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1 Introduction

Although air lead emissions and air lead concentration fell with the decline in lead in gasoline,

air emissions of lead continue to impact millions in the US and globally. In 1995, global

emissions of lead from fuel combustion, metal and cement production, and waste disposal

and other sources were estimated to be 30 million tons (Pacyna and Pacyna, 2001). In the

US in 1995, emissions from these sources were about 3,400 tons (EPA, 2018). Evidence

suggests that emissions remain high globally. In China, lead emissions from these sources

are estimated to have tripled from 2001 to 2009 due to increased coal consumption and lead

battery production (Li et al., 2012). Further, regulations on lead emissions have caused some

plants to relocate to countries with less stringent laws (Tanaka et al., 2021).

While the literature on lead and health is large, we know remarkably little about air

lead concentration and infant mortality.1 Although a small literature provides evidence on

water lead and infant mortality, to our knowledge there are no studies that show a causal

relationship between air lead and infant mortality.2 The lack of evidence is surprising, given

that the relationship between lead and infant mortality is a key input into regulatory cost-

benefit analysis.

This paper provides national IV estimates of the effects of air lead concentration on

infant mortality in the United States over the period 1988-2018. The start year is dictated

by the creation of the Toxic Release Inventory. It is worth noting that by 1988, nearly

all of the decline in lead in gasoline has occurred. To estimate the effects of emissions

on infant mortality, we draw on a range of data, including from EPA monitor data on

air lead concentration, PM10, and carbon monoxide, and Toxic Release Inventory data on

emissions of air lead and other chemicals. Infant mortality, birth outcomes, and maternal

characteristics are from the confidential National Vital Statistics data set. Additional data

sets include information on wind, weather, and demographic characteristics of the counties.

1There is a large epidemiological literature on lead and health, much of which is reviewed in NTP (2012).
For the economics literature on the topic, see the extensive discussion in Hollingsworth and Rudik (2021).

2On water lead and infant mortality, see Troesken (2008), Clay et al. (2014), and Edwards (2014).
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Estimating the causal effect of lead on health is complicated for three possible reasons.

First, the impact of airborne lead may be affected by avoidance behavior of individuals. This

behavior may include reductions in outdoor activities and investments that improve indoor

air quality (Neidell, 2009; Moretti and Neidell, 2011; Ito and Zhang, 2020). Avoidance

behavior is likely to be particularly relevant for infant health, because pregnant women have

strong incentives to engage in avoidance. Without considering avoidance behavior, the effect

of lead on infant mortality may be underestimated. Second, the estimation is confounded

by many factors that may also generate omitted variable bias, including emissions of other

pollutants, weather conditions, and impacts of industrial activities on local employment

and economic conditions (Ruhm, 2000; Currie and Schmieder, 2009; Agarwal et al., 2010;

Heutel and Ruhm, 2013; Knittel et al., 2016). Third, measurement error due to the usual

disconnection between where air lead is measured and where individuals reside may generate

attenuation bias (Moretti and Neidell, 2011; Knittel et al., 2016; Deryugina et al., 2019).

Our identification overcomes these challenges by instrumenting for EPA air lead concen-

tration with TRI fugitive lead emissions interacted with wind speed near the emitting plants

and including a rich set of controls. Variation in fugitive lead emissions and wind speed is

shown to determine lead exposure. While stack lead emissions occur routinely and may be

subject to avoidance behavior, fugitive lead emissions are unintended and intermittent (EPA,

1994). Wind speed near emitting plants provides another layer of plausible exogeneity. The

unpredictable annual variations in fugitive lead and wind speed make it difficult to engage

in avoidance behavior. We provide evidence that fugitive lead emissions and wind speeds

are strongly linked to air lead concentration readings of EPA monitors. Further, we provide

evidence that fugitive lead emissions interacted with wind speed has low predictive power

for county socioeconomic characteristics and mothers’ characteristics.

We find a positive and statistically significant relationship between air lead concentration

and infant mortality. Accounting for the timing of lead exposure in utero increases the

magnitude of the estimates. Estimates by race are imprecise but suggest that lead exposure
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may be disproportionately affecting nonwhite infants. Cause of death data show that lead

increases deaths from low birthweight and sudden unexplained infant death.3 Back of the

envelope estimates indicate that declines in fugitive lead emissions prevented 34-59 infant

deaths per year, generating benefits of $313-$533 million annually. Our estimates imply that

the full decline in air lead concentration from all sources prevented 218 infant deaths per

year, generating benefits of $2.0 billion per year. This is likely a lower bound of the total

health value of emission reduction given evidence that lead exposure is harmful to young

children and other vulnerable groups (Klemick et al., 2020; Hollingsworth and Rudik, 2021).

This paper makes two main contributions to the literature on lead and health. First, it

provides nationwide causal effects of airborne lead on infant mortality. Because the air lead

concentration in our context arises from ongoing industrial sources, our estimates could be

used in future regulatory impact analysis by EPA and other government agencies. Previous

studies have reported historical effects of lead pipes on infant mortality (Troesken, 2008; Clay

et al., 2014; Edwards, 2014), or effects of gasoline-driven airborne lead on elderly mortality

across 75 US counties hosting NASCAR races (Hollingsworth and Rudik, 2021). Second, it

contrasts the extensive margin (mortality) effects with the intensive margin effects of lead on

infant health. Prior literature has shown detrimental effects of lead on the incidence of low

birth weight or preterm birth (Dave and Yang, 2020; Bui et al., 2021; Tanaka et al., 2021),

but not on infant mortality.

Our findings also add to the economics literature on the impacts of the overall TRI

emissions on infant health and education (Currie and Schmieder, 2009; Agarwal et al., 2010;

Persico, 2020; Persico and Venator, 2021), the effects of lead on human capital accumulation

(Aizer et al., 2018; Billings and Schnepel, 2018; Aizer and Currie, 2019; Clay et al., 2019;

Hollingsworth et al., 2020; Gronqvist et al., 2020; Gazze et al., 2021), and the effects of lead

on fertility (Grossman and Slusky, 2019; Clay et al., 2021).

The rest of the paper proceeds as follows. Section 2 discusses the background information

3Sudden unexplained infant death includes sudden infant death syndrome (SIDS), accidental suffocation and
strangulation on bed (ASSB), and other unexplained deaths.
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on global use of lead, the Toxic Release Inventory, and the literature on lead and infant health.

Section 3 describes our data. Section 4 describes our empirical strategy. Section 5 presents

results, and Section 6 concludes.

2 Background

2.1 Toxic Release Inventory

The TRI was created by the Emergency Planning and Community Right-to-know Act

(EPCRA) in 1986. The Toxic Release Inventory was a response to chemical releases in Bhopal

in 1984 and in West Virginia in 1985. The EPCRA required plants meeting certain criteria to

annually report their emissions to the EPA for public disclosure through the TRI beginning

in 1987. Lead was included in the original set of chemicals and so plants reported emissions

beginning in 1987.4 The EPA brought enforcement actions for non-reporting (Marchi and

Hamilton, 2006). Analyses have found that TRI reporting is generally accurate (Brehm and

Hamilton, 1996; Natan and Miller, 1998; Marchi and Hamilton, 2006).

Plants separately report stack and fugitive emissions for each chemical, including lead.

Stack emissions are all releases “to the air that occur through confined vents, ducts, pipes,

or other confined air stream.” Most plants use air pollution control devices to reduce stack

emissions. These devices can include cooling towers, scrubbers, and bag houses that sepa-

rate lead and other heavy metals from the exhaust. Lead collected by those devices may be

recycled, transferred to offsite treatments, or emitted via wastewater or landfill, which gen-

erates substitution between air, water, and land emissions. The remaining lead in exhaust

is emitted via stacks or other confined air streams.5 Fugitive emissions are “all releases that

are not released through confined vents, ducts, pipes, or other confined air stream.” Some

examples of fugitive air emissions include: i) leaks from operating machinery; ii) emissions

4Initially reporting was less accurate, particularly in 1987, which was the first reporting year. Thus we follow
the literature and begin our analysis in 1988.

