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Abstract

Renewable energy can yield social benefits through local air quality improvements

and their subsequent effects on human health. We estimate some of these benefits

using data gathered during the rapid adoption of large-scale solar power generation

in Chile over the last decade. Relying on exogenous variation from incremental solar

generation capacity over time, we find that solar energy displaces fossil fuel generation

(primarily coal-fired generation) and curtails hospital admissions, particularly those

due to lower respiratory diseases. These effects are noted mostly in cities downwind

of displaced fossil fuel generation and are present across all age groups. Our results

document the existence of an additional channel through which renewable energy can

increase social welfare.
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1 Introduction

Renewable energy is the world’s fastest-growing energy source, set to become the leading

source of primary energy consumption by 2050 (U.S. Energy Information Administration,

2019). It promises several benefits to society, ranging from reductions in greenhouse gas

emissions, lower discharge of local air pollutants, and improved health outcomes, to reduced

dependence on imported fuels and the creation of jobs through the manufacturing and in-

stallation of these resources (U.S. Environmental Protection Agency, 2019). Yet we still lack

a good understanding of the magnitude of some of these benefits, notably those associated

with reduced air pollution and health improvements. In this work, we use the rapid adoption

of large-scale solar power generation in the desert region of northern Chile to empirically

quantify some of the health benefits of solar energy through improvements in air quality.

Fossil fuel power generation, particularly that from coal combustion, releases large

amounts of local air pollutants, including sulfur dioxide (SO2), nitrogen oxides (NOX), and

particulate matter (PM). These pollutants are associated with several adverse health effects,

along with increased hospital admissions, mortality risks, and threats to life expectancy.1

The extent to which these emissions are curtailed with the introduction of renewables re-

flects the potential of alternative energy sources to offset some of the negative effects of dirty

electricity generation. Nonetheless, some fossil fuel plants (e.g., natural gas plants) have

consistently been dispatched to deal with the intermittency of renewables (Fell and Linn,

2013), thus attenuating the benefits of increasing the supply of these sources. More insights

on the co-benefits of renewable energy are, therefore, crucial to the cost-benefit analyses of

transitioning away from fossil fuels and, thus, for the optimal design of energy policy.

The Atacama Desert, one of the sunniest and driest deserts in the world, not only has

the highest average surface solar radiation worldwide (Rondanelli et al., 2015), but also the

highest solar power potential. Figure 1 shows Chile’s photovoltaic power potential—a solar

energy system’s maximum productivity over time—relative to the rest of the world. This

potential, together with the recent decline in the cost of photovoltaic (PV) technology and

the country’s regulations aimed at fostering the adoption of renewables, resulted in rapid

market penetration of solar generation in Chile. By the end of 2012, a variety of solar plants

with capacity ranging from 3 MW to 138 MW were already injecting electricity into Chile’s

northern electric grid, and by 2017, solar generators were producing about 10 percent of

total electricity in Chile’s northern grid. We take advantage of this surge in large-scale

investments in solar energy to explore the effects of the steady expansion in solar capacity

1For comprehensive reviews, see Currie et al. (2014) on the effects of early-life exposure to pollution, and
Hoek et al. (2013) on the mortality impact of long-term air pollution exposure.
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Figure 1: Chile’s Photovoltaic Power Potential (kWh/kWp)

Notes: This graph shows Chile’s photovoltaic power potential that refers to how much energy (kWh) is
produced per kilowatt peak (kWp) of a system. Graph was retrieved from https://globalsolaratlas.

info. Solar resource data was obtained from the Global Solar Atlas, owned by the World Bank Group and
provided by Solargis.

on generation from thermal plants and on human health in northern Chile. By exploring the

case of Chile, we add to the scant literature on power plant pollution exposure and health

impacts in emerging economies (Gupta and Spears, 2017; Barrows et al., 2018).

Our study uses data on solar generation between 2012 and 2017. To identify the effects

of this increasing solar expansion, we first estimate the extent to which solar plants displace

other power facilities using daily variation in plant-level power generation capacity.2 For solar

generation to have a positive effect on health outcomes, it must first displace generation by

thermal plants, thereby reducing pollution levels from the baseline.3 After identifying the set

of displaced thermal power plants, we estimate a reduced form equation on the effect of daily

solar generation on health. In particular, using a set of zero-inflatd negative binomial (ZINB)

regressions, we measure health effects using data on daily hospital admissions of patients

with diagnoses associated with cardiovascular and respiratory diseases, conditions generally

related with the combustion of fossil fuels. To reduce any potential endogeneity between

power generation and health as well as to take into account the transport of pollutants, we

leverage our findings on fossil fuel plant displacement and identify cities that are downwind to

and near these displaced plants, and run separate regressions for this subsample of cities. In

2Ideally, we would use plant-level emissions data. Unfortunately, publicly available emissions data in
Chile are engineering estimates, rather than observed or measured data.

3The alternative is that solar generation rises to meet expanding demands for electricity. In this case, there
would be no displacement of fossil fuel plants, and the health impacts of the energy system would remain
unchanged, although health improvements would have been seen relative to a counterfactual of increased
fossil fuel generation in response to increased loads.
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doing so, we rely on the identifying assumption that the harmful effects of local air pollution

exposure are stronger downwind of the pollution source and decrease with distance. Finally,

to attribute the health effects to air quality improvements, we use additional (but limited)

data on fine PM concentrations for a subset of our cities and estimate an instrumental

variable approach that uses solar generation as an instrument for pollution in our health

regressions.

Our results show that increased solar generation in Chile led to a displacement of daily

thermal generation, particularly of coal- and gas-fired power generation. Subsequently, we

find that, through this displacement, solar generation reduces cardiovascular and respiratory

admissions in all cities included in our sample. Our analysis by age group indicates that

these reductions are mostly observed among infants (less than 1 year old), children (ages

2–14), and seniors (age 65 and more), the most vulnerable age groups. The reductions are

found primarily after short-term exposure to abated pollution from displaced thermal plants,

and in cities that are either downwind of these displaced facilities or that have fossil fuel

generators within their borders. Specifically, we find that a full displacement of fossil fuel

plants by solar would reduce respiratory hospitalizations by 6.7 percent across all cities, and

by 10.6 percent in cities that are downwind and close to the displaced plants.4 Our broad

conclusions of the benefits of solar on health remain unchanged after several robustness

checks, which include alternative estimation methods, the use of cities upwind of displaced

facilities and those downwind of nondisplaced units, and the use of hospital admissions of

patients with diseases presumably not related to air pollution.

Several reasons lead us to consider our findings as a lower bound on the true health

benefits from solar generation, particularly in developing countries. First, our area of study

(Chile’s northern region) has limited healthcare infrastructure. Therefore, any reduction in

hospitalizations can have a beneficial spillover effect by increasing the number of hospital

beds available in turn helping reduce the number of untreated unrelated injuries and illnesses.

Second, reductions in air pollution exposure for young children and infants have a lifelong

benefit in terms of reduced illnesses and improved economic outcomes (Currie et al., 2014).

Third, communities with greater shares of low-income households and minorities may live

closer to large air polluters in Chile, as has been demonstrated in both the U.S. and India

(Banzhaf et al., 2019; Kopas et al., 2020).5 In this case, improvements in air quality may

4Results from Table 4, columns 2, statistically significant coefficients.
5Previous evidence shows indications that lower income populations in Chile are more likely to live near

environmental disamenities, such as mining. For example, Rivera (2020) finds that residential properties
near mining sites in northern Chile have lower values and that these values are particularly salient for new
residents in the area, suggesting an environmental-based sorting. These inequities may also be caused by
housing siting decisions; for example, Rau et al. (2015) shows evidence of government housing projects built
in close proximity to mining waste sites in the city of Arica, also located in northern Chile.
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not only bring greater long-term benefits to populations experiencing uneven exposure to air

pollution but also help to reduce inequities caused by pollution exposure.

A wide number of papers document the displacement of coal-fired power plants, either

through a decline in the price of natural gas (Lu et al., 2012; Linn et al., 2014; Knittel et al.,

2015; Cullen and Mansur, 2017; Holladay and LaRiviere, 2017; Linn and Muehlenbachs,

2018; Johnsen et al., 2019), through the expansion in renewable generation capacity (Kaffine

et al., 2013; Cullen, 2013; Novan, 2015; Callaway et al., 2018; Fell et al., 2021; Bushnell and

Novan, 2021), or through interaction between the two (Holladay and LaRiviere, 2017; Fell

and Kaffine, 2018). These studies also document significant interactions among competing

renewables, whereby solar generation can lead to a shift in the supply of hydropower. To

the extent that renewables offset and displace one another, the injection of new renewable

sources into the grid may lead to ambiguous environmental impacts. One of the benefits of

conducting this analysis in northern Chile is the small amount of non-solar renewables on

the grid during the study period (contributing only 6% of total capacity in 2017, combined).

This allows us to isolate the effect of solar generation on fossil fuel displacement more clearly.

We extend this previous literature by empirically documenting some of the consequences

of the displacement on morbidity outcomes. A small subset of literature estimates the effect

of changes in the power sector on health. For example, Burney (2020) estimates the health

benefits associated with the shift from coal to natural gas combustion in the U.S., finding that

the exit of coal-fired plants between 2005 and 2016 saved approximately 26,000 lives. Along

those lines, Casey et al. (2018a) find that coal and oil power plant retirement in the U.S. led

to improvements in fertility outcomes, and Casey et al. (2018b) show the link between these

retirements and a decrease in preterm births among nearby populations. Our work adds to

this literature, presenting new evidence on the benefits that curtailing coal-fired generation

has on morbidity. Moreover, we estimate this impact even without coal plant retirement;

rather, we can identify the health benefits of having a large amount of solar generation at the

intensive margin, even if it does not lead to coal plant shutdowns. In doing so, we contribute

to the literature by quantifying the value of curtailing coal-fired generation.

The analysis of solar generation also represents an advantage in evaluating the health

benefits of renewables relative to other similar sources such as wind. Increases in wind power

generation may be associated with reduced pollution due to higher wind speeds and greater

dispersion, hampering the identification of health impacts. There is existing work identifying

the health benefits of a cleaner grid (Anenberg et al., 2012; Muller and Mendelsohn, 2009) or

the addition of new utility-scale solar capacity (Sergi et al., 2020) in integrated assessment

frameworks. The latter employs cutting-edge air transport and chemical transformation

models but uses existing epidemiological literature and underlying health and population
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statistics to calculate the impact of policies on health. To the best of our knowledge, we are

the first to empirically test the impact of increased large-scale solar generation on health.

Therefore, our work also adds to the growing literature on the co-benefits of renewable

generation (Siler-Evans et al., 2013; Barbose et al., 2016; Buonocore et al., 2016; Spiller

et al., 2017; Millstein et al., 2017), a key aspect in evaluating the economic potential of

renewable energy portfolios (Edenhofer et al., 2013; Wiser et al., 2017; Hollingsworth and

Rudik, 2019), and in the design of health-based air quality regulations (Abel et al., 2018;

Thakrar et al., 2020).

The remainder of our work proceeds as follows. We review the literature on the health ef-

fects of power plant emissions in Section 2, demonstrating that emissions from thermal power

generation can cause a variety of different negative health impacts, with major morbidity

impacts on respiratory and cardiovascular outcomes—the two health outcomes on which we

focus. In Section 3, we describe the power sector in Chile detailing the aspects of the in-

dependent northern grid we are studying in this paper as well as describing how plants are

dispatched, which helps inform our displacement analysis. We explain the data in Section

4, including data on health outcomes, power plant generation, wind directions, and control

variables such as demographic information. Our empirical strategy is detailed in Section 5,

as well as our identification approach, which relies upon wind direction and the results from

our displacement analysis to identify downwind cities. The results and robustness checks are

in Sections 6 and 7, respectively, where we show that solar can effectively displace thermal

power generation and improve health outcomes, particularly in downwind cities, and that

our results are robust across different methodologies and approaches. Finally, we conclude

in Section 8 with a discussion about the policy implications of our findings.

2 Power Plants’ Emissions and Health Consequences

Fossil-fuel electricity generation accounts for a large share of greenhouse gas emissions,

particularly carbon dioxide (CO2), an important contributor to global warming and climate

change (Stocker et al., 2013). The sector is also a major driver of outdoor air pollution,

primarily due to the burning of coal, which releases important amounts of airborne pollutants

such as sulfur dioxide (SO2), nitrogen oxides (NOX), mercury (Hg), and particulate matter

(PM). All of these pollutants are associated with adverse health effects, mortality risks

and threats to life expectancy (Chay and Greenstone, 2003a,b; Currie and Neidell, 2005;

Bateson and Schwartz, 2007; Currie et al., 2009; Chen et al., 2013; Arceo et al., 2016; Knittel

et al., 2016; Schlenker and Walker, 2016; Lavaine and Neidell, 2017). Coal combustion also

affects water quality. Ash released after coal combustion can end up in water reservoirs,
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contaminating waterways and sources of drinking water (Carlson and Adriano, 1993). Here,

we briefly summarize the evidence on the detrimental health impact of exposure to the main

pollutants from coal combustion. Evidence suggests that its displacement by solar generation

is expected to curtail mostly SO2, PM, and NOX emissions.

SO2 is an invisible gas, part of the sulfur oxide (SOX) family of gases, formed when fuel

containing sulfur (e.g., coal, oil) is burned (U.S. Environmental Protection Agency, 2014).

Exposure to high concentrations of this pollutant is associated with eye, nose, and throat

irritation, infectious complications of chronic obstructive pulmonary disease, and increases

in hospital admissions due to obstructions of the lower airway (e.g., asthma) (World Health

Organization, 2006). SO2 reacts with other compounds in the atmosphere to form fine

PM. PM is the general term used to describe solid particles, dust, and drops found in the

air, all with different compositions and sizes. Evidence on the health impact of exposure

to coarse PM (PM10) and fine PM (PM2.5) suggests detrimental effects on a variety of

health outcomes, including respiratory diseases (Schwartz, 1996; Coneus and Spiess, 2010),

cardiovascular diseases (Schwartz and Morris, 1995; Brook et al., 2010; Franklin et al., 2015),

low birth weight (Currie et al., 2009; Coneus and Spiess, 2010; Currie and Walker, 2011),

and infant mortality (Chay and Greenstone, 2003a,b; Arceo et al., 2016; Knittel et al., 2016).

NOX are reactive gases and include nitrogen dioxide (NO2), nitrous acid (HNO2), and

nitric acid (HNO3). Although mobile sources are responsible for the highest domestic an-

thropogenic release of NOX into the atmosphere, stationary fossil fuel combustion represents

a significant portion of annual domestic NOX emissions. Outdoor exposure to NOX has been

found to increase asthma and bronchitis diagnoses in children (Orehek et al., 1976; Persha-

gen et al., 1995; Chauhan et al., 2003; Gauderman et al., 2005), and on older populations

(Schlenker and Walker, 2016). This pollutant can also react in the presence of heat and

sunlight in the atmosphere to create ground-level ozone, a harmful chemical associated with

lung diseases and premature deaths (Bell et al., 2004, 2005).

Evidence on the health impact of exposure to power plant pollution is limited within the

Chilean context. Epidemiological research from Ruiz-Rudolph et al. (2016) show significantly

higher rates of cardiovascular and respiratory hospital admissions in Chilean municipalities

that host power plants and other large-scale polluters. However, the authors fail to take

into account proximity to the pollution source, or the air transport of pollutants in the

vicinity of these facilities. This further highlights the importance of our work—identifying

a causal impact of exposure to power plant pollution on respiratory and cardiovascular

hospitalizations in Chile by relying on an exogenous source of variation: the incremental

increase in solar electricity generation capacity over time.
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3 The Power Sector in Chile

The electricity sector in Chile is composed of three different segments: generation, trans-

mission, and distribution, all 100% privately owned. The sector is dominated by fossil fuels,

which account for 53% of total generation, followed by hydro with 28%. The fossil fuel

generation mix is primarily coal (40%), followed closely by natural gas (36%) and petroleum

(24%) (Comisión Nacional de Enerǵıa, 2018).

