of the identifying variation comes from

variation in pollution across postcodes. Given the spatial sorting of skills across the French

territory, there are probably omitted variables at the postcode level that are correlated with

both pollution and sickness leave incidence (high-skill individuals are typically likely to live

in dense, high-pollution areas, while being less likely to take sickness leave). In column (4),

adding Chimere grid fixed effects corrects for this spatial sorting. Column (4) corresponds

to the main specification and the results are the same as in column (1) of table 4.

Columns (5) to (8) similarly show the effect of progressively adding controls to the speci-

fication using local changes in wind direction as an instrument. In column (5), the first stage

predicts PM2.5 levels off variations in local wind direction, controlling only for flu incidence

and holidays but not other weather characteristics. From column (6), adding weather con-

trols to the IV estimate affects the estimate much more than adding it to the OLS estimate.
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Table A.2: Introducing controls progressively - number starting sickness leave per 1,000
workers

(1) (2) (3) (4) (5) (6) (7) (8)

OLS OLS OLS OLS 2SLS 2SLS 2SLS 2SLS

PM2.5 0.0247*** 0.0223*** -0.000919 0.00388** 0.0296*** 0.00457 0.0203* 0.0321***

(0.00315) (0.00368) (0.00382) (0.00137) (0.00592) (0.00840) (0.00939) (0.00299)

Flu incidence 0.422*** 0.461*** 0.333*** 0.345*** 0.416*** 0.466*** 0.334*** 0.349***

(0.00896) (0.0113) (0.0120) (0.00840) (0.0109) (0.0119) (0.0122) (0.00859)

Holiday dummy -1.54*** -1.51*** -1.34*** -1.34*** -1.53*** -1.53*** -1.33*** -1.34***

(0.0244) (0.0255) (0.0282) (0.0287) (0.0219) (0.0238) (0.0281) (0.0293)

Weather controls No Yes Yes Yes No Yes Yes Yes

Quarter by Year FE No No Yes Yes No No Yes Yes

Chimere grid FE No No No Yes No No No Yes

Dep. var. mean 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

N 1,875,939 1,869,578 1,869,578 1,869,578 1,875,939 1,869,578 1,869,578 1,869,578

Notes: Flu incidence emeasures the numer of estimated flu cases per week at the department level. The
holiday dummy is observed at the departement level. The unit of observation is the postcode x week. All
estimates are per 1,000 workers. Estimates are weighted by the number of workers in each postcode. Robust
standard errors clustered at the chimere grid cell level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

Presumably, in column (5) the exclusion restriction is violated: the wind direction changes

that predict pollution changes are associated with other weather changes (such as colder

temperatures), and these weather changes affect both pollution and sickness leave incidence.

Once weather conditions are controlled for in column (6), variations in PM2.5 predicted

by variations in local wind direction do not affect sickness leave incidence. The difference

between column (6) and (7) may indicate that wind patterns are strongly seasonal: if North

wind is more prevailing in winter and South wind in Spring, the change in wind direction will

influence sickness leave not only via its effect on pollution, but also due to seasonality. This

is again a case of violation of the exclusion restriction. In column (8), finally, the grid fixed

effect ensures that the instrument captures the relative change in pollution from a change

in wind direction relative to wind coming from the South in the same grid cell, rather than

relative to the effect of wind coming from the South averaged across all grid cells. This

mostly improves the precision of the estimate.
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A.3 Additional figures and tables
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Figure A.1: Average annual concentrations of PM10 (µg/m3)
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Figure A.2: Average annual concentrations of NO2 (µg/m3)
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Figure A.3: Average annual concentrations of O3 (µg/m3)

Table A.3: Exposure at the place of work vs. place of residence by wage quintile in 2009

Hourly gross wage
(e)

PM2.5 exposure

work µg/m3

PM2.5 exposure

residence µg/m3
Difference

exposure µg/m3

Q1 9.4 17.7 17.6 0.1

Q2 11.4 17.7 17.5 0.2

Q3 13.8 17.8 17.6 0.2

Q4 18.1 18.0 17.7 0.3

Q5 36.0 18.3 18.0 0.3

Notes: Source: exhaustive matched employer-employee data (DADS Postes) for year 2009. Sample: individ-
uals working in the same set of Chimere grids as the Hygie individuals. Quintile of income based on gross
salary divided by number of hours worked for the main position.

Table A.4: Workers quintiles based on healthcare costs covered by the public health insurance
in 2009

Annual covered
healthcare costs

2009 (e)
PM2.5 exposure

2010-2015 (µg/m3)
Annual gross wage
2010-2015 (e)

Q1 4 15.0 27,371

Q2 46 14.9 29,244

Q3 123 14.9 28,656

Q4 278 14.9 27,759

Q5 1,152 15.1 26,155

Notes: Covered healthcare costs is obtained by taking the difference between total healthcare costs and out-
of-the-pocket spending for visits to GP, visits to specialists and drug purchase. Healthcare costs at hospitals
and visits to dentists are not included because the data is not reliable for these categories. Observations are
weighted by the number of workers in each grid cell.
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(b) Q2
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(c) Q3
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(d) Q4
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(e) Q5

Figure A.4: Distribution of weekly PM2.5 exposure at the place of residence vs. the work-
place, by quintile of hourly gross wage

Note: the sample includes all private sector workers from exhaustive matched employer-employee data, who
work in a postcode where we observe at least one individual from the sickness leave dataset. For reasons of
statistical confidentiality, the few postcodes with fewer than 11 workers were dropped (<0.4% of workers).
Each figure is based on observations from around 2.6 million workers.7
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Figure A.5: Location of individuals based on workplace ZIP code
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Figure A.6: Seasonality in PM2.5 concentrations (µg/m3)

Notes: PM2.5 concentrations are averaged by month, across years between 2009 and 2015. The horizontal
red line shows the WHO recommended threshold for daily PM2.5 concentrations.
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Figure A.7: Seasonality in ozone concentrations (µg/m3)

Notes: ozone concentrations are averaged by month, across years between 2009 and 2015. The horizontal
red line shows the WHO recommended threshold for daily ozone concentrations.
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Figure A.8: Seasonality in NO2 concentrations (µg/m3)

Notes: NO2 concentrations are averaged by month, across years between 2009 and 2015. The horizontal red
line shows the WHO recommended threshold for daily NO2 concentrations.
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(a) Urban area - Paris
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(b) Urban area - Grenoble
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(c) Rural area - Creuse (Centre)

0

5

10

15

20

25

30

35

40

45

50

PM
25

 c
on

ce
nt

ra
tio

ns
 (m

ic
ro

gr
am

/m
3)

1 5 10 15 20 25 30 35 40 45 50 55
week

(d) Rural area - Bretagne (West)

Figure A.9: Week-on-week variations in PM2.5 pollution for selected grid cells in 2012

Note: The red horizontal line shows the average for that grid cell in 2012.
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Figure A.10: Grid cell sizes, illustration with one of the 22 French regions, Aquitaine

Notes: Chimere grids are the red dots, Copernicus grids are the green dots, and Merra grids are the blue
squares

Table A.5: Workers’ quintiles based on annual gross wage in 2009

Annual gross wage
2009 (e)

PM2.5 exposure

2010-2015 (µg/m3)

Annual covered
healthcare costs
2010-2015 (e)

Q1 18,962 14.7 316

Q2 22,295 14.7 316

Q3 26,193 14.8 313

Q4 32,256 15.1 313

Q5 52,074 15.5 316

Notes: Sample: individuals working full-time in 2009 and earning at least the full-time minimum wage.
Observations are weighted by the number of workers in each grid cell.
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