5Definitions are from * https://www.epa.gov/trinationalanalysis/air-releases.
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from opening doors or panels of machinery; iii) air emissions as the result of spills; and iv)

emission from the handling of ash.

Figure 1 shows the downward trend in stack and fugitive air lead emissions, Appendix

Figure A.3 compares airborne with water and land emissions and recycled lead, and Ap-

pendix Figure A.1 shows emissions by industry.6 Fugitive emissions are around one-third

of air lead emissions, with stack emissions making up two-thirds. The vertical lines indi-

cate changes to the database in 1998 and 2001, when seven industries were added and the

reporting threshold was lowered.7 Four industry groups – lead manufacturing, other metal

manufacturing, ceramics manufacturing, and paint and pigment manufacturing – account

for more than 90% of the total air lead emissions by all TRI-reporting facilities.8

2.2 Vectors of Lead Exposure

Although pregnant and nursing mothers and infants were exposed to lead through a number

of vectors between 1988 and 2018, apart from industrial emissions these vectors did not vary

or did so very slowly. For example, lead in soil and paint changed slowly or not at all. Lead

in soil is a reflection of past deposition and local geology. Lead in paint is a function of the

age of the housing stock. The federal government banned lead paint for housing in 1978, but

some states had banned it earlier. Thus most housing with lead paint was built before 1960.

Maternal and infant exposure tends to be through ingestion of soil, paint chips, or dust that

includes lead from these sources or through breathing aerosolized dust.

6Pressure from environmental groups may have contributed to declines (Maxwell et al., 2000). Avoidance
of nonattainment designation under NAAQS, which occurred in January 1992 for the 1978 lead standards,
may also have contributed to declines.

7In 1998, metal mining, coal mining, electric utilities, hazardous waste disposal, chemical wholesalers,
petroleum terminals, and solvent recovery services were added to the list for reporting. They account
for 14% of lead emissions after 1998. In 2001, the reporting threshold for lead was significantly lowered.
Figure A.2 shows that the number of reporting firms increased dramatically, but their contribution to the
reported TRI lead emissions was small.

8The main activities of the lead manufacturing plants include extracting lead from lead ore or lead-bearing
scrap materials (e.g., used lead-acid batteries) through high-temperature smelting and refining work. Iron,
copper, and other metal manufacturing plants passively process lead contained in raw materials or in the
coke and oil for combustion. Ceramics manufacturing uses lead compounds in glazing and paint and pigment
foundries use lead as quick driers (EPA, 2020).

5



Lead in water also changed very slowly. Lead in water is a function of the age of the

housing stock and historical factors that drove the use of lead pipes for water in specific

locations. The 1986 Safe Drinking Water Amendments required the use of lead free plumbing

in public water systems. The 1991 Lead and Copper rule set limits on lead in tap water

and required water systems to survey their use of corrosion control. Major changes to water

systems such as those that occurred in Washington DC in 2001 and in Flint Michigan in

2014 can affect leaching of lead from lead pipes into water. These events have, however, been

rare.9

By 1988, emissions due to lead in gasoline had fallen dramatically. This decline had been

driven by two factors. The first was the requirement that new cars have catalytic converters

beginning in 1974. Cars with these converters required unleaded gasoline. Over time leaded

gasoline as a share of all gasoline fell. The second was regulatory decreases in allowable lead

levels in leaded gasoline, which began in 1979 and reached it final level of 0.1 g/gallon in

1988.10 As a result of these changes, air emissions from on-road vehicles fell from 171.96 in

1970 to 0.42 thousand tons in 1990. In 1990, air emissions from metals industrial processing

was 2.17 and chemical production and petroleum processing was 1.1 thousand tons.

Although it may be possible to partially or fully avoid some vectors of exposure, avoid-

ance is likely to be particularly difficult for fugitive lead. Lead exposure from water, soil,

and paint can be to varying degrees be avoided by not living in older housing stock, through

testing of water, soil, and paint, and by remediation if levels are high. Stack lead may be

partially avoidable if residents are aware of general smokestack emissions and stay inside

during certain times to avoid them. Residents are, however, unlikely to be aware of fugitive

emissions, which are intermittent and not stack based, and the role that wind speed plays

in the dispersion of lead.

9Washington DC and Genesee County Michigan are not in our IV sample.
10In 1996, the use of lead in gasoline for on-road vehicles was banned entirely in the United States.
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2.3 Lead and Infant Mortality

Lead is known to cause adverse health effects across a range of exposures. At very high

levels, exposure to lead can cause lead poisoning. Lead exposure is also harmful at lower

levels. The large epidemiological literature on the health effects of low level lead exposure is

comprehensively reviewed in NTP (2012). Lead adversely impacts the neurological, immune,

cardiovascular, and renal systems.Mason et al. (2014) reviews the neuropsychological effects

of lead toxicity. Adverse effects of lead come through at least three channels – morphological,

pharmacological, and indirect effects. Morphologically, lead disrupts or alters development

of the nervous system both prenatally and after birth. Pharmacologically, lead substitutes

for calcium and zinc, disrupting or altering operation of the nervous system. Indirect effects

come from lead’s effects on other bodily systems.

One causal study and numerous epidemiological studies show relationships between air

lead and adult mortality. Hollingsworth and Rudik (2021) use the switch in racing fuel from

leaded to unleaded in NASCAR and ARCA races to examine the causal effect of lead on

elderly mortality. They find that having a leaded race in a county in a given year increased

the elderly all-cause mortality rate, with much of the change coming from cardiovascular

mortality and ischemic heart disease. Epidemiological evidence supports a link between lead

and cardiovascular mortality that appears to be driven at least in part by lead’s impact on

blood pressure.11

To our knowledge, there are no studies that show a causal relationship between air lead

and infant mortality. A small literature provides evidence on water lead and infant mortality.

Employing data from Massachusetts towns in 1900, Troesken (2008) compares infant death

rates in cities that used lead water pipes to rates in cities that used nonlead pipes. In the

average town in 1900, the use of lead pipes increased infant mortality by 25 to 50 percent.

11Recent work by Lanphear et al. (2018) using NHANEs data suggests that lead may account for as much
as 18% of all cause mortality and larger shares of cardiovascular mortality. While not a causal analysis,
the estimates are worth noting because of their large size. Earlier papers including Pirkle et al. (1985),
Lustberg and Silbergeld (2002), Menke et al. (2006) also found a relationship between lead and mortality.
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Edwards (2014) shows that spikes in water lead in Washington DC due to the switch from

chlorine to chloramine are associated with higher fetal death rates. Using data from 1900-

1920, Clay et al. (2014) provide causal evidence on water lead and infant mortality, leveraging

differences in use of lead pipes for water and differences in the acidity of water sources.12

Animal studies also support the link between water lead and infant mortality (Aprioku and

Siminialayi, 2013).

The mechanism through which lead causes infant mortality is poorly understood. Lead

may be adversely affecting the part of the brain related to respiration in infants. Respiratory

severity scores have been linked to mortality in low birthweight infants(Shah et al., 2020).

There has been speculation in the medical literature about the link between lead and SIDS

(Lyngbye et al., 1985; Erickson et al., 1983).

3 Data

Data on industrial fugitive and stack emissions of lead and other chemicals are from the U.S.