Before 2018, Chile’s electricity market featured four different electric systems (see Ap-

pendix Figure A1): two major interconnected systems, the Northern Interconnected System

(Sistema Interconectado del Norte Grande — SING) and the Central Interconnected System

(Sistema Interconectado Central — SIC); and two additional minor grids, the Aysen Electric

System (Sistema Eléctrico de Aysen — SEA) and the Magallanes Electric System (Sistema

Eléctrico de Magallanges — SEM). The SING system, located in Chile’s northern region,

has 5 GW of installed capacity, 2.5 GW of peak load, and more than 85% reliance on fossil

fuel generation (i.e., coal, natural gas, and diesel). Although the northern region of Chile is

relatively unpopulated, with SING serving only 7% of the country’s total population, this

region hosts most of the large-scale copper mining companies that operate in the country,

a sector characterized by its electricity-intensive production activities.6 Conversely, the SIC

system, located in central-south Chile and with 17 GW of total installed capacity and 7 GW

of peak load, relies heavily on hydro generation (around 35%) and serves 90% of the coun-

try’s population. These two major grids, SING and SIC, began an interconnection process

in November 2017 that resulted in a full integration by May 2019, thereby creating Chile’s

National Electric System (Sistema Eléctrico Nacional — SEN). In this paper, we focus on

the period before November 2017, thus avoiding any potentially confounding factors that

may be associated with the interconnection itself.

3.1 The Generation Segment

Electricity generation in Chile is produced in a competitive market, though the transmis-

sion and distribution sectors are regulated. Generation at SING is characterized by a spot

market, long-term forward contracts, and capacity payments. The spot market relies upon

merit-order dispatch under the coordination of the Economic Load Dispatch Center (Centro

de Despacho Económico de Carga — CDEC), which, to meet the system’s load, dispatches

generators at every hour based strictly on their marginal cost. Thus, the hourly marginal

6During 2016, the copper industry consumed 50,578 TJ of electricity supplied by SING. This consumption
was equivalent to more than 30% of SING’s installed capacity of 5 GW (data retrieved in May 2020 from
https://www.cochilco.cl).
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cost of the system equals the cost of the most expensive unit being dispatched (Galetovic

and Muñoz, 2011).7 This dispatch, determined by CDEC based on fuel costs, informs our

methodology in estimating the displacement of fossil fuel plants by solar generation. Specif-

ically, we incorporate the relative costs of fossil fuels into our dispatch equation to control

for the market forces that will play a large role in determining dispatch and the ability of

solar to displace fossil fuel plants (see Section 5.1).

3.1.1 Solar Generation

Although numerous PV systems have existed in Chile since 2007, they were mostly in the

form of small-scale stand-alone systems and part of rural electrification programs (Haas et al.,

2018). In 2008, however, the Chilean government established a quota system for renewable

energies (“Ley de Enerǵıas Renovables No Convencionales”—ERNC); this currently requires

that these sources account for 20% of participation in the energy mix by 2025 (Ministry of

Energy, 2013). The ERNC policy, in combination with decreasing costs in PV technology,

led to the installation in 2012 of the first large-scale solar plant in northern Chile, La Huayca,

adding 25.05 MW of gross capacity to SING. By 2015, solar participation at SING reached

119 MW, equivalent to 2% of the total daily system generation (≈.376 GWh). By the end

of 2017, this participation had grown to 655 MW, equivalent to 10% of total daily system

generation (≈1.5 GWh).8

3.1.2 Emissions

Due to Chile’s heavy reliance on fossil fuels, the power sector accounts for approximately

40% of the nation’s total greenhouse gas emissions; producing 34,568.2 kt and 1.6 kt of

carbon dioxide equivalent emissions (CO2e) due to CO2 and methane (CH4) discharges, re-

spectively (Chile Environmental Ministry, 2018). In terms of criteria air pollutants, the

sector accounts for more than 30% of the country’s total NOX and SO2 emissions, two haz-

ardous pollutants common to coal combustion (see Section 2). This situation is aggravated

by the longevity of some fossil fuel power plants, as older plants generally emit more. In

SING, for instance, some coal-fired generators are the oldest in the country, with ages that

in some cases exceed 50 years (Programa Chile Sustentable, 2017). Annual discharges from

the sector comprise 57% and 40% of the northern grid’s total SO2 and NOX emissions,

respectively (Chile Environmental Ministry, 2017).

7Regardless of whether generators are dispatched, each of these agents receives a monthly capacity pay-
ment aimed at guaranteeing enough generation capacity to supply energy during times of peak demand.

8Data retrieved from the annual reports of Chile’s National Energy Commission (Comisión Nacional de
Enerǵıa — CNE), https://www.cne.cl/nuestros-servicios/reportes/informacion-y-estadisticas/
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(b) NOX

Figure 2: Hourly Sulfur Dioxide (SO2) and Nitrogen Oxide (NOX) Average Concentrations
in Tocopilla Before and After the First Solar Connection

Notes: This figure shows point estimates and 95% confidence intervals for hourly average concentrations
in the city of Tocopilla 30 days before and 30 days after the first and last solar power connections. Point
estimates are obtained after regressing hourly concentrations averaged across stations on dummies for hour
interacted with an indicator taking the value of 1 for observations after the last solar connection, and 0 for
observations before the first solar connection. Hourly predictions “30 days before the first solar connection”
correspond to observations before October 1st, 2012. Hourly predictions “30 days after the last solar con-
nection” correspond to observations after July 21st, 2017. SO2 is measured in micrograms per cubic meter
of air (µg/m3), and NOX in parts per billion (ppb). Data come from the Ministry of Environment through
the National Air Quality Information System (SINCA). From the original data, we trim the top and bottom
1% of all observations.
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Data on NOX and SO2 at the city level are limited in the country. For the cities in our

analysis, only the city of Tocopilla—the city with the highest number of coal-fired power

plants in SING—has a monitoring station that records NOX and SO2. Figure 2 plots the

hourly average SO2 (a) and NOX (b) concentrations in this city, 30 days before the first solar

connection in our sample (black line), and 30 days after the last one (gray line). Relative

to the situation before the first solar connection, panel (a) of Figure 2 shows a statistically

significant decrease in hourly SO2 concentrations right after all solar plants were connected

into the system particularly during the hours in which solar panels are at peak capacity

(between 10 a.m. and 3 p.m.). A similar trend is observed in panel (b) for NOX , although

the difference in concentrations before and after seems to lack statistical significance. The

extent to which the reductions observed for SO2 in Figure 2 are effectively due to the entry

of new solar installations anticipates the potential positive health impact of a cleaner grid.

Regarding PM, Chile generally registers high levels of daily average PM2.5 concentra-

tions.9 In the northern part of the country, these levels are largely due to the region’s

dependence on fossil fuel power generation (Chile Environmental Ministry, 2017).10 As with

other pollutants, PM2.5 data at the city level are sparse, with only four cities of our sub-

sample reporting the concentrations. Figure 3 depicts daily average PM2.5 concentrations

between 2010 and 2019 across the four cities in our sample with available data. In dashed

red, we include the WHO’s air quality standard of 25 µg/m3 for 24-hour averages as a ref-

erence. As shown, daily average concentrations seem to have decreased over time but still

exceed air quality standards during certain times of the year.11 This situation highlights the

importance that solar-powered electricity can play in reducing environmental-related health

concerns in areas with a heavy reliance on fossil fuels.

Preferably, we would test the main hypothesis of this paper using data similar to those

in Figures 2 and 3. As mentioned earlier, however, we lack comprehensive city-level data on

airborne pollution concentrations for all the cities in our sample, as air quality monitoring

stations in Chile are scarce for cities other than Santiago. We address this limitation with

our displacement analysis, effectively proxying for changes in emissions due to changes in

fossil fuel-based generation. Later in the paper, we employ the available data on PM2.5

concentrations for the four cities in our sample as an additional test on our results (see

9Previous studies have documented some of the harmful effects of PM exposure in Chile. For instance,
Dardati et al. (2021) show that increases in PM2.5 lead to a rise in respiratory emergency-room visits, while
Bharadwaj et al. (2017) expose some of the long-term harmful effects of early-life exposure to CO (and PM)
on cognitive performance.

10The power sector is also the largest emitter of direct discharges of pollutants into the ocean and coastal
waters in Chile’s northern region (Chile Environmental Ministry, 2017).

11In particular, a total of 199 days between 2012 and 2017 exceed 25 µg/m3, which is equivalent to 9.29%
of the days in Figure 3.
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Figure 3: Daily Average PM2.5 Concentrations at SING

Notes: This figure shows daily average fine particle matter (PM2.5) concentrations across cities at SING
hosting thermal power plants from 2012 to 2018. Observations are in µg/m3. The dashed-red reference
line represents the World Health Organization’s 24-hour mean guideline of 25 µg/m3. We trim the top and
bottom 1% of all observations. Data come from the National Air Quality Information System (Sistema de
Información Nacional de Calidad del Aire — SINCA) from 2012 to 2017.

Section 6.2.2).12

4 Data

4.1 Plant-Level Data

We obtain comprehensive plant-level data on daily power generation from the National

Electricity Coordinator (Coordinador Eléctrico Nacional — CEN), the national body in

charge of SING. Along with the information on generation, the data include specifics on

plant-level technology and capacity, which we later merge with data on fuel use and prices

obtained from the National Energy Commission (Comisión Nacional de Enerǵıa — CNE).

As November 2017 was the month in which SING and SIC were first connected, our study

periods goes from 2012 until 2017. Descriptive statistics for daily generation by energy source

are presented in Table 1, while fuel use and prices are in panels A and B, respectively, of

Appendix Table A1.

12Another possibility would be to include emissions at the facility level, to test the effect of solar on
emissions at the plant. However, the emissions data that are collected by the government are not observed
data, rather, they are engineering estimates based on generation (thus, they are a simple transformation of
the kWh generated in each hour). Due to this data limitation, we utilize generation as a proxy for emissions.
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Table 1: Daily SING Generation (GWh) by Plant Primary Fuel Source

Energy
Obs. Mean Std. Dev. Min. Max.

Initial Year: 2012 Final Year: 2017

Source #EGUs Cap. (MW) #EGUs Cap. (MW)

Coal 2,192 39.36 3.68 17.62 49.04 13 1,959 15 2,449
Diesel 2,192 .12 .19 0 1.99 12 117 13 117
Fuel oil 1,187 0.07 0.12 0 0.63 3 36 3 36
Fuel oil #6 2,192 0.37 0.49 0 2.30 4 177 7 50
Natural gas 2,192 5.03 2.18 0 17.29 5 1,368 6 1,925
Hydro 2,192 0.21 0.03 0.07 0.33 4 16 5 17
Geothermal 306 0.21 0.20 0 0.73 - - 2 79
Wind 1,492 .84 .47 0 2.78 - - 2 200
Solar 1,918 1.46 1.60 0 6.09 1 25 18 655

Notes: This table displays main descriptive statistics on daily power generation at Chile’s northern grid,
SING, from 2012 to 2017. The information is displayed by primary fuel source. Observations are plant-days.
EGUs are electric generating units. Capacity (cap.) is the average net capacity for the given year. All gas-
fired power plants are combined-cycle (CC) plants that also run with diesel. Data come from the National
Electricity Coordinator from 2012 to 2017.

Table 1 shows that coal-fired electric generating units (EGUs) are SING’s main source

of power generation, with an average of 39.36 GWh per day, followed by gas-fired units

with 5.03 GWh, and solar units with 1.46 GWh. This is consistent with the amount of fuel

used by these sources, as coal and gas plants report the greatest usage in Table A1. From

Table 1, we also observe that coal-fired and hydroelectric plants are always dispatching in our

sample, as revealed by the positive minimum daily generation. Furthermore, solar generation

experienced the highest growth in terms of the number of new units and capacity installed

into the system, as shown in the last four columns of Table 1.13

Figure 4 depicts the share of SING’s monthly power generation by both fossil fuel and

solar facilities during the sample period. At the start of the period, power generation at

SING was (almost fully) coming from fossil fuels, with coal alone representing around 85%

and natural gas roughly covering the other 15%. Although there was some solar generation

by the end of 2012, a significant injection of solar-generated energy started at the beginning

of 2015. As shown in the same figure, this injection coincides with the persistent decrease

in fossil fuel power generation over the same period. By the end of 2017, coal-generated

electricity represented around 77% of SING’s monthly generation, while natural gas use was

13Note in Table 1 that the total net capacity of plants running with fuel oil #6 decreased from 177 MW
in 2012 to 50 MW in 2017. This is due to the closure of two main generators, units U10 and U11, part of
Termoelectrica Tocopilla, a power plant in operation since 1960. Four generators indeed were closed during
the sample period. Although solar generation may also displace fossil fuel generation at the extensive margin,
our main analysis is conservative as it is centered around the effects of displacement at the intensive margin
only. If these shutdowns were a consequence of the injection of solar power into the system, our estimates
would thus constitute a lower bound of the true effect of solar power generation on improved health outcomes.
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Figure 4: SING’s Monthly Fossil Fueled and Solar Power Generation

Notes: This figure shows monthly power generation at Chile’s northern grid, SING, by fuel source from
2012 to 2017. Data are reported in percentages relative to SING’s monthly generation. Fossil fuels’ monthly
generation is shown in the main y-axis. Solar monthly generation is shown in the secondary y-axis. Data
come from the National Electricity Coordinator from 2012 to 2017.
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Figure 5: SING’s Hourly Generation by Fuel Before and After Large-Scale Solar Installations

Notes: This figure shows SING’s total hourly generation by fuel source before and after large-scale solar
power generation investments. The left-hand side graph shows hourly generation (in MWh) by fuel averaged
over the first week of January 2016 (with 322 MW of net solar capacity). The right-had side graph shows
hourly generation (in MWh) by fuel averaged over the last week of October 2017 (with 654 MW of net solar
capacity). Data come from the National Electricity Coordinator from 2016 to 2017.
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equivalent to less than 10%.14

A more detailed overview of the relationship between solar and other fuels is offered by

Figure 5, which depicts SING’s hourly generation by fuel source averaged over the first week

of January 2016 (left-hand side), and the last week of October 2017 (right-hand side), just

before the SING–SIC interconnection.15 Starting in 2016, SING had nine solar plants with

332 MW of total net capacity actively injecting power to the grid. By October 2017, this

capacity had doubled to 18 active solar projects, with a total net capacity of 654 MW. When

comparing these two periods in Figure 5, we observe that this increased solar capacity largely

displaced hourly coal- and gas-fired combustion during Atacama’s sunlight hours (7 a.m.–7

p.m.).

4.2 Health Outcomes

We use data from the Department of Health Statistics and Information (Departamento

de Estad́ısticas e Información de Salud — DEIS), part of Chile’s Ministry of Health, from

2012 to 2017. DEIS provides data on each patient that has been discharged from any hospital

in the country, together with information on their date of admission, age, and the physi-

cian’s diagnosis of the leading cause of disease based on International Standard Classification

(ICD-10). Although the data are compiled at the hospital or urgent care center level, they

include a variable on each patient’s city of origin. This allows us to construct a panel of

city-level daily hospital admissions, which constitutes our main health outcome. We focus

on hospital admissions due to cardiovascular (codes I00/I999) and respiratory conditions

(codes J00/J999), and, within respiratory conditions, we further examine upper and lower

respiratory infections.16 Descriptive statistics on the daily rate of hospital admissions by

admission condition are presented in panel A of Table 2 for the 19 cities in the sample.

In addition to constructing health outcomes by disease, we also compile health outcomes

across age groups using the patient’s age. In particular, we examine morbidity outcomes

14Appendix Figure A2 shows SING’s total monthly load over the sample period (dashed line). The
increasing trend in demand over time indicated in this graph rules out a demand-driven reduction in fossil
fuel power generation. The Figure also shows that SING’s total monthly solar generation (solid line) has
increased at a faster rate than demand over the same period.