Toxic Release Inventory (TRI). TRI covers 650 chemicals up to year 2018. The TRI includes

189 chemicals that are on the EPA’s hazardous air pollutants (HAP) list. The EPA states

that “[h]azardous air pollutants (HAPs) are those pollutants that are known or suspected

to cause cancer or other serious health effects, such as reproductive effects or birth defects,

or adverse environmental effects.” The chemicals include 100 developmental toxicants which

are thought to affect reproductive success or to affect fetal, infant, or child development.

Chemicals can be in multiple categories; for example, lead is listed as both HAP and a

developmental toxin. 13

12Currie and Schmieder (2009) uses TRI data, leveraging the difference between fugitive and stack emissions.
As part of a larger analysis of TRI emissions and their impact on birth outcomes, they find wrong signed
estimates of lead on infant mortality. A related economics literature uses aggregate TRI data to examine
infant mortality. Agarwal et al. (2010) uses national data from 1989-2002 and finds elasticity of infant
deaths with respect to TRI air emissions is 0.03.

13We use information from the TRI-chemical Hazard Information Profiles to identify developmental toxins.
See https://www.epa.gov/toxics-release-inventory-tri-program/tri-supplemental-documentation for more
information on developmental toxins. See https://www.epa.gov/haps/what-are-hazardous-air-pollutants
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Lead monitor data are from the EPA’s Air Quality System (AQS). The AQS provides

daily-level monitoring data on lead pollution measured in micrograms per cubic meter of air

(µg/m3). The number of lead monitors varies over time. AQS monitor data on PM and CO

are also used in some specifications.

Wind data are from the National Oceanic and Atmospheric Administration’s Global Sur-

face Summary of the Day (GSOD). The GSOD provides daily-level monitoring data on wind

speed and direction. Because wind is highly local, we restrict the sample to plants within 10

miles of a wind monitor.14 County-level climate data are from the National Climatic Data

Center.

Data on infant health are from the National Vital Statistics system of the National

Center for Health Statistics (NCHS).15 The NCHS provides information on infant birth and

death, birth weight (in grams), and gestation weeks. It also provides data on mothers’

characteristics including age, race, ethnicity, and education. County-level characteristics are

from the census.

Our sample includes 127 counties that have plants with lead emissions that are within

2 miles of EPA lead monitors and within 10 miles of a wind monitor.16 In 1990, 26% of

the US population lived in these counties. This sample accounts for 21% of lead emissions

and 1.6% of TRI total emissions. Appendix Figure A.4 shows the geographic distribution of

the counties used for the IV sample. Appendix Figure A.5 shows the distribution of wind

speeds for the IV sample. Appendix Table A.1 presents birth-weighted county-level summary

statistics for the IV sample.17 We present reduced form analysis for the IV sample.

for more details on HAP chemicals.
14Expanding the radius does not include many more plants in the sample, but makes the estimates noisier.
15There is a public sample and a restricted sample. Our analysis uses the restricted sample, which covers

reported births and infant deaths in all counties.
16Analysis below shows that plant lead emissions are only detectable at EPA lead monitors within 2 miles.
17Appendix Table ?? provides additional detail on the construction of the sample.
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4 Empirical Strategy

As discussed earlier, there are three challenges in identifying the effect of air lead concen-

trations on infant mortality. First, downward bias may arise if mothers engage in avoidance

behavior based on observed pollution. Second, omitted variable bias may arise if local eco-

nomic activity affect infant health through economic impacts such as on local employment

and family income. This is because the level of pollution emitted is partially determined by

the production scale of the plants, which is correlated with the economic impacts. Third,

measurement error arising from the usual disconnection between where air lead is measured

and where individuals live may generate to attenuation bias.

Our empirical strategy overcomes these challenges by comparing the effect on infant

mortality of air lead concentrations caused by fugitive lead emissions in more and less windy

years. Stack emissions are predictable, are often emitted from high smokestacks, may be

subject to avoidance behavior and are correlated with production scale and economic impact.

In contrast, fugitive emissions are intermittent, often occur closer to the ground, may be less

observable to people than the smoke from tall stacks and are relatively uncorrelated (0.5)

with stack emissions. Wind speed affects how far lead emissions disperse and year to year

variations in wind speed are plausibly exogenous.

4.1 Air Lead Emissions and Air Lead Concentrations

To examine the relationship between lead emissions, wind, and distance between emitting

plant and EPA monitor, we begin by estimating the following model:

AirLeadimt = (Fimt ×Windit ×Distanceim)φF

+ (Simt ×Windit ×Distanceim)φS +Winditφw + ηim + λrt + νimt. (1)

The dependent variable AirLeadimt is the annual mean of ambient lead concentration read-

ings from monitor m linked to plant i in year t. Fimt and Simt are the fugitive and stack lead
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emissions from plant i linked to monitor m in year t, respectively. We interact the emission

variables with a fourth order polynomial for wind speed and a vector of indicator variables,

Distanceimt, for the distance from plant i to monitor m. We include the distance dummies

for < 0.2 mile, 0.2-0.5 mile, 0.5-1 mile, 1-2 miles, 2-3 miles, 3-5 miles, and 5-10 miles.18

To capture differences across plants, monitors and years, we include plant-by-monitor fixed

effects ηm and region-by-year fixed effects λrt. Standard errors are clustered at the monitor

level.

Having established the appropriate distance that EPA monitors detect air lead emissions

– which as we show below is 2 miles – we estimate the following model:

AirLeadct = δFFct +Windctδw + (Windct × Fct)δ
F
w

+ δSSct + (Windct × Sct)δ
S
w + Chemctδc + (Windct × Chemct)δwc

+ ηc + λrt +Mediactψ + Zctπ + ωct (2)

where AirLeadct is air lead concentration in county c in year t. The key explanatory variables

are Fct, denoting the aggregated fugitive lead emissions from plants in county c in year t,

and its interaction with Windct, a fourth order polynomial for wind speed.19 We control for

the stack lead emissions (Sct), fugitive and stack emissions of other TRI-reported chemicals

(Chemct), and their interactions with wind. The regression includes county fixed effects

(ηc) and region-by-year fixed effects (λrt) to control for time-invariant determinants of and

region-specific trends in infant mortality over time. We also control for waterborne and

landborne lead emissions (Mediact).
20

To address concerns on omitted variable bias, we control for a rich set of factors that

have been linked to infant health (Zct): county socioeconomic characteristics (population

18We also run a model similar to Currie et al. (2015), which uses continuous variables for the distance. The
results are qualitatively similar.

19In the analysis below, we compare first stage and IV results with third, fourth, fifth and sixth order
polynomials.

20We only include onsite emissions. The offsite emissions via water and landfill mainly happened on waste
treatment facilities that locate far from the original neighborhood of the manufacturing facilities. But
controlling for offsite emissions does not affect our results.
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density, percent white, percent age 25 and older with high school degree, median house-

hold income, percent manufacturing employment, and employment rate); climate variables

(county-average annual precipitation and temperature); mothers’ characteristics (percent

white, percent Hispanic, percent high school degree, and percent aged over 35); and linear

trends of baseline mortality rate from 1980 to 1986. Regressions are weighted by the number

of live births. Robust standard errors are clustered at the county-level to adjust for arbitrary

heteroskedasticity and within-county serial correlation.21

4.2 Air Lead Concentrations and Infant Mortality

To measure the effect of air lead concentrations on infant mortality, we estimate the following

equation:

InfMortct = βALAirLeadct + βFFct +Windctβw

+ βSSct + (Windct × Sct)β
S
w + Chemctβc + (Windct × Chemct)βwc

+ ηc + λrt +Mediactψ + Zctπ + εct (3)

where InfMortct is infant mortality in county c in year t.22 We instrument AirLeadct with

the interactions between fugitive lead emissions and a quartic polynomial in wind speed

(Windct × Fct). Fugitive lead, wind speed, and the other control variables are the same as

in the first stage.

The exclusion restriction is that interactions between fugitive lead emissions and wind

speed will affect infant mortality only through their effect on air lead concentrations. We

allow for direct effects of fugitive lead emissions and wind speed on infant mortality, as

well as direct effects of stack lead emissions and interactions between them and wind, and

the other control variables. Because it is only the combination of intermittent lead fugitive

emissions with wind strength that is excluded from the equation of interest, we believe this

21In robustness checks, we also provide results using spatial standard errors.
22We also examine premature birth (< 36 weeks), birth weight, and low birthweight (< 2500 grams).
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is a plausible assumption.

5 Results

5.1 Air Lead Emissions and Concentrations

In this section, we present evidence on a number of points that are relevant to identification

of the effects of air lead concentrations on infant mortality. First, we show that wind speed

affects the relationship between fugitive emissions and ambient lead concentrations within 2

miles of the plant. In contrast, wind speed has very little effect on the relationship between

stack emissions and ambient lead concentrations. Second, we document that a greater share

of fugitive emissions in overall lead emissions is associated with a higher daily standard devi-

ation in ambient lead concentration, which supports the intermittency of fugitive emissions.

Third, we show that fugitive lead emissions has predictive power for air lead concentration

even when we include a range of controls. Fourth, we provide evidence that a fourth order

polynomial provides a better fit than higher or lower order polynomials. Fifth, we show that

fugitive lead interacted with wind does not predict either county or maternal characteristics.

Figure 2 shows that wind speed has a positive effect on the relationship between fugitive

emissions and ambient lead concentrations within 2 miles of the plant, but has very little

effect on the relationship between stack emissions and ambient lead concentrations (see

Appendix Figure A.6). It plots the marginal effect of fugitive lead emissions (φ̂F ) on air

lead concentration as a function of wind speed near the plants for different distance ranges

from plant to monitor. Each panel of Figure 2 presents the distance-specific wind gradient,

showing how the marginal effect of fugitive lead emissions changes with higher average wind

speed. Fugitive lead emissions have a large effect on air lead concentration within 0.2 mile

from the plants, and the effect fades when wind gets stronger. From 0.5 to 1 mile, there

is weak but significant effect at wind speed between 5.5 and 6.5 knots. From 1 to 2 miles,

fugitive lead emissions have a strong effect when wind speed is over about 7.5. In Appendix
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Figure A.6, stack lead emissions have a weak effect on air lead concentration within 0.5 miles

from plants at high wind and little impact on areas beyond 0.5 miles. This is because stack

lead emissions occur more continuously and higher in the air than fugitive emissions and so

are more disperse irrespective of wind speed. The remaining analysis focuses on EPA air

lead monitors that are within 2 miles of a plant.

Wind speed is important, because it affects the share of the county population that is

exposed to fugitive lead emissions. When local wind speed is low, fugitive lead emissions

only affect the neighborhoods extremely close to the plants. The 1990 block-group level data

show less than 0.9% of county population living within 0.2 miles from the plants. When local

wind speed is high, fugitive lead emissions affect many more people. 25.6% of the population

in our sample counties lived within 2 miles of a lead emitting plant. Although 25.6% may

seem high, these counties have high population density and multiple lead emitting plants.

On average in 1990 there were about 7 lead emitting plants per county.23

Table 1 documents that a greater share of fugitive emissions in overall lead emissions

is positively and statistically significantly associated with the daily standard deviation in

ambient lead concentration. This supports the intermittency of fugitive emissions.

Figure 3 highlights that fugitive lead emissions have predictive power for air lead con-

centration even when we include a rich set of controls. Figure 3 plots the highly nonlinear

relationship between fugitive lead emissions (φ̂F ) and air lead concentration as a function of

wind speed for counties with that have plants within 2 miles of an EPA air lead monitor.

Appendix Figure A.8 shows the graphs as we move from the most parsimonious specification

to specifications with richer sets of controls. The F-statistics are all at 38.0 or higher, and

the graphs are very similar.

Appendix Figure A.9 demonstrates that a fourth order polynomial is a parsimonious

model to capture the nonlinear relationship between fugitive lead emissions (φ̂F ) and air

lead concentration. It plots the marginal effects of a specification that includes a full set

23A 2 mile circle around a plant covers 12.6 square miles.
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of controls as we move from a first order polynomial to a fourth order polynomial.24 The

F-statistic is much higher for the fourth order polynomial (41.2) than for the third order

(17.6), which suggests that the addition of a fourth order term provides benefits. Although

they are not graphed, it is worth noting that the fifth and sixth order polynomials have lower

F-statistics (31.4, 26.3), suggesting that there are not benefits to adding more terms beyond

the fourth order term.

Appendix Tables A.2 and A.3 show that fugitive lead interacted with wind does not

predict either county or maternal characteristics. The F-statistics are all below 4, with the

exception of population density, where the F statistic is below 6. We provide a range of

additional robustness checks in section 5.3.

5.2 IV Effects of Air Lead Concentrations on Infant Mortality

Table 2 shows that higher levels of air lead concentrations cause higher infant mortality.25

The coefficient on air lead concentration in the IV specification is positive and statistically

significant across all five specifications. The decline in air lead concentration in the sample

is 0.13. This decrease in air lead concentration would decrease infant mortality by 0.218

per thousand live births or about 2.8% of mean infant mortality. We discuss deaths averted

due to changes in fugitive lead emissions and all deaths averted due to declines in air lead

concentration further in Section 5.4.

Table 3 shows that the estimates in Table 2 are robust to different ages at death and

to adjusting for the timing of exposure. Two-thirds of infant deaths occur within the first

month. For these infants, a large share of lead exposure will have come in utero. Column 1

present the results for deaths within the first month, and column 2 replicates our preferred

results from column 5 of Table 2 for deaths within the first year. The coefficient on air

24This is not surprising given the complexity in modelling air pollution due to atmospheric turbulence (e.g.,
Nieustadt and van Dop, 1982; Raputa and Lezhenin, 2020).

25Figure 3 shows the birth weighted first stage. Appendix Figure A.10 graphs the reduced form relationship
between fugitive lead emissions and infant mortality as a function of wind speed for the IV sample. The
pattern is generally consistent with Figure 3. The reduced form shows a positive effect at higher wind
speeds where larger shares of the population are affected.
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lead concentration for deaths within the first month in column 1 is positive and statistically

significant, and the magnitude of the coefficient is smaller than in column 2.

One concern with the analysis in columns 1 and 2 is that many infants may have been

exposed to lead in the previous year. For example, an infant that is born in January and dies

in January experienced nearly all of its in utero exposure in the previous year.In columns

3 and 4, which restrict attention to infant deaths from April to December, the coefficient

estimates are higher, which suggests that there is some attenuation bias due to mismeasured

exposure. For mortality in the first month in column 3, all of the infants spent at least the

third trimester in the current year. The median infant in this sample was born in mid-August

and so spent part of the first trimester and all of the second and third trimesters in the current

year. Compared to the results in columns 1 and 2, the point estimates in columns 3 and 4

are larger and the coefficient for deaths within one month is more statistically significant.

This suggests that using current year exposure for infants with significant exposure in the

previous year is causing some attenuation bias.

In columns 5 and 6, which restrict attention to infant deaths from July to December, the

coefficient estimates are similar or higher than in columns 3 and 4. For mortality in the first

month in column 5, all of the infants spent at least the second and third trimester in the

current year. The median infant in this sample was born at the very beginning of October

and so spent all three trimesters in the current year. The point estimate in column 5 is nearly

identical to the point estimate in column 3. The point estimate in column 6 is larger than

the point estimate in column 4, although the two are not statistically significantly different.