15Unfortunately, publicly available hourly generation data start in 2016.
16Specifically, we use codes J00/J069 and J30/J399 for upper respiratory, and codes J09/J189 J20/J229

J40/J479 J60/J709 J80/J869 for lower respiratory diseases. Upper respiratory infections affect the nose
and throat, causing symptoms such as sneezing and coughing. Among the most frequent upper respiratory
infections are the common cold, sinusitis (sinus inflammation), epiglottitis (trachea inflammation), and
laryngitis (infection of the voice box). Lower respiratory infections affect the lungs and lower airways.
Common lower respiratory infections are bronchitis (bronchial tube inflammation), bronchiolitis (an infection
of the small airways, affecting children), pneumonia (a lung infection), asthma (long-term disease of the
lungs), influenza, and tuberculosis (bacterial lung infection).
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Table 2: Summary Statistics on the Daily Rate of Hospital Admissions

Disease Mean Std. Dev. Min. Max. Obs.

Panel A. All Cities
Cardiovascular 1.044 4.848 0 409.84 41,648
All respiratory 1.204 5.636 0 409.84 41,648
Upper respiratory 0.274 2.002 0 168.35 41,648
Lower respiratory 0.787 4.363 0 319.49 41,648

Panel B. Downwind Cities ≤ 10km of Displaced Plants
Cardiovascular 2.253 3.114 0 21.75 4,384
All respiratory 2.552 4.069 0 57.92 4,384
Upper respiratory 0.482 2.550 0 57.15 4,384
Lower respiratory 1.854 2.893 0 24.13 4,384

Panel C. Downwind Cities ≤ 50km of Displaced Plants
Cardiovascular 1.818 3.002 0 21.75 6,576
All respiratory 2.029 3.707 0 57.92 6,576
Upper respiratory 0.379 2.175 0 57.15 6,576
Lower respiratory 1.478 2.737 0 24.13 6,576

Panel D. Downwind Cities ≤ 100km of Displaced Plants
Cardiovascular 1.545 3.082 0 30.13 8,768
All respiratory 1.692 3.635 0 57.92 8,768
Upper respiratory 0.314 2.009 0 57.15 8,768
Lower respiratory 1.244 2.784 0 30.18 8,768

Notes: This table displays main descriptive statistics on the daily rate of hospital admissions (all ages) by
disease from 2012 to 2017. Hospital admission rates are per 100,000 people. We separate out the sample by
all cities, and then specifically for those cities downwind of displaced thermal plants (identified in Section
6.1), at different distances. Data come from the Ministry of Health, through the Department of Health
Statistics and Information (DEIS) from 2012 to 2017.

across infants (< 1-year old), toddlers (between 1- and 5-years old), kids (between 6- and

14-years old), adults (between 15- and 64-years old), and seniors (65-years old or more).

Descriptive statistics on the daily rate of hospital admissions by age group are in Appendix

Table A2.

4.3 Wind Direction

Our data on wind direction come from Chile’s Meteorological Service and Air Quality

System from 2012 to 2017. The data cover four cities that host fossil fuel power plants,
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(a) Arica (b) Iquique

(c) Tocopilla (d) Antofagasta

Figure 6: Daily Wind Direction in Cities with Fossil Fuel Generation

Notes: This figure shows daily wind directions in four (out of five) cities that host fossil-fueled generators
in our sample. “Daytime” (dashed line) encompasses average wind direction patterns during sunshine hours
(7 a.m.–7 p.m.). “Night” (solid line) encompasses average wind direction between 7 p.m. and 7 a.m. the
following day. Concentric circles represent the percentage of time in which the wind blows in that direction,
namely 10%, 25%, 50% and 90%. Data come from the Meteorological Service and Air Quality System from
2012 to 2017. Data on daytime wind direction for Iquique (Panel 6(b)) are not available.

namely Arica, Iquique, Tocopilla, and Antofagasta.17 The eight-wind compass roses for

these cities are displayed in Figure 6 for daytime (dashed line) and nighttime (solid line)

wind patterns for all cities except for the city of Iquique (in Figure 6(b)), for which we

only have nighttime wind direction. In the definition of downwind cities, we approximate

daytime wind patterns for Iquique using nighttime information. Although wind speed is

generally higher at night, we use daytime information given our focus on the daily thermal

displacement by solar energy sources. Considering that solar installations produce at peak

capacity around midday, we expect daytime wind direction patterns to be more informative

17Mejillones is another city with fossil fuel power plants but no available wind data; instead, we rely on
information from the nearest available city, Antofagasta, 62 km away.
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of a population’s true exposure to reduced emissions from the displacement of fossil fuel

generation during solar availability.

4.4 Other Covariates

We also obtain information on other factors potentially correlated to hospital admissions.

First, we obtain data on city-level demographic characteristics such as population, density,

poverty and fertility rates as a proxy for socioeconomic factors known to affect health out-

comes.18 We gather this information from the National System of Municipal Information

(Sistema Nacional de Información Municipal — SINIM). The demographic data are updated

every two years, and therefore we can include these variables in our estimation regressions

jointly with city-fixed effects.

Data on weather come from two different sources. First, we gather information on maxi-

mum and minimum temperatures from the National System on Water Information (Sistema

Nacional de Información del Agua — SNIA) for several monitoring stations located in re-

mote areas in northern Chile. Although we obtain this information for almost all cities in our

dataset, there are some incomplete entries, which we replace with daily regional averages.

The second source is Solar Explorer, an initiative of the Chilean Ministry of Energy (Minis-

terio de Enerǵıa) that contains data on humidity for all the cities in our sample. Descriptive

statistics for these covariates are in Panel A of Table A3 in the Appendix.

5 Methods

5.1 Displacement

We begin by econometrically identifying the effect of solar adoption on the power gener-

ation of existing power plants from 2012 to 2017.19 To that end, we categorize all the plants

in the system by their primary fuel type (e.g., coal, diesel, natural gas, fuel oil) and then

define a set of linear models of daily generation to estimate which types of plant decrease or

increase their production with the introduction of solar generation. Given our interest in the

overall effect of solar power generation on health, we use daily-level variation in generation

to identify effects because total daily generation (and thus emissions) is more directly related

to health outcomes than, say, hourly shifts. We define our baseline aggregated generation

displacement equation as follows:

18Unfortunately, city-level data on indicators such as unemployment and income are not publicly available.
19Our displacement analysis is a short- to medium-term analysis given that it takes SING’s infrastructure

as given during our sample period (Baker et al., 2013).
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Gf
d = γ0 + γ1Sd +

∑
j 6=f

δj
(
FuelUsefm ∗

P f
m

P j
m

)
+ γ2Loadd + ωd + τ + εfd , (1)

where Gf
d is the system’s generation by fuel f during day d, ωd is a vector of daily weather

covariates, τ is a vector of time-fixed effects, and εfd is an error term. We consider two options

of τ . The first, τ1, includes year, month, and weekend fixed effects, while a stronger version,

τ2, includes year, seasons, year × seasons, and weekend fixed effects.

Equation (1) also includes the variable Loadd that represents the system load during day

d to control for increases in demand over time, as demonstrated by Appendix Figure A2.20

In addition, Equation (1) considers a term that models SING’s dispatch of generators to

control for differences in input prices that may affect daily dispatch conditions. This term

is given by the interaction between aggregate use of fuel f during month m, FuelUsefm, and

the relative international (exogenous) monthly prices of the fuels in the system, P f
m/P j

m, where

f 6= j. Importantly, we do not include relative prices with respect to solar energy or other

renewables, given their zero marginal cost.

The key variable in Equation (1) is Sd, which represents the system’s solar generation

during day d. The idea behind this specification is that, after controlling for plant-level

(fuel use) and system-specific covariates (prices, load), weather, and time fixed-effects, resid-

ual variation in generation by fuel f can be explained by variation in the system’s total

solar power generation. Thus, the parameter γ1 reflects whether and to what extent solar

power generation induces a significant change in generation by non-solar sources. A negative

(positive) γ1 will signal a solar-induced displacement (ramp-up) of non-solar sources.

We estimate Equation (1) with an ordinary least square (OLS) estimator, bootstrapping

the standard errors to account for any heterogeneity and serial correlation in the generation

data. To take into account the heterogeneous capacity across fuel types, we also estimate

an alternative specification of Equation (1) in which we replace Gf
d by capacity factor CF f

d ,

defined as the total daily generation by fuel f weighted by its net capacity. Given that CF f
d

takes values between 0 and 1, we estimate this version of Equation (1) using a generalized

least-squares (GLM) estimator assuming a logit distribution.

Alternatively, we run a plant-level version of Equation (1) to individually identify the

set of plants displaced by solar generation and those that are not. In this case, we modify

Equation (1) to include generation Gf
id at plant i, and the plant’s corresponding fuel use

20As the large-scale copper mining industry is an important agent in the demand for energy at SING,
variations in daily load should also capture similar variations in copper production.
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FuelUsefim, as follows:

Gf
id = β0 + β1Sd +

∑
j 6=f

δj
(
FuelUsefim ∗

P f
m

P j
m

)
+ β2Loadd + ωd + τ + εfid. (2)

5.2 Solar Generation and Health

Once we have identified whether solar power generation induced a displacement of fossil-

fueled plants, our next step is to estimate the effect of solar power generation on hospital

admissions. We define our baseline health equation as follows:

Healthjd = δ0 + δ1Sd + δ2popj + ωjd + ζ + τ + νjd, (3)

where Healthjd represents a health outcome in city j during day d; popj is city j’s

population; ωjd is a vector of daily city-level weather covariates that may affect morbidity

outcomes such as daily maximum and minimum temperatures and humidity; ζ is a vector of

city-fixed effects (or city × year fixed effects); τ is a vector of time-fixed effects; and νjd is an

idiosyncratic effect. Unlike Equation (1), here we use the strongest specification of time-fixed

effects, which includes year, seasons, year × seasons, and weekends (that is, vector τ2).

The main variable in Equation (3) is Sd, which measures SING’s total solar generation

on day d. Because we construct this variable utilizing generation from all solar plants in the

system, daily variation in Sd is exogenous to any daily variation in hospital admissions in

a given city j, and thus, our parameter of interest, δ1, gives us an unbiased estimate of the

marginal effect of daily solar generation on daily hospital admissions. We estimate Equation

(3) with a maximum likelihood estimator assuming a Zero-Inflated Negative Binomial (ZINB)

distribution. To interpret our coefficient estimates as rates, we restrict the coefficient of the

population size (δ2) to one. We opt for a ZINB regression due to a large number of zeros

in the outcomes (count variables) and a clear overdispersion of these outcomes across cities

in our sample, which make other distributions (e.g., Poisson) less suitable for our data.21

Later in the paper, however, we test the robustness of this decision by estimating a Negative

Binomial, a Poisson, and an OLS regression.

There are some potential drawbacks in the estimation of Equation (3). First, fossil fuel

plants are not randomly placed across the region, so cities with and without fossil fuel

plants may be observably different. Indeed, this is the case exhibited in panels B and C of

Appendix Table A3, which show that cities without fossil fuel plants (panel C) are smaller,

less dense, and with higher poverty rates than those with fossil fuel plants (panel B) (all

21See Figure A3 (Appendix) for an example of the overdispersion and the pile-up-at-zero characteristics
present in our data.
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of these differences are statistically significant). Thus, in addition to city-fixed effects, we

also control for time-varying demographic characteristics (e.g., poverty rate, density, fertility

rate) in the estimation of Equation (3). Second, the large copper mining industry is an

important agent in the demand on the energy sector in northern Chile, and also a significant

air pollution emitter. For this reason, we also include monthly large-scale copper production

by city in the estimation of Equation (3).22

Third, there may be substantive dynamic effects of daily avoided fossil-fueled pollution

on health outcomes. As air pollution gathers and accumulates in the atmosphere over time,

we would expect to see a lagged impact of daily improvements in air quality on health.23

In particular, air quality improvements over three or four days may very well lead to more

significant health benefits today than contemporaneous improvements in air quality. In that

case, Equation (3) would give us an incomplete picture of the actual health effect of a cleaner

grid.

There is precedent in the literature for testing the effect of lagged exposure to air pollution

on health. For instance, Neidell (2009) includes up to six days of lags (with only four days

of lags in their preferred specification), while Schlenker and Walker (2016) opt for three

days of lags. Although these two studies are looking at degradation of air quality while

we look at improvements in air quality, we could potentially identify a dynamic effect by

including lags in our health equation. However, this is not straightforward in our setting

because our variable of interest (solar generation) is highly colinear across days.24 Thus,

including lags and leads would result in unstable estimates due to the multicollinearity of

the variables. Instead, we take a slightly different approach by testing whether there is a

cumulative impact of longer-term solar generation (and thus, longer periods of exposure to

reduced fossil fuel-related pollution) on health. We do this by estimating the impact of

average weekly, monthly, and yearly solar generation on health outcomes, as depicted by

Equation (4) where T = {7, 30, 365}. Expressed in this way, δ1T approximates the average

long-term effect of solar generation on daily hospital admissions.

Healthjd = δ0 + δ1TT
−1

T∑
t=1

Sd−t + δ2popj + ωjd + ζ + τ + νjd, (4)

22Large-scale copper mining operations roughly represents 96% of the industry’s total production. We
obtain monthly large-scale copper production from the Chilean Copper Corporation (Corporación Chilena
del Cobre — COCHILCO). We would much rather use data on daily variation in production, but this
information is unavailable.

23Indeed, there is evidence that certain air pollutants can have an extended effect on health. For instance,
the U.S. Environmental Protection Agency (2006) found that ozone can have an effect on health for up to
four days after exposure.

24Our multicollinearity tests between Solard and Solard−l for l = {1, 2, 3} reveal variance inflation factors
(VIFs) of magnitudes close to a 100.
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5.2.1 Identifying Assumptions

The validity of our empirical specifications in Equations (1), (2), (3), and (4) relies

on, first, the identifying assumption that large-scale investments in solar power generation

are exogenous to day-to-day variation in fossil-fuel generation once we control for plant-

level characteristics, daily load, demographics, and time fixed-effects. This is a reasonable

assumption given that the massive large-scale investments in renewables were encouraged by

the ERNC policy, which can be considered a natural experiment (see Section 3.1.1). In this

case, variation in solar generation is as good as randomly assigned.

Notwithstanding, the concern of potential endogeneity between power generation and

health remains. For instance, power plant locations can be correlated with local income,

as local employment and wages may be associated with power plant output. At the same

time, higher (lower) wages can correlate with better (worse) health outcomes, and thus,

identification of the main parameters in our health equations may be threatened. However,

we argue that, by using system-level daily solar generation, we can avoid any localized

endogeneity concerns as solar generators are scattered across the entire SING system instead

of being concentrated in certain cities (see Figure A4).

However, to guarantee identification, we pair information on average wind direction (see

Figure 6) at the power plant level with the results from our displacement analysis, which

allows us to distinguish cities downwind of displaced fossil fuel plants.25 To the extent that

large-scale daily solar generation displaces thermal generation, the reduction in emissions

from these displaced thermal plants is likely benefiting cities located downwind of these

units.26 Additionally, we identify cities upwind of displaced plants and downwind of non-

displaced plants to use later in a robustness analysis. We enrich this wind analysis with

the calculation of distances to the displaced thermal plants, and construct an indicator for

whether a city is downwind of and near a displaced plant. Thus, when estimating our health

equations for all cities, we also do so for cities downwind of displaced fossil fuel plants that

are located within 10km, 50km, or 100km of their boundaries. In doing so, we rely on the

identifying assumption that harmful effects of pollution are stronger downwind of and closer

25We obtain average wind direction by drawing a pie slice with an angle of π/4 radians (i.e. 45 degrees)
bisected by average daytime wind direction in each location. The resulting average wind direction is: 1.15π
radians (206.9 degrees) in Arica (Figure 6(a)), 1.57π radians (282.7 degrees) in Iquique (Figure 6(b)), 1.33π
radians (238.6 degrees) in Tocopilla (Figure 6(c)) and 1.09π radians (196 degrees) in Antofagasta (Figure
6(d)).