This may reflect the fact that some infants who died in April through June at ages beyond

one month had significant exposure in the previous year. Dropping them may be further

reducing attenuation bias.

Table 4 suggests that lead exposure may be disproportionately affecting nonwhite infants

at the margin. The coefficient on lead in column 1 for nonwhite infants is substantially larger

than in column 2 for white infants. The implied effects for a decrease of 0.13 are 0.40 per
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1000 live births for nonwhite infants and 0.18 for white infants, which are 3.4% and 3.0% of

their means. Columns 3 and 4 suggest that these differences are present in the first month.

The reasons for these differences are unclear. Some of the difference appears to reflect a

differential likelihood of living within 2 miles of a lead plant. It is worth noting that because

of the large standard errors, the two point estimates are not statistically significantly different

than one another.

Tables 5 and 6 draw on data on cause of death to better understand the mechanisms

through which lead is causing mortality. In both tables, air lead concentration is statistically

significantly related to three causes: low birthweight; sudden infant death syndrome (SIDS)

and accidental suffocation and strangulation on bed (ASSB); and other causes of death. The

coefficients on air lead concentration are small and not statistically significant for the other

four causes: congenital anomalies; respiratory; other conditions originating in the perinatal

period; and homicide.

Before discussing the low birthweight mortality results, it is useful to examine the average

effect of lead exposure on the probability of low birthweight and other birth outcomes. Table

7 shows the IV effect of lead on the likelihood of low birthweight and prematurity are positive

but not significant. The implied effects are very small. The coefficients on premature and

low birthweight are positive, which suggests that higher air lead may lead to worse birth

outcomes. The implied effects are 0.17 and 0.10 per 1000 live births, which are 0.28% and

0.13% of the mean. The coefficient on birthweight is positive, but the implied effect is 0.24

grams.

Taken together, Tables 5-7 suggest that in places with higher air lead concentration,

although the incidence of low birthweight is not statistically significantly higher, low birth-

weight infants are more likely to die. In column 2 of both tables, higher air lead concentration

is causally related to death related to low birthweight. The coefficients are nearly identical in

magnitude (0.312 at one month and 0.310 at one year) across Tables 5 and 6, which examine

infant mortality in the first year and first month. We would expect the magnitudes to be
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similar, since low birthweight infants generally die in the first month.

Because of inconsistent classification, sudden infant death syndrome and accidental suf-

focation and strangulation on bed are often combined with other unexplained deaths into a

single category called SUID, or sudden unexpected infant death. SUID deaths tend to peak

in months 1-4 (Moon et al., 2016) As we noted earlier, there has been speculation in the

medical literature about the link between lead and SIDS (Lyngbye et al., 1985; Erickson et

al., 1983). In 1994, a number of organizations including the American Academy of Pediatrics

launched the Back-to-Sleep Campaign to address SIDS. The inclusion of region x year fixed

effects should control for introduction of this campaign.

Tables 5 and 6 provide evidence of a causal link between air lead concentration and

incidence of SUID. Consistent with the evidence on the timing of SUID, the coefficient is

much smaller for mortality in the first month (0.076) than it is for mortality in the first year

(0.414).

Other deaths are also strongly related to air lead concentration at one year and at one

month. We are in the process to doing further analysis of causes within this subgroup.

5.3 Further Robustness Checks

Appendix Table A.4 shows the results are robust to adding individual groups of chemicals

and particulate matter (PM10) and carbon monoxide (CO) as controls. Recall that our

estimates in Table 2 shifted very little from column 4 to column 5 with the addition of three

groups of chemicals – developmental chemicals, nondevelopmental chemicals, and HAPs –

all interacted with wind. Consistent with this in Appendix Table A.4, the F-stat is quite

similar across the first three columns as we include controls for developmental chemicals in

column 1, add nondevelopmental chemicals in column 2, and add HAPs in column 3. The

third column is our base model from Table 2. Column 4 adds controls for PM10 and column

5 adds controls for CO. Unfortunately, not all monitors have data for PM10 and CO, so the

sample sizes are smaller in these columns. Despite the fact that the sample in column 5 is
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about one-third smaller than in column 3, the coefficient on air lead concentration is nearly

identical – 1.725 vs. 1.676.

One possible concern is that lead is co-emitted with other chemicals and so the co-

efficient on lead captures the effect of lead and other chemicals. Column 6 adds metals

emissions (excluding zinc), which partially overlap with HAPs but are particularly likely to

be co-emitted with lead given the nature of the industries in our sample. Compared to the

previous columns, the F-stat is somewhat lower but still above 10. The coefficient on air lead

concentration is also higher, although not statistically significantly different than previous

estimates.

In column 7, we see the estimate is still positive but noisier with the inclusion of zinc.

We cannot rule out that it is statistically similar to our main estimate either. Because zinc

tends to be co-emitted with lead – ores tend to have both – and air fugitive lead and air

fugitive zinc are relatively highly correlated (0.58), we may have a multicollinearity issue in

the estimation. That might be a reason for the imprecise estimate. Although our estimates

for lead may capture the effect of zinc and lead, the adverse effects are very likely driven by

lead. Lead is a toxin and has adverse effects on a range of bodily functions. In contrast,

zinc is essential for a wide range of enzymatic and structural functions. The EPA’s RSEI

model assigns a high toxicity score to lead inhalation (23,000) and a low toxicity score to zinc

(100). Consistent with this the CDC has extensive guidance on reducing lead exposure, while

guidance for zinc primarily involves ensuring that there is adequate nutritional intake.26

Appendix Table A.5 presents a series of additional robustness checks. Column 1 repli-

cates our preferred specification from column 5 of Table 2. Column 2 drops counties with

plants that always report zero fugitive lead emissions. Column 3 controls for emissions from

other non-lead emitting plants in the county. Column 4 requires that all counties have at

least 10 monitor-years of data. It is well-known that EPA monitoring data are quite unbal-

anced due the the entry and exit of pollution monitors over time. In columns 5 and 6, we

26The CDC has guidance on occupational exposure to very high levels of zinc fumes.
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shorten the sample period by five and ten years. Much of the variation occurs in the early

part of the sample period, so the question is whether the coefficients differ with a shorter

sample period. The coefficients on air lead concentration in columns 2-6 are similar to the

baseline estimate in column 1 in sign, magnitude, and significance.

5.4 Infant Deaths Averted

In Table 8, we use our estimates from Tables 2 and the regression underlying Appendix Figure

A.10 to do back of the envelope calculations of the number of infant deaths averted. For the

IV and reduced form, we use county-specific realized declines in fugitive lead emissions to

estimate the effects on air lead concentration and on infant mortality. To reduce the reliance

on any one year, the comparison is between average county-specific fugitive emissions over

1988-1991 and 2015-2018.

In the IV specification, the realized decline in fugitive lead emissions over these two

periods implies a fall in air lead of 0.035 µg/m3,27 and a fall in infant mortality of 0.059 per

1,000 live births.28 In the reduced form specification for the IV sample, the realized decline

implies a fall in infant mortality of 0.034 per 1,000 live births. As usual, the IV estimates

are larger than the reduced form estimates.

Table 8 summarizes the infant deaths averted and the value of these lives saved. The

annual number of births in the sample counties was approximately 1 million in 2015-2018.

Depending on the specification, the implied number of deaths averted in these counties per

year is 34-59. At the EPA valuation of $9.2 million per death averted in 2018 USD, the

benefits of infant lives saved are $313-533 million per year.29 The full decline in air lead

concentration from all sources in our sample counties was 0.130 µg/m3.30 This implies a fall

in infant mortality of 0.218 per 1,000 live births or 218 deaths averted per year. The benefits

27For reference, the average air lead concentration in our sample is 0.08µg/m3.
280.059=0.035*1.676, where 1.676 is the coefficient on air lead concentration in column 5 of Table 2
29The value of a statistical life that the EPA uses is $7.4 million (2006 USD). This is $9.2 million (2018

USD).
300.130 is the difference between the air lead concentration for 1988-1991 and the air lead concentration for

2015-2018 for the IV sample.
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of infant lives saved are $2.0 billion per year.

6 Conclusion

This paper provides national IV estimates of the effects of air lead concentration on infant

mortality in the United States over the period 1988-2018. Our identification overcomes the

challenges associated with avoidance behavior, omitted variable bias, and measurement error

by instrumenting for EPA air lead concentration with TRI fugitive lead emissions interacted

with wind speed near the emitting plants and including a rich set of controls. Variation

in fugitive lead emissions and wind speed is shown to determine lead exposure. While

stack lead emissions occur routinely and may be subject to avoidance behavior, fugitive lead

emissions are unintended and intermittent (EPA, 1994). The unpredictable annual variations

in fugitive lead and wind speed make it difficult to engage in avoidance behavior. We provide

evidence that fugitive lead emissions interacted with wind speed has low predictive power

for county socioeconomic characteristics and mothers’ characteristics. We provide evidence

that fugitive lead emissions and wind speeds are strongly linked to air lead concentration

readings of EPA monitors.

We find a positive and statistically significant relationship between air lead concentration

and infant mortality. Accounting for the timing of lead exposure in utero increases the

magnitude of the estimates. Estimates by race are imprecise but suggest that lead exposure

may be disproportionately affecting nonwhite infants. Cause of death data show that lead

increases deaths from low birthweight and sudden unexplained infant death. Back of the

envelope estimates indicate that declines in fugitive lead emissions generated benefits of

$313-$533 million annually and the full decline in air lead concentration from all sources

generated benefits of $2.0 billion per year. These are only the benefits from avoided infant

deaths. Given that lead exposure causes morbidity and mortality in other populations and

has lasting impacts on child development, the benefits are likely substantially larger.
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Returning to the broader picture, air emissions of lead from industry and some other

sectors such as aviation continue to impact millions in the US and globally. These new

estimates can inform investments in reductions in air lead emissions. In the U.S., industrial

firms and the aviation industry still emit hundreds of thousands of pounds of lead into the

air. A recent Unicef report found that 1 in 3 children worldwide had blood lead levels above

5 g/DL (Burki, 2020; Rees and Fuller, 2020). While the report notes that elevated blood

lead levels are due to range of channels of exposure, air lead emissions are an important

contributor.
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Tables and Figures

Figure 1: Trends in Fugitive and Stack Emissions
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Notes: This figure shows the trend of fugitive, stack, and total air lead emissions reported by TRI plants
during 1988 to 2018. The vertical lines mark year 1998 when seven additional industries were added to
TRI and year 2001 when the threshold for lead reporting was significantly lowered. Appendix Figure A.2
shows the number of reporting plants and changes that their inclusion have on reported totals. Appendix
Figure A.3 shows trends in airborne, waterborne, landborne, and recycled lead.
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Figure 2: Effect of Fugitive Lead Emissions on Air Lead Concentration by Wind Speed
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Notes: This figure reports the estimated φF in equation 1 – the marginal effect of fugitive lead emissions
(in 10,000 pounds) on ambient lead concentration (in µg/m3) as a function of wind speed (in knots)
for different distance ranges from monitors to plants. Wind speed is captured by weather monitoring
stations within 10 miles of each plant. Figure A.7a and A.7b show the distribution of monitors over
distance to plants and over wind speed, respectively. There is little impact of fugitive lead on ambient
lead concentration shown beyond 2 miles, so we did not show the panel for 5 to 10 miles for simplicity.
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Figure 3: Air Fugitive Lead and Air Lead Concentration with Controls
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Notes: The figure plots the marginal effect of fugitive lead emissions (Fct) of plants on the air lead
concentration readings at lead monitors. The figure is obtained from the first-stage regression of the IV
estimation: AirLeadct = βFFct + βF

wHighWindct ×Fct + δwWindSpeedct + βSSct + βS
wWindSpeedct ×

Sct + δChemct + δwWindSpeedct × Chemct + ηc + λst + Mediactψ + Zctφ + εct, where WindSpeedct
denotes polynomials (linear, quadratic, cubic, quartic) of average wind speed near the plants.
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Table 1: Fugitive Lead Emissions and Daily Variation of Ambient Lead Concentration

Dep Var: S.D. Daily
Ambient Lead Concentration

(1) (2) (3) (4) (5)
High Frac Fugitive Lead 0.144∗∗∗ 0.140∗∗∗ 0.139∗∗∗ 0.138∗∗∗ 0.138∗∗∗

(0.046) (0.042) (0.043) (0.042) (0.042)
Mean Dep Var 0.227 0.227 0.227 0.227 0.227
Adjusted R2 0.692 0.694 0.696 0.696 0.696
Monitor-Year 3015 3015 3015 3015 3015
Monitors 352 352 352 352 352
Counties 127 127 127 127 127
Monitor, Region-Year FE Y Y Y Y Y
Air, Water, Land Lead Y Y Y Y
Socio-economic Y Y Y
Climate Var Y Y
Other Emissions Y

Notes: This table reports the results for regressing standard deviation of daily ambient lead concentration
within 2 miles of lead plants on the fraction of fugitive over total air lead emissions of the plants. Variable
High Frac Fugitive Lead is an indicator for monitor-years that have above-median fraction of fugitive
over total air lead. Mean number of days for calculating the standard deviation of monitoring data in a
year is 213. We control for monitor fixed effects, region-by-year fixed effects, and the level of air, water,
land-borne lead emissions from plants in all specifications. We test for robustness including county
socio-economic characteristics (population density, percent white, percent high school degree, median
household income, percent manufacturing employment, and employment rate), county climate (annual
total precipitation, annual average temperature, and wind speed), and other toxic emissions from lead
and non-lead plants in the county. Monitor-years with positive air lead emissions and ambient lead
concentration are included for the regressions. Standard errors are clusters at county level.
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Table 2: IV Estimates of Air Lead Concentration and Infant Mortality

(1) (2) (3) (4) (5)
IMR IMR IMR IMR IMR

Air Lead Concentration 1.998∗∗∗ 1.753∗∗∗ 1.717∗∗∗ 1.685∗∗∗ 1.676∗∗∗

(0.429) (0.453) (0.447) (0.395) (0.435)
KPFstat 41.983 40.252 38.029 45.036 41.232
DepMean 7.718 7.718 7.718 7.718 7.718
County-Year 1553 1553 1553 1553 1553
Counties 127 127 127 127 127
County,Region-by-Year FE Y Y Y Y Y
Base IMR Y Y Y Y
Socioeconomic,Mother Y Y Y Y
Climate Var Y Y Y
Water,Land Lead Y Y
Other Chem Y

Notes: Baseline IMR is the county infant mortality rate averaged over 1980 to 1986 (the year prior to
the start of TRI). Controls on other chemicals include air fugitive and stack emissions of developmental
toxins and other TRI reported chemicals. Controls on socio-economic characteristics include population
density, percent white, percent high school degree, median household income, percent manufacturing
employment, and employment rate at county level. Controls on mothers’ characteristics include county-
average percent white, percent Hispanic, percent of high school degree, and percent of mothers aged over
35. Controls on climate variables include annual total precipitation and annual average temperature at
the county level. Regressions are weighted by the number of births. Standard errors clustered at county
level. *** denotes statistical significance at the 1 percent level, ** at the 5 percent level, and * at the
10 percent level.
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Table 3: IV Estimates By Age at Death and Timing of Birth