26In the identification of downwind cities, we acknowledge the simplicity of our approach when it comes to
understanding how pollution travels over space. However, and to the best of our knowledge, more complex
air transport models have not been developed or made public for Chile. This fact reduces our ability to
incorporate issues such as the impact of mountain ranges on wind, or wind directions that may change across
longer ranges.
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to the displaced thermal plants.

6 Results

6.1 Fossil Fuel Displacement

Panel A of Table 3 (Appendix Table A4) presents the results of estimating Equation (1)

on the effect of 1-GWh of daily solar generation on daily aggregated generation by fossil

fuels (renewable sources). We also include the results of estimating the effect of 1-GWh of

daily solar generation on capacity factors in panel B. Columns labeled (2) include stronger

time fixed effects than columns labeled (1); further results follow a similar format.

Table 3: The Effect of 1 GWh of Solar Power Generation on Daily Aggregated Fossil Fuel
Generation

Coal Diesel Fuel oil Fuel oil #6 Natural gas

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solard -0.656∗∗∗ -0.483∗∗ 0.151 0.077 -0.011 -0.013 -0.016 -0.014 -0.215 -0.274∗∗

(0.175) (0.159) (0.094) (0.092) (0.019) (0.024) (0.017) (0.013) (0.150) (0.134)
Panel B. Capacity Factor

Solard -0.021∗∗∗ -0.014∗∗∗ 0.015∗∗ 0.012 0.047 0.018 -0.018 -0.006 -0.063∗∗∗ -0.049∗∗∗

(0.003) (0.003) (0.006) (0.007) (0.041) (0.064) (0.012) (0.011) (0.009) (0.009)

Obs. 1,915 1,915 1,915 1,915 910 910 1,915 1,915 1,915 1,915
Controls X X X X X X X X X X
τ1 fixed effects X X X X X
τ2 fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily aggregated fossil fuel generation
(panel A) and fossil fuels’ daily capacity factors (panel B) on daily solar power generation. Estimation
results are marginal effects of daily solar generation (in GWh) derived from an OLS regression on daily
aggregated generation, and from a fractional logit response model on daily capacity factors. All estimations
include plants with both single- and dual-fuel engines. All regressions include daily temperature, humidity,
load and price ratios as controls. Vector τ1 includes year, month, and weekend fixed effects. Vector τ2
includes year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard errors appear in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Our findings in Table 3 (and Appendix Table A4) show that solar-generated electricity

displaces other fuel sources, particularly dirty sources. From panel A of Table 3, we observe

that one additional GWh increase in daily solar generation reduces the day-to-day generation

of plants running with coal and with natural gas by 0.48 and 0.27 GWh, respectively (columns

2).27 Considering the descriptive statistics in Table 1, we observe that this displacement is

27Further analysis using simple cycle turbine plants reveals that solar energy displaces coal-fired single-
fuel engine generation at a larger magnitude (see Table A5 in the Appendix). This is an indication that the
reduced coal use found in Table 3 is attenuated by dual-fuel engine coal-fired plants running with diesel.
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roughly equivalent to 1.22% and 5.36% of the daily average electricity generated by these

fossil fuels. Indeed, the results for capacity factors in panel B of Table 3 show qualitatively

similar results. An extra 1 GWh of solar generation displaces 1.4 percentage points of the

capacity factors of plants running with coal, and 4.9 percentage points of the capacity factors

of plants running with natural gas. The results in Table 3 also suggest a ramp-up on capacity

factors of plants running with diesel. However, this effect disappears once a stronger set of

time-fixed effects is included.

The results for renewables in Appendix Table A4 suggest similar displacement effects

on hydro, a dispatchable power source. In particular, the results in columns (2) of panel A

indicate that, on average, a 1 GWh increase in daily solar generation displaces hydro by 0.007

GWh, equivalent to 3.3% of the average hydro power generated in a single day. Regarding

geothermal generation, we find no effects, although the results on capacity factors indicate a

statistically significant reduction of four percentage points. While this may be a weak effect,

it is important to consider that the geothermal displacement attenuates the potential benefits

of a reduction in fossil fuels found in Table 3. Because geothermal energy is a non-emitting

source of electricity, its displacement will reduce some of the health benefits associated with

the expansion of solar generation. Hydropower, on the other hand, is mostly utilized as a

storage resource, dispatching in response to high price times; thus, we are unable to directly

identify the environmental impacts of its displacement. Despite this potential attenuation,

it is likely that the effect will be minor given the relatively small share of electricity that

is produced by hydro and geothermal sources (both of which contribute only 0.4% of mean

daily generation; see Table 1). In summary, we expect any attenuation effect from reduced

hydro and geothermal generation to be small compared to the benefits of displaced coal and

natural gas, which account for 83% and 11% of mean daily generation, respectively.

Finally, we find a positive coefficient of solar generation on wind generation, a non-

dispatchable (but curtailable) power source. The result for wind in column (2) of Appendix

Table A4 indicates that 1 GWh of daily solar generation ramps up wind generation by 0.099

GWh. Due to the non-dispatchability of wind generation, this likely reflects an underlying

correlation of wind and solar, given the thermally driven wind systems that characterize the

Atacama Desert (Jacques-Coper et al., 2015). Thermally driven winds are caused by local

differences in radiational heating and cooling systems, which in the case of the Atacama

favor the complementarity between wind energy and solar energy (Jacques-Coper et al.,

2015; Muñoz et al., 2018). An additional source of positive correlation between wind and

solar generation may come from the country’s effort to boost the adoption of renewable

energy sources, which has encouraged the installation of several wind parks in addition to

solar power plants (Ministry of Energy, 2013). In any case, given that wind generation is

24



not dispatchable but is curtailable, the fact that we are not getting a negative coefficient

weakly suggests that wind is not curtailed in response to greater solar output, or that, if

curtailment exists, it is not large enough to overcome the positive correlation between the

two sources.

Figure 7: Coal-Fired EGUs and Displacement

Notes: The figure shows estimation results from regressions of daily coal-fired generation (squares) and coal’s
capacity factors (circles) on daily solar power generation at the electricity generation unit (EGU) level. Point
estimates are marginal effects of daily solar generation (in GWh) derived from an OLS regression on daily
aggregated generation (left y-axis), and from a fractional logit response model on daily capacity factors (right
y-axis). The estimation equations are identical to the ones in columns (2) of Table 3. Dashed lines represent
95% confidence intervals obtained with bootstrapped standard errors. Reference line in red is at the zero
mark. All estimations use EGUs that report coal (and its derivatives) as their primary fuel source.

To delve deeper into the displacement of fossil fuel EGUs estimated in Table 3, we

estimate Equation (2) on the displacement at the plant level to individually identify the

affected plants. We plot the marginal effects of solar generation on daily generation levels

and capacity factors by coal-fired EGUs in Figure 7.28 Squares represent the point estimate

of solar generation on daily coal generation (left y-axis), and circles represent the marginal

displacement of capacity factors (right y-axis). We observe that the negative impact of

solar generation on coal combustion indicated in Table 3 is mostly explained by the shift

in the generation of five units: U15, U14, U12, CCR2 and CTA. Figure 7 also reveals the

displacement of unit U13, statistically significant at the 10% level. Four of these units

28Similar graphs for diesel- and gas-fired units are provided in Appendix Figures A5 and A6, respectively,
in the Appendix.
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(U15, U14, U13 and U12) are part of the Tocopilla coal-fired power station, which has

been in operation since 1960 and is SING’s oldest coal-fired plant.29 The largest generation

displacement is found for the CTA unit that belongs to the Atacama station. Power output

for this unit decreased by 216 MWh, roughly equivalent to 7% of its capacity. Considering

this plant alone, this displacement translates into more than 200 MWh of avoided daily coal-

fired generation. This is closely followed by reductions in CCR2’s output, one of the largest

EGUs in the system (274.9 MW of gross capacity).30 On average, our estimates reveal that

1 GWh of solar generation displaces 203 MWh of generation from the Atacama plant on a

given day.

In addition to the displacement of several coal-fired units, Figure 7 also reveals a statis-

tically significant ramp-up in the power generation of two facilities: NTO1 and NTO2. On

average, 1 GWh of daily solar generation increases generation in these plants by 90 and 89

MWh, respectively, jointly equivalent to 0.46% of the daily coal-fired generation (see Table

1). These two units are part of the Norgener power plant, also located in Tocopilla. Although

the ramp-up in the generation of these two coal-fired units is significantly lower than the

displacement found at other facilities, the increase slightly attenuates the potential health

impact of the overall set of displaced plants in Tocopilla.

6.2 Solar Generation and Health Outcomes

The results on the effect of 1 additional GWh of solar generation on the rate of daily

hospital admissions using Equation (3) are displayed in Table 4 for cardiovascular (panel

A) and respiratory (panel B) conditions, including the detail between upper (panel C) and

lower (panel D) respiratory diseases. We present these results using alternative subsamples

of downwind cities as defined in Section 5. Columns (1) and (2) both include controls that

capture time variation (year, seasons, year × seasons, and weekend fixed effects), weather

conditions, and city-level demographics and mining production.31 In addition, columns (1)

include city fixed effects, while columns (2) include city × year fixed effects. This last column

is our preferred specification.

Altogether, the results in Table 4 indicate that solar generation leads to a reduction in

hospital admissions. The results for our preferred specification (columns (2)) show that,

across all cities, 1 GWh increase in solar generation leads to a 6.7 percent reduction in the

rate of daily admissions due to all respiratory conditions (panel B), with the majority of

29At the time of writing, the Chilean government announced its plans to shut down these four units
between 2019 and 2024. Source: Online. Retrieved: December 2019.

30Units CCR1 and CCR2 belong to the Cochrane Power Station, with more than 500 MW of gross capacity.
31It is important to control for mining production as this sector is a significant polluter in the area and

the largest buyer of SING’s power. See Section 5 for more details.
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Table 4: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.028∗ -0.023 -0.056 -0.046 -0.038 -0.037 -0.032 -0.030

(0.016) (0.014) (0.052) (0.062) (0.039) (0.037) (0.027) (0.022)
Panel B. All respiratory

Solard -0.067∗∗∗ -0.067∗∗∗ -0.133∗∗ -0.106∗∗ -0.094∗∗ -0.090∗∗ -0.058∗∗ -0.045∗

(0.016) (0.015) (0.049) (0.049) (0.035) (0.035) (0.023) (0.024)
Panel C. Upper respiratory

Solard -0.028∗∗ -0.027 -0.024∗∗∗ -0.024∗∗∗ -0.015∗∗∗ -0.014∗∗ -0.014∗∗∗ -0.018∗∗∗

(0.009) (0.025) (0.002) (0.003) (0.003) (0.005) (0.003) (0.002)
Panel D. Lower respiratory

Solard -0.038∗∗∗ -0.037∗∗∗ -0.123∗∗∗ -0.117∗ -0.082 -0.079∗ -0.067∗∗∗ -0.066∗∗∗

(0.009) (0.008) (0.035) (0.064) (0.149) (0.043) (0.017) (0.018)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of Cities 19 19 2 2 3 3 4 4
Controls X X X X X X X X
City fixed effects X X X X
City×Year fixed effects X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation. Solar generation is in GWh. Estimation results are marginal effects from ZINB regressions
offsetting by population. Controls include weather, mining production, and demographic covariates. All
regressions include controls, year, seasons, year × seasons, and weekend fixed effects in both the main and
the inflate equations. Clustered standard errors by city appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

this reduction coming from lower respiratory hospitalizations (roughly 55%). Results for

cardiovascular (panel A) and upper respiratory (panel C) hospitalizations are also negative

but statistically insignificant at the conventional levels. Although these results have the

expected sign, they could be underestimating the true health effect of solar power generation

if emissions from displaced fossil fuel plants are not equally distributed across space. Thus,

to better understand the effect of solar on health through the displacement of emissions

from dirty generators, we redefine our sample to include cities located downwind of and at

different distances from displaced fossil fuel plants. We present these results in the last six

columns of Table 4.

With this subsample, we obtain a stronger and larger effect on the rate of admissions

due to respiratory conditions near displaced plants (< 10km), although the coefficients on

cardiovascular conditions continue to lack statistical significance. For cities within 10km

downwind of displaced plants, the results in column (2) indicate that a 1-GWh increase in

daily solar generation results in a 10.6 percent reduction in hospital admissions due to all

respiratory diseases. These reductions are statistically significant for admissions due to both
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upper and lower respiratory conditions, although the latter are larger in magnitude. The

signs and statistical significance of the estimated effects are slightly similar for cities within

50km and within 100km of distance from the displaced facilities, albeit with decreasing

magnitudes. For instance, the 10.6 percent reduction in admissions due to all respiratory

diseases found within 10km of displaced thermal plants, decreases to 9 percent within 50km

and to 4.5 percent within 100km. This decay is consistent with the identifying assumption

that the health benefits from thermal generation displacement decrease with distance from

the displaced sources. Overall, the results in Table 4 suggest that solar power generation

leads to better health outcomes likely attributable to improvements in local air quality.

We repeat the exercise in Table 4 by estimating Equation (3) across different age groups.

We present these results in Figure 8 for all cities using our preferred specification. Full

estimation results are given in Appendix Tables A6, A7, A8, and A9, for all cities, and for

cities downwind 10km, downwind 50km, and downwind 100km, respectively.

The results in Figure 8 show that additional solar power generation leads to health

benefits across most age groups in our sample of all cities, particularly the most vulnerable

groups (infants, toddlers, kids, and seniors). Figure 8(a) shows that one additional GWh of

solar power generation reduces cardiovascular-related hospital admissions of kids by .27%.

We also observe a negative effect among adults and seniors, but we lose some precision

in the estimation of these coefficients. Figure 8(b) indicates a clear reduction in hospital

admissions of infants and seniors by 2% and 1.1%, respectively (see Appendix Table A6).

Similarly, the estimated marginal effects for upper respiratory diseases in panel 8(c) show

statistically significant reductions in hospital admissions of kids (1.1%) and seniors (.13%),

while panel 8(d) on lower respiratory diseases show similar and stronger morbidity effects

among infants (2.1%), toddlers (1.5%), and seniors (.9%).

Moving to our preferred subsample of cities (those near and downwind to displaced fossil

fuel plants) in Tables A7, A8, and A9, shows that the sign of the estimated coefficients

is preserved, yet due to the reduction in the number of observations, the power of our

estimations is restricted and the statistical significance reduced in some cases. For instance,

we obtain a negative effect among kids and hospital admissions due to cardiovascular diseases,

but these effects are statistically insignificant. Notwithstanding, we observe statistically

significant reductions in admissions due to all respiratory diseases among infants and seniors.

In this case, we observe a 5.3% reduction in hospital admissions of infants in downwind

cities within 10km of displaced plants (Appendix Table A7). This effect decreases to a 3.5%

reduction in downwind cities within 50km (Appendix Table A8), and to a 2.7% in downwind

cities within 100km (Appendix Table A9). We find similar effects for seniors, and among

kids and seniors when it comes to admissions due to lower respiratory diseases, although
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Figure 8: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions by
Age Group – All Cities

Notes: This figure plots estimation results from regressions of daily hospital admissions on daily solar
power generation across all cities by age group. Solar generation is in GWh. Estimation results are marginal
effects from ZINB regressions offsetting by population. All regressions include controls (weather, mining
production, and demographics), year, seasons, year × seasons, and weekend fixed effects in both the main
and the inflate equations. Dashed lines are 95% confidence intervals obtained with clustered standard errors
by city.

they are less precise. The results obtained for all respiratory diseases, however, confirm the

health benefits of increased solar power generation among vulnerable groups such as infants

and seniors, which become stronger in cities downwind of and in close proximity to displaced

thermal plants.