(1) (2) (3) (4) (5) (6)
IMR
1m

IMR
1y

IMR
AD1m

IMR
AD1y

IMR
JD1m

IMR
JD1y

Air Lead Concentration 0.728∗∗ 1.676∗∗∗ 1.155∗∗∗ 2.128∗∗∗ 1.143∗∗∗ 2.660∗∗∗

(0.323) (0.435) (0.336) (0.430) (0.387) (0.530)
KPFstat 41.232 41.232 40.884 40.884 40.337 40.337
DepMean 5.104 7.718 5.09 7.565 4.988 7.453
County-Year 1553 1553 1553 1553 1553 1553
Counties 127 127 127 127 127 127
All Controls Y Y Y Y Y Y

Notes: The dependent variable is infant mortality in the first month or year for infants in columns 1-2.
The dependent variable is infant mortality in the first month or year for infants born April to December
in columns 3-4. The dependent variable is infant mortality in the first month or year for infants born
July to December in columns 5-6. All controls are the controls from column 5 of Table 2. Regressions
are weighted by the number of births. Standard errors clustered at county level. *** denotes statistical
significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table 4: IV Estimates By Race of Mother

(1) (2) (3) (4)
IMR1yrnwh IMR1yrwh IMR1mnwh IMR1mwh

Air Lead Concentration 3.068∗∗ 1.415∗∗∗ 1.977∗∗ 0.478∗

(1.212) (0.361) (0.998) (0.256)
KPFstat 39.646 41.711 39.646 41.711
DepMean 11.778 6.067 8.346 4.044
CountyYear 1552 1552 1552 1552
Counties 127 127 127 127
AllControls Y Y Y Y

Notes: The dependent variable is infant mortality in the first year for infants born to nonwhite
(IMR1yrnwh) and white (IMR1yrwh) in columns 1 and 2. The dependent variable is infant mortal-
ity in the first month for infants born to nonwhite (IMR1mnwh) and white (IMR1mwh) in columns 3
and 4. The mean of the dependent variables differs from the summary statistics in Appendix Table A.1.
In the summary statistics, the observations are weighted by all births, while here they are weighted by
race-specific births. All controls are the controls from column 5 of Table 2. Regressions are weighted
by the number of births to nonwhite and white mothers. Standard errors clustered at county level. ***
denotes statistical significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent
level.
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Table 5: IV Estimates By Cause, 1 year

(1) (2) (3) (4) (5) (6) (7)

IMR
ca

IMR
lbw

IMR
resp

IMR
pp

IMR
sidsassb

IMR
homi

IMR
other

Air Lead Concentration 0.044 0.310∗∗ 0.103 -0.027 0.414∗ 0.010 0.503∗∗∗

(0.102) (0.139) (0.130) (0.179) (0.229) (0.026) (0.182)
KPFstat 26.079 26.079 26.079 26.079 26.079 26.079 26.079
DepMean 1.43 1.225 .635 1.824 .825 .075 1.571
CountyYear 1470 1470 1470 1470 1470 1470 1470
Counties 121 121 121 121 121 121 121

Notes:ca = congenital anomalies; lbw = low birthweight; resp = respiratory; pp = other conditions
originating in perinatal period; sidsassb = sudden infant death syndrome and accidental suffocation and
strangulation on bed; homi = homicide; other = all other causes. All controls are the controls from
column 5 of Table 2. Regressions are weighted by the number of births to nonwhite and white mothers.
Standard errors clustered at county level. *** denotes statistical significance at the 1 percent level, **
at the 5 percent level, and * at the 10 percent level.
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Table 6: IV Estimates By Cause, 1 month

(1) (2) (3) (4) (5) (6) (7)

IMR
ca

IMR
lbw

IMR
resp

IMR
pp

IMR
sidsassb

IMR
homi

IMR
other

Air Lead Concentration 0.040 0.312∗∗ 0.081 -0.010 0.076∗∗∗ -0.011 0.260∗∗

(0.087) (0.142) (0.110) (0.172) (0.025) (0.008) (0.128)
KPFstat 26.079 26.079 26.079 26.079 26.079 26.079 26.079
DepMean 1.018 1.203 .556 1.731 .059 .008 .973
CountyYear 1470 1470 1470 1470 1470 1470 1470
Counties 121 121 121 121 121 121 121

Notes: ca = congenital anomalies; lbw = low birthweight; resp = respiratory; pp = other conditions
originating in perinatal period; sidsassb = sudden infant death syndrome and accidental suffocation and
strangulation on bed; homi = homicide; other = all other causes. All controls are the controls from
column 5 of Table 2. Regressions are weighted by the number of births to nonwhite and white mothers.
Standard errors clustered at county level. *** denotes statistical significance at the 1 percent level, **
at the 5 percent level, and * at the 10 percent level.
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Table 7: IV Estimates of Other Infant Health Outcomes

(1) (2) (3)
Premature Bthweight Lowbw

Air Lead Concentration 1.315 1.853 0.779
(2.583) (7.104) (2.281)

KPFstat 41.232 41.232 41.232
DepMean 60.804 3297.398 76.858
CountyYear 1553 1553 1553
Counties 127 127 127
AllControls Y Y Y

Notes: This table reports regressions on premature (gestation weeks < 36) per 1,000 live births, birth
weight (in grams), and low birth weight (< 2,500g) per 1,000 live births. Means of the dependent variables
are reported under the coefficients. Regressions control for the full set of other controls described in Table
2. Standard errors are clustered at county level.
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Table 8: Back of the Envelope Calculations

(1) (2)
Annual Infant Deaths Averted Value in 2018$

IV, Fug Lead 59 $533 million
Red Form, Fug Lead 34 $313 million
IV, All Lead 218 $2 billion

Notes: The IV, Fugitive lead estimates are generated by using the average of fugitive lead from 1988-
1991 and 2015-2018 in the first stage to generate the reduction in air lead concentration. This is then
multiplied by the coefficient on air lead concentration in column 5 of Table 2 and by 1 million to get the
annual infant deaths averted. The reduced form estimates the average of fugitive lead from 1988-1991 and
2015-2018 to generate the reduction in infant deaths based on the regression underlying Appendix Figure
A.10. The IV, all lead estimates are generated by using the average decline in air lead concentration
from 1988-1991 and 2015-2018. This is multiplied by the coefficient on air lead concentration in column
5 of Table 2 and by 1 million to get the annual infant deaths averted. Deaths are multiplied by the EPA
valuation of $9.2 million per death averted (2018 USD) to get values.
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A Appendix Figures and Tables

Figure A.1: Industry Distribution of Air Lead Emissions of Facilities

Lead Manufacturing

Other

Paint

Ceramics

Metal Manufacturing

48%

29%
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6%

10%

Notes: This pie-chart shows the industry distribution of airborne lead emissions (sum over time) by the
sampling industrial facilities. The emissions include both fugitive and stack lead emissions. Calculates
are weighted by the number of births in a county.
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Figure A.2: Changes in Reporting in 2001
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Notes: This figure shows trends in the number of reporting plants and their effect on air lead emissions
in our sample during 1988 to 2018.
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Figure A.3: Lead Emissions from Air, Water, and Land-borne Sources and Recycled Lead

0
10

00
20

00
30

00
Le

ad
 (1

,0
00

 lb
s)

19
88

19
94

20
00

20
06

20
12

20
18

Year

(a) Airborne

0
50

10
0

15
0

20
0

25
0

Le
ad

 (1
,0

00
 lb

s)

19
88

19
94

20
00

20
06

20
12

20
18

Year

(b) Waterborne

0
20

0
40

0
60

0
80

0
10

00
Le

ad
 (m

illi
on

 lb
s)