6.2.1 Short- Versus Long-Term Health Effects

The results in Table 4 and Figure 8 offer a general perspective of the net effect that

day-to-day variation in solar generation has on day-to-day variation in hospital admissions,

suggesting the existence of short-term benefits of additional solar generation on health.
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Additional evidence of the immediate co-benefit of solar is found in the results for infants in

panels (b) and (d) of Figure 8 (equivalent to panels B and D in Table A6). As stated in Currie

and Neidell (2005), the link between cause and effect is immediate in the case of infants,

whereas diseases today in adults, for instance, may reflect pollution exposure from years ago.

The negative and statistically significant effects of solar generation on hospital admissions of

infants due to respiratory diseases, particularly lower respiratory diseases, found in panels B

and D of Table A6 illustrate this immediate link. Comparable effects are found in panel B

of Tables A7, A8, and A9. Considering that infants are less than one year old, these findings

corroborate the contemporaneous aspect of the co-benefits of solar power generation.
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Figure 9: The Long-Term Effect of Average Solar Generation on the Daily Rate of Hospital
Admissions

Notes: This figure shows estimation results from regressions of daily hospital admissions on weekly, monthly,
and yearly average solar power generation. Solar generation is in GWh. Point estimates are average partial
effects from ZINB regressions using 300 iterations and offsetting by population. All regressions include
controls (weather, mining production, and demographics), year, seasons, year × seasons, and weekend fixed
effects in both the main and the inflate equations. Dashed lines are 95% confidence intervals obtained by
clustering standard errors by city.
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As an additional test on whether these co-benefits are masking some permanent effects,

we estimate Equation (4) where the main explanatory variable is allowed to reflect the

moving weekly, monthly or yearly average solar generation in the system. Equation (4) also

allows us to take into account potential lagged effects of solar generation on contemporaneous

health outcomes, albeit indirectly. To that end, we replace Sd by St, where t = {w,m, y}.
Modeled in this way, δt gives us the average marginal effect of 1 GWh of either weekly,

monthly or yearly average solar generation on the rate of daily relevant hospitalizations.

The results using our strongest specification are displayed in Figure 9, with point estimates

and corresponding standard errors shown in Appendix Table A10. Appendix Table A11

contains similar results using weekly, monthly, and yearly maximum solar generation.

The results in Figure 9 show larger reductions in hospitalizations from weekly average

generation relative to the contemporaneous results shown in columns (2) of Table 4, particu-

larly for cities downwind of nearby fossil fuel plants (< 10km). The fact that this coefficient

is slightly greater than the daily impact as reported in Table 4 suggests an additional effect of

reduced cumulative pollution exposure. However, these cumulative effects seem to be present

only in the relatively short term, as they become smaller and generally less significant as

we move toward longer times of exposure (monthly and yearly). We take these estimates

together with our previous results among infants as compelling evidence of the immediate

health effects of increased solar power generation.

6.2.2 Solar, Fossil Fuels, Pollution, and Health

Our previous health results systematically indicate significant reductions in air pollution-

related hospitalizations due to variation in solar power generation. These reductions are

found mostly in cities downwind of fossil fuel plants that are displaced by solar generation

as revealed by our plant-level displacement analysis (see Section 6.1). This strategy helps

us to incorporate the air transport of pollutants emitted by the displaced thermal plants,

but it constitutes an indirect test of the mechanism through which solar generation affects

health. In this section, we employ a more direct test on the channel through which solar

power generation is positively affecting pollution-related morbidity by using available data

on PM2.5 concentrations. As mentioned in Section 3.1.2, pollution data in Chile is scarce for

cities other than Santiago. However, we gathered publicly available daily PM2.5 records for

some of the cities hosting fossil fuel generators, and some which are downwind of displaced

fossil fuel plants.32 We use these data to first explore the link between thermal generation and

32Specifically, we have data for Arica, Antofagasta, Tocopilla and Alto Hospicio. The last two cities,
namely Tocopilla and Alto Hospicio, are part of the group of cities within 10km downwind of displaced fossil
fuel plants. Data are daily records averaged across stations from 2012 to 2017, and come from the National
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air pollution concentrations by estimating the effect of daily fossil fuel generation (i.e., coal,

diesel, and natural gas) on city j’s daily PM2.5 concentrations (in logs). To avoid endogeneity

concerns, we use total fossil generation across these four cities instead of city-level generation

as follows:

log(PM2.5)jd = ρ0+ρ1Coald+ρ2Dieseld+ρ3NaturalGasd+βLoadjd+ωjd+ζ+τ+υjd, (5)

where j indexes cities and d indexes days. The variable Loadjd represents j’s daily

electricity demand that also works as a proxy for j’s daily economic activity.33 The vector

ωjd considers daily city-level weather covariates (including wind speed, also available for these

cities); ζ is a vector of demographics, mining production and city times year fixed effects; τ is

a vector of time-fixed effects; and υjd is an idiosyncratic error. In an alternative specification,

we replace city j’s daily thermal power generation for the system-level daily solar generation

(Solard). We estimate Equation (5) with an OLS estimator using Newey–West standard

errors to control for potential autocorrelation known to affect the pollution data. We present

these results in Table 5 using city fixed effects (columns (1) and (3)) and city × year fixed

effects (columns (2) and (4)).

The results from our preferred specification (column (2)) in Table 5 show that, on average,

1-GWh increase in diesel-fired generation increases PM2.5 concentrations by 13%, while a 1-

GWh increase in gas-fired generation increases PM2.5 by 1.3% across the subsample of cities

hosting fossil fuel generation. Recall that all gas-fired plants in our sample are combined-

cycled plants that operate also using diesel, so this effect is likely due to the use of diesel in

gas-fired plants. We do not observe a statistically significant effect of coal-fired generation

across all cities. However, when selecting cities downwind of displaced plants, we obtain that

a 1-GWh increase in coal-fired generation increases PM2.5 concentrations by 1.4% (column

(2), downwind cities). One additional GWh of diesel-fired generation is related to a 10.8%

increase in fine PM concentrations, while additional gas-fired generation is found to increase

these concentrations by 1.5% within these cities. Considering that daily concentrations of

this pollutant are roughly 17.49 µg/m3, on average, in cities downwind 10km (see Appendix

Table A12), one extra GWh of coal, diesel, and natural gas combustion is equivalent to

an additional concentration of 0.245, 1.889, and 0.262 µg/m3, respectively, of daily PM2.5

concentrations during the period of solar installations.

Next, we include solar generation in the estimation of Equation (5) in two ways. First,

Air Quality Information System (SINCA)’s website, https://sinca.mma.gob.cl. Descriptive statistics for
this variable are in Appendix Table A12.

33Our load data are at the system level. Thus, to approximate city-level load, we first calculate a per-capita
load given total population across the four cities. Then, we multiply this per-capita load by the population
of the city, producing an approximation of city-level load.
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Table 5: The Effect of Daily Power Generation on Daily PM2.5

All Cities Cities < 10km Downwind of
With Fossil Fuel Plants Displaced Fossil Fuel Plants

(1) (2) (3) (4) (1) (2) (3) (4)

Coald 0.004 0.004 0.003 0.014∗∗ 0.014∗∗ 0.013∗∗

(0.003) (0.003) (0.003) (0.005) (0.005) (0.005)
Dieseld 0.130∗∗ 0.130∗∗ 0.120∗∗ 0.108∗ 0.108∗ 0.093

(0.048) (0.046) (0.047) (0.062) (0.062) (0.061)
Natural Gasd 0.013∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.015∗∗ 0.015∗∗ 0.016∗∗

(0.004) (0.004) (0.004) (0.005) (0.005) (0.006)
Solard -0.033∗∗ -0.027∗∗ -0.043∗∗ -0.033∗

(0.013) (0.013) (0.019) (0.019)

Obs. 5,582 5,582 5,319 5,319 2,592 2,592 2,329 2,329
Number of Cities 4 4 4 4 2 2 2 2
City fixed effects X X X X
City×Year fixed effects X X X X

Notes: This table displays estimation results from regressions of daily average fine particle matter (PM2.5)
concentrations (in logs) on daily fossil-fueled power generation and on daily system-level solar generation.
Power generation is in GWh. Estimation results are marginal effects from OLS regressions using Newey–West
standard errors (in parentheses) allowing for up to three lags in the dependent variable. All regressions
include weather controls (minimum and maximum temperature, humidity, wind speed), mining production,
demographic covariates (including population), city-level load, year, seasons, year × seasons, and weekend
fixed effects. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

we do so by replacing thermal generation with solar generation as a regressor (results in

columns (3) of Table 5), and second, we include it as an additional regressor (results in

columns (4) of Table 5). In both cases, we find negative and significant results for solar

generation. Namely, the results in columns (4) of Table 5 indicate that 1 extra GWh of solar

generation reduces PM2.5 concentrations by 3–4% across the two different groups of cities.

Altogether, the findings in Table 5 indicate that thermal generation effectively increases

airborne pollution concentrations, while solar generation has the opposite effect.

Our final exercise considers the information in Table 5 in tandem with our health analysis

by means of two different approaches. First, we re-estimate our baseline health equations

but replace solar generation with city-level daily average PM2.5 concentrations in order to

estimate the direct effect of pollution concentrations on our morbidity outcomes. In doing

this, we have to consider the potential endogeneity in this specification. For instance, PM2.5

can be formed due to chemical reactions of secondary particles from SO2 and NOX , pollutants

that are common to coal combustion and also have a direct impact on health (World Health

Organization, 2006). In addition, other factors such as economic conditions may have a

simultaneous impact on both health outcomes and air pollution concentrations. Thus, while

informative, omitted factors in this regression may give us an inconsistent estimator of the
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pollution impact on health. We present the results of this first approach in columns (1)

of Table 6. For robustness, we also present the results of this regression using a Poisson

estimator in columns (2).

Table 6: The Effect of Daily PM2.5 on the Daily Rate of Hospital Admissions

All Cities < 10km Downwind of
Cities Displaced Fossil Fuel Plants

(1) (2) (3) (4) (1) (2) (3) (4)

Panel A. Cardiovascular
PM2.5 0.008 0.010∗ 0.010 0.005 -0.0003 0.001∗ -0.002 0.026

(0.006) (0.005) (0.006) (0.014) (0.0003) (0.0003) (0.001) (0.035)
PM2.5 × Solard 0.0004 0.001

(0.002) (0.002)
ρ̂ -0.004 -0.028

(0.014) (0.036)
Panel B. All respiratory

PM2.5 0.060∗∗∗ 0.043∗∗∗ 0.051∗∗∗ 0.075∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.024∗∗∗ 0.097∗∗∗

(0.015) (0.005) (0.006) (0.015) (0.003) (0.004) (0.003) (0.026)
PM2.5 × Solard -0.010∗∗ -0.007∗∗∗

(0.005) (0.002)
ρ̂ -0.061∗∗∗ -0.083∗∗∗

(0.014) (0.024)
Panel C. Upper respiratory

PM2.5 0.002 0.001 0.003 0.134∗∗ 0.004 0.004∗∗ 0.005∗∗∗ 0.239∗∗∗

(0.008) (0.005) (0.005) (0.049) (0.002) (0.001) (0.001) (0.024)
PM2.5 × Solard -0.004∗∗ -0.002∗∗∗

(0.002) (0.000002)
ρ̂ -0.124∗∗ -0.224∗∗∗

(0.045) (0.036)
Panel D. Lower respiratory

PM2.5 0.037∗∗ 0.038∗∗∗ 0.043∗∗∗ 0.075∗∗∗ 0.015∗∗∗ 0.014∗∗ 0.018∗∗∗ 0.088∗∗

(0.011) (0.011) (0.009) (0.015) (0.003) (0.006) (0.005) (0.028)
PM2.5 × Solard -0.005∗ -0.003∗∗

(0.003) (0.001)
ρ̂ -0.056∗∗∗ -0.073∗∗

(0.014) (0.024)

Obs. 5,582 5,582 5,319 5,319 2,592 2,592 2,329 2,329
Estimation ZINB Poisson Poisson IV-Poisson ZINB Poisson Poisson IV-Poisson
Number of Cities 4 4 4 4 2 2 2 2
City×Year fixed effects X X X X X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions by disease on
daily average PM2.5 concentrations. Estimation results are marginal effects from ZINB, Poisson, and IV-
Poisson estimations using daily solar generation as an instrument for PM2.5 and offsetting by population.
Daily PM2.5 are measured in µg/m3. Solar generation is in GWh. The IV-Poisson estimation uses a GMM
Control Function estimator, where the parameter ρ measures the strength of the endogeneity of PM2.5. All
regressions include weather controls (minimum and maximum temperature, humidity, wind speed), mining
production, demographic covariates, year and weekend fixed effects. Due to lack of convergence, we remove
seasons and year × seasons fixed effects. Clustered standard errors by city appear in parentheses. Significance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

The results in columns (1) and (2) of Table 6 suggest that additional PM2.5 concen-

trations increase morbidity, particularly those associated with respiratory diseases. We also

find a positive effect on cardiovascular outcomes, but they are very small and only borderline
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significant. To test how this effect changes with solar generation, we include the interaction

between PM2.5 and Solard in column (3) as an additional regressor. As expected, additional

concentrations of PM2.5 continue to negatively affect health. Yet this effect decreases with

more GWhs of solar generation in the grid, as shown by the negative estimate for the interact-

ing term. These findings support our results related to the direct impact of solar on health,

namely, more solar and less fossil fuel generation reduce emissions and in turn, hospitaliza-

tions. Furthermore, the fact that we do not find a direct effect of pollution on cardiovascular

hospitalizations explains our lack of significance on cardiovascular hospitalizations in our

main specification.

Although promising, these results are likely endogenous. To deal with the potential

endogeneity of PM2.5, we replicate the exercises in columns (2) but use day-to-day variation

in solar generation as an instrument for PM2.5. Due to the nature of our outcome variable

(a count variable), we estimate this with a Poisson Instrumental Variable approach that

uses a Control Function (CF) estimator (Wooldridge, 2010) with a Generalized Method of

Moments (GMM) procedure.34 In a CF procedure, the residuals v̂ derived from the regression

of PM2.5 on Solard are included in the main estimation equation to control for the endogeneity

of PM2.5. A statistically significant estimate for the coefficient on v̂ constitutes a simple test

on the endogeneity of PM2.5 (Wooldridge, 2010). We present these results in columns (4) of

Table 6, including the estimated coefficient of the CF residuals, ρ̂.

The statistical significance of ρ̂ in Table 6 tells us that PM2.5 is indeed endogenous in the

regressions that use the rate of hospital admissions due to respiratory diseases as outcomes.

Moreover, instrumenting PM2.5 results in larger coefficients relative to those that do not

consider the endogeneity of pollution, which shows the downward bias of the estimates in

column (2). At the same time, these larger-in-magnitude estimates signal that the use of

day-to-day variation in solar generation allows us to effectively capture variation in hospital

admissions due to changes in daily PM2.5 concentrations in full. We take the results in

Tables 5 and 6 as strong evidence that the co-benefits of solar power generation on hospital

admissions found throughout our analysis are largely due to reductions in local airborne

pollution from displaced thermal generation.

34We do this with the IVPOISSON command in Stata®, which allows us to derive correct standard errors
through the application of GMM in one single stage.
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7 Robustness Checks

7.1 Alternative Groups of Cities

Our results are robust to several alternative specifications. First, we check the robustness

of our wind direction analysis by using cities with fossil fuel plants as an approximation to

cities with pollution exposure. From our displacement analysis, we are also able to consider:

1) cities upwind of displaced plants, 2) cities downwind of non-displaced plants, and 3) cities

downwind of ramping-up plants (see Figure 7). This latter group, however, is quite restrictive

as it ultimately limits the cities to just one. We present these results in Table 7.

Table 7: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions
Using Alternative Groups of Cities

With Upwind of Downwind of Downwind of
Fossil Fuel Displaced Non-displaced Ramping-Up
Generation Plants Plants Plants

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.066 -0.077 -0.001 -0.001 -0.0002 -0.003 0.063 -0.049

(0.051) (0.054) (0.001) (0.002) (0.002) (0.004) (0.103) (0.098)
Panel B. All respiratory

Solard -0.206∗∗∗ -0.218∗∗∗ -0.002 -0.002 0.001 0.001 0.293∗∗ -0.127
(0.047) (0.044) (0.003) (0.004) (0.003) (0.003) (0.123) (0.143)

Panel C. Upper respiratory
Solard -0.094∗∗∗ -0.095∗∗∗ -0.0003 -0.0001 0.0003 0.0003 0.042 -0.039

(0.015) (0.015) (0.094) (0.005) (0.001) (0.019) (0.082) (0.086)
Panel D. Lower respiratory

Solard -0.113∗∗∗ -0.126∗∗∗ -0.001 -0.002 0.003∗∗∗ 0.001 0.236∗∗ -0.097
(0.031) (0.031) (0.002) (0.004) (0.0003) (0.001) (0.085) (0.098)

Obs. 9,575 9,575 11,490 11,490 5,745 5,745 1,915 1,915
Number of Cities 5 5 6 6 3 3 1 1
τ1 fixed effects X
τ2 fixed effects X X X X X X X
City fixed effects X X X
City × Year fixed effects X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation using alternative cities. Solar generation is in GWh. Estimation results are marginal effects
from ZINB regressions offsetting by population. All regressions include controls (weather, mining production,
and demographics) in both the main and the inflate equations. Vector τ1 includes year, month, and weekend
fixed effects. Vector τ2 includes year, seasons, year × seasons, and weekend fixed effects. Clustered standard
errors by city appear in parentheses for all group of cities except for cities downwind ramping-up plants that
use robust standard errors. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Splitting the sample in this manner reveals that reductions in hospitalizations attributable

to solar generation are primarily found in places with fossil fuel generation. The results in the

first two columns of Table 7 suggest that additional solar generation predominantly curtails
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respiratory admissions in cities where displacement is possible. Namely, an additional 1 GWh

of solar generation results in a 21.8 percent reduction of all respiratory hospitalizations in

cities that house fossil fuel plants, of which the majority of these effects are reductions in

lower respiratory hospitalizations. Similar to our findings with all cities and downwind cities,

we do not find a statistically significant impact on cardiovascular-related hospitalizations.

We also find that cities that are upwind of displaced plants or downwind of non-displaced

plants are not generally affected by solar, as almost all coefficients are statistically insignifi-

cant and very small. The one exception is with lower respiratory hospitalizations, in which

we find a small and positive effect of solar on hospitalizations in cities downwind of non-

displaced plants. However, this effect goes away with our preferred fixed effects specification.

These results provide another proof of our identification strategy holding, as controlling for

wind direction allows us to more accurately identify the impact of solar on health.

Finally, we find large positive effects of solar on lower respiratory hospitalizations in cities

that are downwind of plants that have ramped up in response to solar generation (column

(1)). Our plant-level analysis shows that two coal-fired plants and one gas-fired unit ramp up

their production in response to the injection of this renewable (see Figure 7 and Appendix

Figure A6). Thus, it is not surprising that respiratory hospitalizations increase in this

subsample. Yet this effect disappears once we utilize our preferred set of time-fixed effects.

7.2 Alternative Estimation Methods

We also test the robustness of our ZINB estimation method by utilizing alternative esti-

mators: a Poisson estimator, an OLS, and a Negative Binomial. Unlike ZINB, the Poisson

estimator does not take into account the overdispersion in the data, and neither the Negative

Binomial estimator nor OLS consider the zero-inflation of the outcomes (the pile-up at zero).

The results are displayed in Appendix Tables A13, A14, and A15, respectively.

Our Poisson results in Appendix Table A13 are very similar to the results obtained by

utilizing ZINB: specifically, we find that a 1 GWh increase in solar generation reduces all

respiratory hospitalizations by 6.7 percent in all cities, and 14.4 percent in nearby downwind

cities. Similar to the ZINB results, we also find that the effect is largest in downwind cities

at distances closest to the displaced plant, with effect sizes reducing at further distances.

Again, we do not find a statistically significant effect for cardiovascular hospitalizations in

this specification.

Regarding OLS, the results in Appendix Table A14 show similar magnitudes of reduced

hospitalizations across all cities, although we lose significance when subsampling to downwind

cities alone. In order to use this estimator, we change our outcome variable from a discrete
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to continuous form by dividing hospital admissions by population (measured in 100,000).

However, it’s important to point out that OLS is not a methodology that accurately deals

with a dependent variable that has an abundance of observations with zero values (pile-up

at zero). Thus, though the OLS results in Table A14 are useful as a first approximation, we

take them with caution given the skewed distribution of the dependent variable.

Finally, the results in Appendix Table A15 for the Negative Binomial show similar re-

ductions in respiratory hospitalizations as the ZINB results, with 1 GWh of solar reducing

all respiratory hospitalizations by 6.8 percent in all cities and by 14.3 percent in downwind

cities. These findings demonstrate that our results are robust to the choice of estimator.

7.3 Placebo Health Outcomes

Additionally, we test whether solar generation affects health outcomes that are, pre-

sumably, unrelated to pollution. Appendix Table A16 displays the ZINB results of this

falsification test using infections (panel A) and blood diseases (excluding anemia) (panel B).

We also include Schlenker and Walker (2016)’s placebo outcomes: strokes (panel C), bone

fractures (panel D) and appendicitis (panel E).35 The placebo results are all small and statis-

tically insignificant, regardless of the group of cities considered, except for appendicitis. For

admissions related to this disease, we find that they decrease with solar across all cities but

increase across cities further than 10km downwind of displaced plants. However, this pos-

itive effect disappears once we consider our preferred specification in column (2). Whether

this result is due to peculiar dynamics derived from hospital capacity constraints commonly

experienced by developing countries (Guidetti et al., 2021) remains an open avenue for future

research.

8 Discussion

The remarkable and rapid expansion of solar generation capacity in Chile has provided

a natural experiment to test the impact of renewable electricity sources on morbidity in a

developing country. We run a variety of different tests to quantify the health benefits of

almost 600 MW of new solar generation capacity. Overall, our results tell a positive story

about how we can employ solar energy to bring about improved health outcomes in settings

with elevated pollution exposure and reduced healthcare access.

35The exact ICD-10 codes are A00/A099, A200/A799 and B50/B999 for infections (we exclude tuberculosis
A15/A19 and viral infections B00/B499); D65/D899 for blood disorders (excluding anemia); I60/I699 for
strokes; S000/S999 for bone fractures; and K350/K389 for appendicitis.
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We first demonstrate that solar energy can effectively displace fossil fuel plants, notably

plants that rely on coal and natural gas. These heavy emitters are displaced by increases

in solar generation, although the benefits may be attenuated by the ramp-up of a subset of

fossil fuel generators and the reductions in hydro and geothermal electricity. However, given

the relatively small shares of these fuel types in generation, the attenuation of displacement

is not enough to offset the positive health benefits.

We next show that the day-to-day operation of solar plants reduces daily hospitalizations

of cardiovascular and respiratory diseases, particularly those related to the upper airways.

When taking into account the transport of pollutants using cities downwind of fossil fuel

plants displaced by solar generation, we find significant morbidity reductions associated

with all types of respiratory diseases, noticeable up to 50km from the displaced facilities,

and up to 100km in the case of lower respiratory diseases (though the effect size is largest

for towns closest to the displaced plants). Across different age groups, we find the largest

statistically significant impacts on hospitalizations of infants, children and seniors, the most

vulnerable age groups. A simple linear projection of our results suggests that a full solar

displacement of all coal-fired generation in the current grid would imply, in cities downwind

of displaced thermal plants, 762 and 214 fewer respiratory admissions of infants and seniors

per year, respectively. In the case of toddlers and kids, a full solar displacement would

imply a reduction of 470 and 55 lower respiratory admissions in cities downwind of displaced

thermal plants.36 Furthermore, we show that the health co-benefits of solar generation are

strongest in the short-term, and in cities downwind of displaced plants or those hosting fossil

fuel generation. This latter result demonstrates the geographic heterogeneous effect of solar

generation, and simultaneously suggests that areas with intense fossil fuel generation will

benefit more from an expansion of renewable, clean energy sources.

Our results remain unaltered after using several robustness checks, which include the use

of cities without thermal generation, upwind cities, cities downwind of nondisplaced plants,

and cities downwind of plants that have ramped up. Our results are also robust to alternative

estimation approaches, including utilizing Poisson, OLS, and negative binomial models, and

to the use of hospital admissions due to other conditions presumably not related to pollution.

We do find a significant decrease in appendicitis admissions across all cities. However, this

result disappears once we use our preferred specification across cities downwind of displaced

plants. A plausible explanation for this unexpected result across all cities is a rearrangement

of admissions due to the temporary alleviation of otherwise strained hospitals—a common

36Values are taken from the age-specific coefficients in Table A7, columns (2), statistically significant
results only. Infants: -0.0531 × 39.36 GWh (average daily coal-fired generation) × 365 = 762. Toddlers:
-0.0327 × 39.36 GWh × 365 = 470. Kids: -.0038 × 39.36 GWh × 365 =55. Seniors: -0.0149 × 39.36 GWh
× 365 = 214.
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characteristic in developing countries. However, this explanation would require further re-

search, which is outside the scope of this project.

Our study provides important evidence that solar generation can bring about positive

health outcomes in developing nations, increasing the social benefits of investment in power

generation capacity for these clean resources. To the extent that these countries suffer from

limited healthcare infrastructure that forces them to adjust their healthcare needs during

spikes in air pollution (Guidetti et al., 2021), or that low-income and minority populations

may be more likely to be exposed to pollution, our results should be considered as a lower

bound of the true co-benefits that solar generation can bring to developing countries.

This work can be improved in several ways. For example, we lack comprehensive data to

explore the impact of solar power generation on global and other airborne emissions beyond

PM2.5. Future research could employ satellite data to conduct this analysis. Furthermore,

our work estimates the impact of solar generation prior to the northern and southern grid

interconnection in Chile; identifying the effect once these two grids are interconnected is an-

other potential avenue of research outside the scope of this paper.37 Finally, complementary

insights on the health benefits of renewable sources can be drawn from other health outcomes

as well, such as mortality data. These avenues remain open topics for future research.

References

Abel, D., Holloway, T., Harkey, M., Rrushaj, A., Brinkman, G., Duran, P., Janssen, M.,

and Denholm, P. (2018). Potential air quality benefits from increased solar photovoltaic

electricity generation in the eastern United States. Atmospheric Environment, 175:65–74.

Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens-

Maenhout, G., Pozzoli, L., Van Dingenen, R., Vignati, E., et al. (2012). Global air quality

and health co-benefits of mitigating near-term climate change through methane and black

carbon emission controls. Environmental Health Perspectives, 120(6):831–839.

Arceo, E., Hanna, R., and Oliva, P. (2016). Does the effect of pollution on infant mortality

differ between developing and developed countries? Evidence from Mexico City. The

Economic Journal, 126(591):257–280.

37The a priori effect of the interconnection on the health benefits of solar generation is unclear, due to
different factors. First, Chile’s major population centers are in the south, which would imply greater impacts
from solar generation on health. However, solar generation is more likely to occur in the north, given the
region’s massive solar irradiation compared to southern Chile. Thus, transmission constraints would likely
attenuate that benefit. Furthermore, because the southern grid is cleaner, the relative benefits of solar
generation will be lower compared to that in northern Chile. Thus, the overall effect may be larger or
smaller than the effect of solar only within SING.

40



Baker, E., Fowlie, M., Lemoine, D., and Reynolds, S. S. (2013). The economics of solar

electricity. Annu. Rev. Resour. Econ., 5(1):387–426.

Banzhaf, S., Ma, L., and Timmins, C. (2019). Environmental justice: The economics of race,

place, and pollution. Journal of Economic Perspectives, 33(1):185–208.

Barbose, G., Wiser, R., Heeter, J., Mai, T., Bird, L., Bolinger, M., Carpenter, A., Heath, G.,

Keyser, D., Macknick, J., et al. (2016). A retrospective analysis of benefits and impacts

of US renewable portfolio standards. Energy Policy, 96:645–660.

Barrows, G., Garg, T., and Jha, A. (2018). The economic benefits versus environmental

costs of India’s coal-fired power plants. Available at SSRN.

Bateson, T. F. and Schwartz, J. (2007). Children’s response to air pollutants. Journal of

Toxicology and Environmental Health, Part A, 71(3):238–243.

Bell, M. L., Dominici, F., and Samet, J. M. (2005). A meta-analysis of time-series studies

of Ozone and mortality with comparison to the national morbidity, mortality, and air

pollution study. Epidemiology, 16(4):436–445.

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F. (2004). Ozone and

short-term mortality in 95 US urban communities, 1987-2000. JAMA, 292(19):2372–2378.

Bharadwaj, P., Gibson, M., Zivin, J. G., and Neilson, C. (2017). Gray matters: Fetal pollu-

tion exposure and human capital formation. Journal of the Association of Environmental

and Resource Economists, 4(2):505–542.

Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux,

A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., et al. (2010). Particulate

matter air pollution and cardiovascular disease: an update to the scientific statement from

the American Heart Association. Circulation, 121(21):2331–2378.

Buonocore, J. J., Luckow, P., Norris, G., Spengler, J. D., Biewald, B., Fisher, J., and Levy,

J. I. (2016). Health and climate benefits of different energy-efficiency and renewable energy

choices. Nature Climate Change, 6(1):100–105.

Burney, J. A. (2020). The downstream air pollution impacts of the transition from coal to

natural gas in the United States. Nature Sustainability, pages 1–9.

Bushnell, J. and Novan, K. (2021). Setting with the sun: The impacts of renewable energy

on conventional generation. Journal of the Association of Environmental and Resource

Economists, 8(4):759–796.

41



Callaway, D. S., Fowlie, M., and McCormick, G. (2018). Location, location, location: The

variable value of renewable energy and demand-side efficiency resources. Journal of the

Association of Environmental and Resource Economists, 5(1):39–75.

Carlson, C. L. and Adriano, D. C. (1993). Environmental impacts of coal combustion

residues. Journal of Environmental quality, 22(2):227–247.

Casey, J. A., Gemmill, A., Karasek, D., Ogburn, E. L., Goin, D. E., and Morello-Frosch, R.

(2018a). Increase in fertility following coal and oil power plant retirements in California.

Environmental Health, 17(1):44.

Casey, J. A., Karasek, D., Ogburn, E. L., Goin, D. E., Dang, K., Braveman, P. A., and

Morello-Frosch, R. (2018b). Retirements of coal and oil power plants in California: As-

sociation with reduced preterm birth among populations nearby. American Journal of

Epidemiology, 187(8):1586–1594.

Chauhan, A. J., Inskip, H. M., Linaker, C. H., Smith, S., Schreiber, J., Johnston, S. L., and

Holgate, S. T. (2003). Personal exposure to Nitrogen Dioxide (NO2) and the severity of

virus-induced asthma in children. The Lancet, 361(9373):1939–1944.

Chay, K. Y. and Greenstone, M. (2003a). Air quality, infant mortality, and the Clean Air

Act of 1970. Technical report, National Bureau of Economic Research.

Chay, K. Y. and Greenstone, M. (2003b). The impact of air pollution on infant mortal-

ity: Evidence from geographic variation in pollution shocks induced by a recession. The

Quarterly Journal of Economics, 118(3):1121–1167.

Chen, Y., Ebenstein, A., Greenstone, M., and Li, H. (2013). Evidence on the impact

of sustained exposure to air pollution on life expectancy from China’s Huai River pol-

icy. Proceedings of the National Academy of Sciences of the United States of America,

110(32):12936–12941.

Chile Environmental Ministry (2017). Informe Consolidado de Emisiones y Transferencia

de Contaminantes 2005-2017. Retrieved from RETC, Ministerio de Medio Ambiente:

ttps://retc.mma.gob.cl.

Chile Environmental Ministry (2018). Tercer Informe Bienal de Actualización de Chile
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Appendix

Figure A1: Bulk Power Systems in Chile

Notes: This figure depicts the four bulk power system that existed in Chile until 2018. It also displays
the fuel source composition of each system: the Northern Interconnected System (SING), the Central In-
terconnected System (SIC), the Aysen Electric System (SEA), and the Magallanes Electric System (SEM).
SING and SIC interconnected in 2018, and the whole system was renamed as the National Electric System
(SEC). This figure was adapted from the National Energy Commission Monthly Report, dated December
2017. https://www.cne.cl/wp-content/uploads/2015/06/RMensual_v201712.pdf
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Table A1: Monthly Fuel Use and Prices

Variable Mean Std. Dev. Min. Max. Obs.

Panel A. Fuel Use
Coal 34,931.76 3,210.30 25,949.25 42,148.77 2,192
Diesel 1,020.77 684.61 26.08 2,602.4 2,192
Fuel oil 369.33 301.059 1 1,219 1,187
Fuel oil #6 955.93 910.55 9 3,321.5 2,192
Natural gas 15,333.87 7,389.24 3,371.79 44,707.66 2,192

Panel B. Fuel Prices
Coal 105.41 16.21 68.19 138.73 2,192
Diesel 620.94 200.63 288.5 908.7 2,192
Fuel oil 95.79 22.91 46.67 125.33 1,187
Fuel oil #6 446.96 175.40 157 728.41 2,192
Natural gas 3.15 0.79 1.7 5.94 2,192

Notes: This table displays main descriptive statistics of monthly fossil fuel uses and prices from 2012 to
2017. Descriptive statistics use main fuel source only. Coal, diesel and fuel oil are in tons, while natural gas
is in thousands m3. Prices are in US$/ton for coal, US$/m3 for diesel and fuel oil #6, in US$/mm btu for
natural gas, and in US$/bbl for fuel oil. Data come from the National Energy Commission.
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Table A2: Summary Statistics on the Daily Rate of Hospital Admissions by Age Group

Disease Mean Std. Dev. Min. Max. Obs.

Panel A. Infants
Cardiovascular 0.004 0.436 0 85.324 41,648
All respiratory 0.126 1.058 0 78.309 41,648
Upper respiratory 0.007 0.212 0 29.326 41,648
Lower respiratory 0.116 1.027 0 78.309 41,648

Panel B. Toddlers
Cardiovascular 0.004 0.138 0 19.372 41,648
All respiratory 0.235 1.956 0 107.759 41,648
Upper respiratory 0.079 0.812 0 57.937 41,648
Lower respiratory 0.150 1.759 0 107.759 41,648

Panel C. Kids
Cardiovascular 0.012 0.387 0 58.893 41,648
All respiratory 0.128 2.555 0 319.489 41,648
Upper respiratory 0.065 0.930 0 85.324 41,648
Lower respiratory 0.061 2.375 0 319.489 41,648

Panel D. Adults
Cardiovascular 0.535 3.337 0 409.836 41,648
All respiratory 0.364 2.290 0 168.350 41,648
Upper respiratory 0.119 1.383 0 168.350 41,648
Lower respiratory 0.190 1.677 0 107.759 41,648

Panel E. Seniors
Cardiovascular 0.489 3.418 0 322.581 41,648
All respiratory 0.350 3.728 0 409.836 41,648
Upper respiratory 0.006 0.339 0 56.465 41,648
Lower respiratory 0.27 2.457 0 107.759 41,648

Notes: This table displays main descriptive statistics of the daily rate of hospital admissions by age group
from 2012 to 2017. Hospital admission rates are per 100,000 people. Observations are across all cities in the
sample using patient’s city of origin. Data come from the Ministry of Health, through the Department of
Health Statistics and Information (DEIS) from 2012 to 2017.
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Table A3: Descriptive Statistics - Other Covariates

Variable Mean Std. Dev. Min. Max.

Panel A. All cities (n= 19)
Demographics:

Population 61,802.89 104,603.38 244 395,453
Density 19.43 47.45 0.08 229.51
Poverty Rate 14.11 9.06 2 37
Fertility Rate 11.18 6.32 0 21.6

Weather:
Min. Temp. (C) 7.10 6.34 -25 23
Max. Temp. (C) 10.72 8.65 -11.8 33.4
Humidity (%) 49.11 13.71 9.68 96.26

Panel B. Cities with fossil fuel generation (n= 5)
Demographics:

Population 167,575 140,344.43 11,090 395,453
Density 30.91 32.35 2.92 89.28
Poverty Rate 8.30 3.66 3.12 15.71
Fertility Rate 16.31 2.13 12.19 21.6

Weather:
Min. Temp. (C) 9.03 6.67 -18.4 23
Max. Temp. (C) 13.46 8.72 -11.8 33.4
Humidity (%) 52.31 14.07 9.69 96.26

Panel C. Cities without fossil fuel generation (n = 13)
Demographics:

Population 25,041.19 51,812.2 244 184,543
Density 16.42 53.11 0.08 229.51
Poverty Rate 16.29 9.82 2 37
Fertility Rate 9.40 6.49 0 20.99

Weather:
Min. Temp. (C) 6.40 6.09 -25 22
Max. Temp. (C) 9.98 8.52 -11.8 33
Humidity (%) 47.88 13.68 9.68 95.85

Notes: This table displays main descriptive statistics of covariates by groups of cities. Observations are
at the city level. There is one city in our sample, Pica, that switches from panel C to panel B due to the
opening of a new fossil fuel generator during our study period. We discard this city from panels B and C.
Data comes from the National System of Municipalities Information (SINIM) from 2012 to 2017.
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Figure A2: SING’s Monthly Load and Solar Generation

Notes: This figure depicts the total monthly load and total monthly solar power generation at SING.
Information is in gigawatts per hour (GWh). Monthly load is on the main y-axis. Monthly solar generation
is on the secondary y-axis. Data comes from the National Electricity Coordinator from 2012 to 2017.
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Figure A3: Overdispersion in the Health Outcome Variables

Notes: The left-hand panel exhibits the number of daily hospital admissions due to respiratory conditions
for one of the largest cities in the sample, Antofagasta, while the right-hand panel shows the same variable
for the case of a smaller city, Tocopilla. The overdispersion of this variable is evident in the case of the large
city (left-hand side). The heterogeneity in the size of the pile-up at zero is also clear when comparing the
two cities.
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Figure A4: Location of Solar Generators at SING

Notes: This figure depicts the location of the solar generators at SING (northern Chile) included in our
analysis. The figure was obtained from the National Energy Comission (CNE) from https://energiamaps.

cne.cl
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Table A4: The Effect of 1 GWh of Solar Power Generation on Daily Aggregated Renewable
Generation

Wind Hydro Geothermal

(1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solard 0.015 0.099∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.071∗∗∗ -0.026

(0.020) (0.019) (0.001) (0.002) (0.019) (0.016)
Panel B. Capacity Factor

Solard -0.004 0.013∗∗ -0.021∗∗∗ -0.018∗∗∗ -0.050∗∗∗ -0.040∗∗∗

(0.005) (0.004) (0.004) (0.005) (0.013) (0.011)

Obs. 1,489 1,489 1,915 1,915 306 306
Controls X X X X X X
τ1 fixed effects X X X
τ2 fixed effects X X X

Notes: This table displays estimation results from regressions of daily aggregated renewable generation
(panel A) and renewables’ daily capacity factors (panel B) on daily solar power generation. Estimation
results are marginal effects of daily solar generation (in GWh) derived from an OLS on daily aggregated
generation, and from a fractional logit response model on daily capacity factors. All estimations include
plants with both single- and dual-fuel engines. All regressions include daily temperature, humidity and load
as controls (fuel price ratios are not included in this regression as these are renewable generators only). Vector
τ1 includes year, month, and weekend fixed effects. Vector τ2 includes year, seasons, year × seasons, and
weekend fixed effects. Bootstrapped standard errors appear in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A5: The Effect of Solar on Daily Aggregated Fossil Fuel Generation Using Single-Fuel
Engines Only

Coal Diesel Fuel oil Fuel oil #6

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Generation (GWh)
Solard -0.813∗∗∗ -0.813∗∗∗ -0.017 -0.017 -0.011 -0.011 0.001 0.001

(0.137) (0.137) (0.011) (0.011) (0.023) (0.023) (0.001) (0.001)
Panel B. Capacity Factor

Solard -0.022∗∗∗ -0.022∗∗∗ -0.009∗∗ -0.009∗∗ 0.047 0.047 0.029 0.029
(0.004) (0.004) (0.004) (0.004) (0.047) (0.047) (0.018) (0.018)

Obs. 1,915 1,915 1,915 1,915 910 910 1,825 1,825
Controls X X X X X X X X
τ1 fixed effects X X X X
τ2 fixed effects X X X X

Notes: This table displays estimation results from regressions of daily aggregated fossil fuel generation
(panel A) and fossil fuels’ daily capacity factors (panel B) on daily solar power generation. Estimation
results are marginal effects of daily solar generation (in GWh) derived from an OLS regression on daily
aggregated generation, and from a fractional logit response model on daily capacity factors. All estimations
include plants with both single- and dual-fuel engines. All regressions include daily temperature, humidity,
load and price ratios as controls. Vector τ1 includes year, month, and weekend fixed effects. Vector τ2
includes year, seasons, year × seasons, and weekend fixed effects. Bootstrapped standard errors appear in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Figure A5: Diesel-Fired (Single-Fuel) EGUs and Displacement

Notes: The figure shows estimation results from regressions of daily diesel-fired generation (squares) and
capacity factors (circles) on daily solar power generation at the electricity generation unit (EGU) level. Point
estimates are marginal effects of daily solar generation (in GWh) derived from an OLS on daily aggregated
generation (left y-axis), and from a fractional logit response model on daily capacity factors (right y-axis).
The estimation equations are identical to the ones in columns (2) of Table 3. Dashed lines represent 95%
confidence intervals obtained with bootstrapped standard errors. Reference line in red is at the zero mark.
All estimations use combined-cycle EGUs that report diesel as their primary fuel source. We exclude units
with dual engines that run with natural gas or that report using fuel oil as well.
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Figure A6: Natural Gas-Fired (Combined-Cycle) EGUs and Displacement

Notes: The figure shows estimation results from regressions of daily gas-fired generation (squares) and
capacity factors (circles) on daily solar power generation at the electricity generation unit (EGU) level. Nat-
ural gas-fired plants in our sample are all combined-cycle plants. The left-hand side graph shows estimation
results for gas plants. The right-hand side graph shows estimation results for diesel plants. Point estimates
are marginal effects of daily solar generation (in GWh) derived from an OLS regression on daily aggregated
generation (left y-axis), and from a fractional logit response model on daily capacity factors (right y-axis).
The estimation equations are identical to the ones in columns (2) of Table 3. Dashed lines represent 95%
confidence intervals obtained with bootstrapped standard errors. Reference line in red is at the zero mark.
All estimations use combined-cycle EGUs that report natural gas as their primary fuel source.
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Table A6: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions
by Age Group – All Cities

All Cities

Infants Toddlers Kids Adults Seniors

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard 0.00002 -0.0001 -0.0002 -0.0002 -0.0030∗∗∗ -0.0027∗∗ -0.0056 -0.0077 -0.0155 -0.0148

(0.0002) (0.0024) (0.0014) (0.0011) (0.0007) (0.0010) (0.0057) (0.0084) (0.0096) (0.0097)
Panel B. All Respiratory

Solard -0.0206∗∗∗ -0.0201∗∗∗ -0.0232∗∗∗ -0.0228 -0.0042 -0.0039 -0.0073∗ -0.0127 -0.0126∗∗∗ -0.0112∗∗∗

(0.0051) (0.0050) (0.0065) (0.0246) (0.0074) (0.0071) (0.0044) (0.0113) (0.0017) (0.0015)
Panel C. Upper Respiratory

Solard 0.0005 0.0004 -0.0032 -0.0035 -0.0104∗∗ -0.0110∗∗ -0.0112∗∗ -0.0111 -0.0014∗∗∗ -0.0013∗∗∗

(0.0011) (0.0015) (0.0036) (0.0163) (0.0046) (0.0040) (0.0036) (0.0168) (0.0004) (0.0003)
Panel D. Lower Respiratory

Solard -0.0221∗∗∗ -0.0214∗∗∗ -0.0171 -0.0145∗∗∗ 0.0052∗ 0.0046 0.0021 0.0006 -0.0102∗∗∗ -0.0091∗∗∗

(0.0053) (0.0055) (0.0462) (0.0035) (0.0028) (0.0033) (0.0027) (0.0042) (0.0021) (0.0019)

Obs. 36,385 36,385 36,385 36,385 36,385 36,385 36,385 36,385 36,385 36,385
Number of Cities 19 19 19 19 19 19 19 19 19 19
Controls X X X X X X X X X X
City fixed effects X X X X X
City×Year fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation across all cities by age group. Solar generation is in GWh. Estimation results are marginal
effects from ZINB regressions offsetting by population. Controls include weather, mining production, and
demographic covariates. All regressions include controls, year, seasons, year × seasons, and weekend fixed
effects in both the main and the inflate equations. Clustered standard errors by city appear in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A7: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions
by Age Group – Cities Downwind 10km

Cities Downwind of Displaced Fossil Fuel Plants Within 10km

Infants Toddlers Kids Adults Seniors

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard 0.0004∗∗ 0.0004 -0.0005 -0.0010 -0.0026 -0.0029 -0.0330 -0.0197 -0.0240 -0.0281

(0.0002) (0.0004) (0.0060) (0.0040) (0.0059) (0.0041) (0.0742) (0.0380) (0.0578) (0.0243)
Panel B. All Respiratory

Solard -0.0529∗ -0.0531∗∗∗ -0.0354 -0.0386 -0.0028 -0.0010 -0.0142 -0.0154 -0.0157∗∗ -0.0149∗∗∗

(0.0306) (0.0053) (0.0318) (0.0287) (0.0275) (0.0321) (0.0597) (0.0221) (0.0077) (0.0042)
Panel C. Upper Respiratory

Solard 0.0006 0.0008 -0.0137∗∗ -0.0118 -0.0131 -0.0134 -0.0032 -0.0030 -0.0020 -0.0022
(0.0772) (0.0057) (0.0061) (0.0152) (0.0084) (0.0148) (0.0296) (0.0038) (0.388) (17.61)

Panel D. Lower Respiratory
Solard -0.0540∗∗∗ -0.0599 -0.0311∗∗ -0.0327∗ -0.0047∗∗∗ -0.0038∗∗ -0.0285 -0.0197 -0.0188∗∗∗ -0.0175∗∗∗

(0.0160) (0.0515) (0.0124) (0.0190) (0.0003) (0.0014) (0.966) (0.0197) (0.0008) (0.0027)

Obs. 3,830 3,830 3,830 3,830 3,830 3,830 3,830 3,830 3,830 3,830
Number of Cities 2 2 2 2 2 2 2 2 2 2
Controls X X X X X X X X X X
City fixed effects X X X X X
City×Year fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation across cities downwind 10km by age group. Solar generation is in GWh. Estimation
results are marginal effects from ZINB regressions offsetting by population. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects in both the main and the inflate equations. Clustered standard errors by city appear
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A8: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions
by Age Group – Cities Downwind 50km

Cities Downwind of Displaced Fossil Fuel Plants Within 10km

Infants Toddlers Kids Adults Seniors

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.0002 0.0002 -0.0006 -0.0005 -0.0015 -0.0017 -0.0204 -0.0258 -0.0134 -0.0132

(0.0015) (0.0516) (0.0033) (0.0114) (0.0024) (0.0033) (0.0285) (0.0233) (0.0196) (0.0541)
Panel B. All Respiratory

Solard -0.0361∗∗∗ -0.0351∗∗∗ -0.0219 -0.0190 -0.0049 -0.0032 -0.0037 -0.0023 -0.0140∗∗ -0.0126∗∗

(0.0058) (0.0061) (0.0199) (0.0222) (0.0310) (0.0516) (0.112) (0.158) (0.0056) (0.0064)
Panel C. Upper Respiratory

Solard -0.0001 -0.0027 -0.0073 -0.0086 -0.0121∗∗ -0.0131∗∗∗ 0.0024 0.0009 -0.0056 -23414.0
(0.0045) (2.108) (0.0050) (0.0064) (0.0051) (0.0030) (0.0055) (0.0057) (0.0035) (8323629.2)

Panel D. Lower Respiratory
Solard -0.0363∗∗∗ -0.0327 -0.0197 -0.0182 -0.0025∗ -0.0023∗∗ -0.0136 -0.0090 -0.0123 -0.0139

(0.0064) (0.0246) (0.0146) (0.0142) (0.0013) (0.0008) (0.0353) (0.0116) (0.0076) (0.0135)

Obs. 5,745 5,745 5,745 5,745 5,745 5,745 5,745 5,745 5,745 5,745
Number of Cities 3 3 3 3 3 3 3 3 3 3
Controls X X X X X X X X X X
City fixed effects X X X X X
City×Year fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation across cities downwind 50km by age group. Solar generation is in GWh. Estimation
results are marginal effects from ZINB regressions offsetting by population. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects in both the main and the inflate equations. Clustered standard errors by city appear
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A9: The Effect of Daily Solar Generation on the Daily Rate of Hospital Admissions
by Age Group – Cities Downwind 100km

Cities Downwind of Displaced Fossil Fuel Plants Within 100km

Infants Toddlers Kids Adults Seniors

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.0002 0.0001 -0.0004 -0.0005 -0.0011 -0.0013 -0.0205 -0.0266 -0.0070 -0.0078

(0.0003) (0.0004) (0.0057) (0.0021) (0.0022) (0.0020) (0.0162) (0.0720) (0.0095) (0.0161)
Panel B. All Respiratory

Solard -0.0312∗∗ -0.0265∗∗∗ -0.0181∗∗ -0.0194∗∗ -0.0104∗ -0.0030 -0.0067 -0.0032 -0.0127∗∗ -0.0128∗∗

(0.0134) (0.0034) (0.0078) (0.0081) (0.0053) (0.0102) (0.0114) (0.0156) (0.0056) (0.0053)
Panel C. Upper Respiratory

Solard 0.0013 0.0017 -0.0052 -0.0025 -0.0128∗∗∗ -0.0096∗ -0.0014 -0.0007 -0.0010 -0.0010
(0.0012) (0.0019) (0.0038) (0.0042) (0.0038) (0.0052) (0.0029) (0.0031) (0.0015) (0.0014)

Panel D. Lower Respiratory
Solard -0.0282∗∗∗ -0.0255∗∗∗ -0.0174∗ -0.0154 -0.0009 -0.0008 -0.0125 -0.0119 -0.0134∗∗ -0.0104∗∗

(0.0059) (0.0070) (0.0100) (0.0196) (0.0014) (0.0054) (0.0080) (0.0100) (0.0053) (0.0046)

Obs. 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660 7,660
Number of Cities 4 4 4 4 4 4 4 4 4 4
Controls X X X X X X X X X X
City fixed effects X X X X X
City×Year fixed effects X X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation across cities downwind 100km by age group. Solar generation is in GWh. Estimation
results are marginal effects from ZINB regressions offsetting by population. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects in both the main and the inflate equations. Clustered standard errors by city appear
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A10: The Long-Term Effect of Average Solar Generation on the Daily Rate of Hospital
Admissions

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

t=week t=month t=year t=week t=month t=year t=week t=month t=year t=week t=month t=year

Panel A. Cardiovascular
Solart -0.026∗∗∗ -0.029∗∗∗ -0.038∗∗∗ -0.055 -0.066 -0.098 -0.024 -0.029 -0.042∗∗ -0.025∗ -0.029∗∗ -0.044∗∗

(0.005) (0.007) (0.009) (0.052) (0.052) (0.071) (0.019) (0.018) (0.019) (0.015) (0.014) (0.017)
Panel B. All respiratory

Solart -0.034∗∗∗ -0.026∗∗∗ -0.020∗∗ -0.072∗∗∗ -0.023∗∗ 0.015 -0.035∗∗∗ -0.010 0.017 -0.034∗∗∗ -0.014 0.0004
(0.007) (0.006) (0.008) (0.008) (0.010) (0.043) (0.010) (0.010) (0.023) (0.003) (0.009) (0.021)

Panel C. Upper respiratory
Solart -0.023∗∗∗ -0.024∗∗∗ -0.031∗∗∗ -0.017 -0.007 -0.002 -0.009∗∗ -0.004 -0.002 -0.005 -0.002 0.001

(0.005) (0.005) (0.008) (0.016) (0.020) (0.032) (0.004) (0.006) (0.010) (0.003) (0.005) (0.008)
Panel D. Lower respiratory

Solart -0.010 0.001 0.019 -0.071∗∗ -0.036 -0.002 -0.047∗∗ -0.027 -0.010 -0.038∗∗ -0.023∗ -0.010
(0.009) (0.009) (0.013) (0.032) (0.038) (0.041) (0.022) (0.021) (0.027) (0.014) (0.014) (0.019)

Obs. 36,366 36,366 36,366 3,828 3,828 3,828 5,742 5,742 5,742 7,656 7,656 7,656
City fixed effects × × × × × × × × × × × ×

Notes: This table displays estimation results of regressing daily hospital admissions on weekly, monthly,
and yearly average solar power generation across groups of cities. Estimation results are marginal effects
from ZINB regressions using 300 iterations and offsetting by population. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects in both the main and the inflate equations. Clustered standard errors by city appear
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A11: The Long-Term Effect of Maximum Solar Generation on the Daily Rate of
Hospital Admissions

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

t=week t=month t=year t=week t=month t=year t=week t=month t=year t=week t=month t=year

Panel A. Cardiovascular
Solart -0.025∗∗∗ -0.026 -0.027∗∗∗ -0.064 -0.059 -0.067 -0.028 -0.025 -0.028 -0.028∗∗ -0.026∗ -0.028∗∗

(0.006) (0.017) (0.007) (0.054) (0.054) (0.055) (0.019) (0.019) (0.017) (0.014) (0.014) (0.014)
Panel B. All respiratory

Solart -0.027∗∗∗ -0.022∗∗∗ -0.018∗∗ -0.046∗∗∗ -0.018∗ -0.004 -0.022∗∗ -0.008 0.001 -0.023∗∗∗ -0.013 -0.005
(0.007) (0.006) (0.007) (0.014) (0.009) (0.025) (0.009) (0.010) (0.041) (0.005) (0.008) (0.012)

Panel C. Upper respiratory
Solart -0.021∗∗∗ -0.021∗∗∗ -0.020∗∗∗ -0.014 -0.004 -0.003 -0.009∗∗ -0.002 -0.002 -0.005 -0.001 -0.0002

(0.005) (0.005) (0.006) (0.014) (0.018) (0.019) (0.003) (0.005) (0.006) (0.004) (0.005) (0.005)
Panel D. Lower respiratory

Solart -0.004 0.002 0.007 -0.047∗ -0.031 -0.013 -0.032∗∗ -0.024 -0.014 -0.026∗∗ -0.022∗ -0.012
(0.008) (0.008) (0.008) (0.025) (0.033) (0.029) (0.015) (0.018) (0.017) (0.011) (0.012) (0.011)

Obs. 36,366 36,366 36,366 3,828 3,828 3,828 5,742 5,742 5,742 7,656 7,656 7,656
City fixed effects × × × × × × × × × × × ×

Notes: This table displays estimation results of regressing daily hospital admissions on weekly, monthly,
and yearly maximum solar power generation across groups of cities. Estimation results are marginal effects
from ZINB regressions using 300 iterations and offsetting by population. Controls include weather, mining
production, and demographic covariates. All regressions include controls, year, seasons, year × seasons, and
weekend fixed effects in both the main and the inflate equations. Clustered standard errors by city appear
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A12: Descriptive Statistics on Fine Particulate Matter (PM2.5) Concentrations

Variable Mean Std. Dev. Min. Max. Obs.
Panel A. All Cities

PM2.5 14.74 6.89 3.39 47.80 5,780
Panel B. Cities ≤ 10km Downwind of Displaced Fossil Fuel Plants

PM2.5 17.49 7.51 3.58 47.80 2,784

Notes: This table displays main descriptive statistics of fine particle matter concentrations for cities with
available data. Panel A corresponds to data from four cities hosting fossil-fueled power plants (Alto Hospicio,
Antofagasta, Arica, and Tocopilla. Panel B corresponds to data from two cities near and downwind of
displaced fossil fuel plants (Alto Hospicio and Tocopilla). Data are daily records averaged across stations
from 2012 to 2017, and come from the National Air Quality Information System (SINCA)’s website https:

//sinca.mma.gob.cl.
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Table A13: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using a Poisson Estimator

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.024∗ -0.022 -0.060 -0.059 -0.044 -0.040 -0.033 -0.030

(0.014) (0.014) (0.070) (0.069) (0.044) (0.039) (0.032) (0.028)
Panel B. All respiratory

Solard -0.066∗∗∗ -0.067∗∗∗ -0.144∗∗∗ -0.144∗∗∗ -0.094∗∗∗ -0.093∗∗ -0.080∗∗∗ -0.078∗∗∗

(0.015) (0.014) (0.041) (0.041) (0.028) (0.029) (0.019) (0.021)
Panel C. Upper respiratory

Solard -0.027∗∗ -0.027∗∗ -0.032∗∗∗ -0.033∗∗∗ -0.021∗∗∗ -0.021∗∗∗ -0.017∗∗∗ -0.017∗∗∗

(0.008) (0.009) (0.007) (0.005) (0.005) (0.004) (0.003) (0.003)
Panel D. Lower respiratory

Solard -0.013∗∗∗ -0.013∗∗ -0.127∗∗∗ -0.125∗∗ -0.084∗∗∗ -0.081∗∗ -0.070∗∗∗ -0.067∗∗∗

(0.003) (0.006) (0.038) (0.041) (0.025) (0.028) (0.017) (0.020)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of Cities 19 19 2 2 3 3 4 4
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation using a Poisson estimator (offsetting by population). Solar generation is in GWh. All
regressions include weather, mining production, demographic covariates, and year, seasons, year × seasons,
and weekend fixed effects. Clustered standard errors by city appear in parentheses. Significance levels:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A14: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using an OLS Estimator

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.003 0.0003 -0.038 -0.039 -0.035 -0.036 -0.020 -0.017

(0.041) (0.041) (0.109) (0.110) (0.056) (0.057) (0.047) (0.044)
Panel B. All respiratory

Solard -0.115∗∗ -0.114∗∗ -0.324 -0.325 -0.184 -0.188 -0.253 -0.251
(0.054) (0.054) (0.283) (0.282) (0.206) (0.209) (0.156) (0.159)

Panel C. Upper respiratory
Solard -0.027 -0.027 -0.080 -0.080 -0.044 -0.046 -0.053 -0.054

(0.020) (0.020) (0.063) (0.062) (0.046) (0.044) (0.032) (0.032)
Panel D. Lower respiratory

Solard -0.085∗ -0.085∗ -0.263 -0.263 -0.152 -0.151 -0.193 -0.190
(0.041) (0.041) (0.243) (0.244) (0.173) (0.179) (0.124) (0.130)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results of regressing daily hospital admissions per 100,000 people on
daily solar power generation using an OLS estimator. Solar generation is in GWh. All regressions include
weather, mining production, demographic covariates, year, seasons, year × seasons, and weekend fixed
effects. Clustered standard errors by city appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.
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Table A15: The Effect of 1 GWh of Solar Generation on the Daily Rate of Hospital Admis-
sions Using a Negative Binomial Regression Model

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Cardiovascular
Solard -0.025∗ -0.022 -0.060 -0.059 -0.044 -0.040 -0.033 -0.030

(0.014) (0.029) (0.071) (0.070) (0.044) (0.039) (0.033) (0.028)
Panel B. All respiratory

Solard -0.067∗∗∗ -0.068∗∗∗ -0.142∗∗∗ -0.142∗∗∗ -0.091∗∗ -0.090∗∗ -0.079∗∗∗ -0.077∗∗∗

(0.016) (0.017) (0.040) (0.040) (0.028) (0.029) (0.020) (0.022)
Panel C. Upper respiratory

Solard -0.030∗∗ -0.030∗∗ -0.037∗∗∗ -0.037∗∗∗ -0.023∗∗∗ -0.023∗∗∗ -0.020∗∗∗ -0.019∗∗∗

(0.009) (0.009) (0.007) (0.005) (0.005) (0.004) (0.003) (0.003)
Panel D. Lower respiratory

Solard -0.038∗∗∗ -0.039 -0.125∗∗∗ -0.123∗∗ -0.082∗∗∗ -0.079∗∗ -0.069∗∗∗ -0.066∗∗∗

(0.009) (0.055) (0.037) (0.040) (0.025) (0.028) (0.017) (0.020)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Controls X X X X X X X X
City-fixed effects X X X X
City × year-fixed effects X X X X

Notes: This table displays estimation results of regressing daily hospital admissions on daily solar power
generation using a Negative Binomial model. Solar generation is in GWh. All regressions include weather,
mining production, demographic covariates, year, seasons, year × seasons, and weekend fixed effects. Clus-
tered standard errors by city appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table A16: The Effect of 1 GWh of Solar Generation on Placebo Outcomes

All Cities Downwind of Displaced Fossil Fuel Plants

Cities < 10km < 50km < 100km

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A. Infections
Solard -0.010 -0.009 0.008 0.008 0.003 0.002 -0.004 0.0001

(0.006) (0.006) (0.020) (0.017) (0.005) (0.008) (0.004) (0.007)
Panel B. Blood-Related Diseases

Solard -0.00002 -0.001 0.003 0.002 0.001 -0.0001 0.001 -0.0002
(0.001) (0.002) (0.017) (0.012) (0.005) (0.014) (0.004) (0.016)

Panel C. Strokes
Solard -0.003 -0.003 -0.001∗∗∗ -0.0001 -0.004 -0.004 -0.002 -0.001

(0.010) (0.033) (0.0002) (0.005) (0.023) (0.006) (0.007) (0.125)
Panel D. Bone Fractures

Solard 0.000 0.000 0.017 0.020 0.005 0.009 0.005 0.001
(0.026) (0.131) (0.021) (0.020) (0.021) (0.026) (0.139) (0.048)

Panel E. Appendicitis
Solard -0.021∗ -0.021∗∗ 0.023 0.025 0.031∗∗ 0.021 0.021∗∗ 0.019

(0.011) (0.008) (0.028) (0.082) (0.013) (0.016) (0.008) (0.014)

Obs. 36,385 36,385 3,830 3,830 5,745 5,745 7,660 7,660
Number of Cities 19 19 2 2 3 3 4 4
City fixed effects × × × ×
City×year fixed effects × × × ×

Notes: This table displays estimation results from regressions of daily hospital admissions on daily solar
power generation. Estimation results are marginal effects from ZING regressions offsetting by population.
Controls include weather, mining production, and demographic covariates. All regressions include controls,
year, seasons, year × seasons, and weekend fixed effects in both the main and the inflate equations. Clustered
standard errors by city appear in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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