19
88

19
94

20
00

20
06

20
12

20
18

Year

(c) Landborne

0
10

0
20

0
30

0
40

0
R

ec
yc

le
d 

Le
ad

 (m
illi

on
 p

ou
nd

s)

19
88

19
94

20
00

20
06

20
12

20
18

Year

(d) Recycled

Notes: Figure (a) to (c) plot the trends of air-, water-, and land-borne lead emissions by TRI plants.
Figure (d) plots the lead recycled from production waste. Data on recycled lead started from 1991,
following the Pollution Prevention Act (1990) that expanded TRI to include additional information on
toxic chemicals in waste and on source reduction methods.
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Figure A.4: Geographic Distribution of Counties in the IV Sample

In Sample

Notes: This map presents locations of the 127 counties in our sample.
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Figure A.5: Histogram of Wind Speeds
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Notes: This figure plots the distribution of wind speeds.
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Figure A.6: Effect of Stack Lead Emissions on Air Lead Concentration by Wind Speed
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Notes: This figure reports the estimated coefficient φS in equation 1 - the marginal effect of stack lead
emissions on ambient lead concentration - as a function of wind speed (in knots) for different distance
ranges from monitors to plants.
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Figure A.7: Number of Lead Monitors by Distance to Plants and by Wind Speed
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Notes: Figure A.7a plots the number of monitors in 0.5 mile increments over miles from monitor to plant.
Figure A.7b plots the number of monitors in 1 knot increments over the average wind speed within 10
miles from the plant.
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Figure A.8: First Stage Adding Controls
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Notes: The figure plots the marginal effect of fugitive lead emissions (Fct) of plants on the air lead con-
centration readings at lead monitors as different sets of controls are added. These first stages correspond
to columns 1-4 in Table 2.
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Figure A.9: First Stage Polynomial
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Notes: The figure plots the marginal effect of fugitive lead emissions (Fct) of plants on the air lead
concentration readings at lead monitors as the wind polynomial is increased from 1 to 4. These first
stages include the full set of controls from columns 5 in Table 2.
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Figure A.10: Reduced Form Specification
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Notes: This figure reports the marginal effect of fugitive lead emissions on infant mortality as a function
of wind speed (in knots). The specification is the reduced form version of the specification in column 5
of Table 2.
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Table A.1: County Summary Statistics

mean sd
IMR 1yr, per 1,000 7.72 2.72
IMR 1mo, per 1,000 5.10 1.86
IMR Nonwh, per 1,000 11.10 4.90
IMR White, per 1,000 6.11 1.68
Premature, per 1,000 60.80 22.65
Birthweight, grams 3297.40 62.06
Low Bthwt, per 1,000 76.86 15.79
Births 51784.52 59008.90
Air Fug Lead, 1,000 lbs 1.71 3.79
Air Stack Lead, 1,000 lbs 4.65 12.48
Air Lead Conc. 0.08 0.22
Windspeed, knots 6.47 1.53
County Pop Density 2335.09 3693.82
County HH Income 48594.42 11813.09
County Pct Mfg Employ 14.05 4.97
County Pct Employ 91.62 2.76
County Pct White 66.07 13.86
County Pct HSchool 89.22 5.63
Mother White 0.74 0.14
Mother Hispanic 0.33 0.26
Mother Age over 35 0.13 0.05
Mother High School 0.71 0.17
Avg Temp, C 15.08 4.08
Avg Precip, Mm 797.92 471.79
Water Lead, 1,000 lbs 0.34 1.20
Land Lead, 1,000 lbs 35.53 268.35
Air Fug Dev, 1,000 lbs 39.69 113.32
Air Stack Dev, 1,000 lbs 96.69 236.71
Air Fug NDev, 1,000 lbs 274.40 751.98
Air Stack NDev, 1,000 lbs 767.85 1326.10
Air Fug HAP, 1,000 lbs 92.01 246.04
Air Stack HAP, 1,000 lbs 237.59 670.35
Observations 1553
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Table A.2: Prediction of County Characteristics

(1) (2) (3) (4) (5) (6)
MFemp Emp Popdens Hinc Pwhite Phighsch

KPFstat 3.772 1.235 5.659 3.905 1.139 0.552
CountyYear 1553 1553 1553 1553 1553 1553
Counties 127 127 127 127 127 127
Allcontrols Y Y Y Y Y Y

Notes: The dependent variable is listed in the column header: (MFemp) percent in manufacturing
employment; (Emp) percent employed; (Popdens) population density per square mile; (Hinc) median
household income; (Pwhite) percent white; (Phighsch) percent with high school education over people
above age 25. All controls are the controls from column 5 of Table 2, but excludes the dependent variable.
F-statistics are the joint significance of fugitive lead interacted with the wind variables. Regressions are
weighted by the number of births. Standard errors clustered at county level. *** denotes statistical
significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table A.3: Prediction of Mothers’ Characteristics

(1) (2) (3) (4)
Pmwhite Pmhisp Pmolder35 Pmhighsch

KPFstat 1.568 0.630 0.783 0.686
CountyYear 1553 1553 1553 1553
Counties 127 127 127 127
Allcontrols Y Y Y Y

Notes: The dependent variable is listed in the column header: (Pmwhite) percent mothers white;
(Pmhisp) percent mothers hispanic; (Pmolder35) percent mothers older than 35; (Pmhighsch) percent
mothers with high school education. All controls are the controls from column 5 of Table 2, but excludes
the dependent variable. F-statistics are the joint significance of fugitive lead interacted with the wind
variables. Regressions are weighted by the number of births. Standard errors clustered at county level.
*** denotes statistical significance at the 1 percent level, ** at the 5 percent level, and * at the 10
percent level.
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Table A.4: Other Fugitive Chemicals, PM10, and CO

(1) (2) (3) (4) (5) (6) (7)
IMR IMR IMR IMR IMR IMR IMR

Air Lead Conc. 1.529∗∗∗ 1.546∗∗∗ 1.676∗∗∗ 1.901∗∗ 1.725∗∗ 2.343∗∗ 0.940
(0.458) (0.411) (0.435) (0.804) (0.842) (0.915) (1.640)

KPFstat 35.778 34.202 41.232 34.107 19.051 11.120 1.497
DepMean 7.718 7.718 7.718 7.782 7.753 7.718 7.718
CountyYear 1553 1553 1553 1282 1046 1553 1553
Counties 127 127 127 105 81 127 127
Allothercontrols Y Y Y Y Y Y Y
DevChem Y Y Y Y Y Y Y
NonDevChem Y Y Y Y Y Y
HAP Y Y Y Y Y
PM10 Y Y
CO Y
Metal2 Y Y
Zinc Y

Notes: This table reports the results of adding controls for other chemicals and pollutants. The de-
pendent variable of all regressions are infant mortality rate within the first year of births. All other
controls are the controls from column 5 of Table 2, but excludes other chemicals. F-statistics are the
joint significance of fugitive lead interacted with the wind variables. Regressions are weighted by the
number of births. Standard errors clustered at county level. *** denotes statistical significance at the 1
percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table A.5: Robustness Checks

(1) (2) (3) (4) (5) (6)
IMR
Base

IMR
Nozerofug

IMR
OtherPlantE

IMR
10years

IMR
To2013

IMR
To2008

Air Lead Concentration 1.676∗∗∗ 1.695∗∗∗ 1.537∗∗∗ 1.603∗∗∗ 1.798∗∗∗ 1.728∗∗∗

(0.435) (0.441) (0.455) (0.527) (0.471) (0.493)
KPFstat 41.231 41.278 32.545 28.347 41.259 38.382
CountyYear 1553 1534 1550 1153 1344 1112
Counties 127 122 127 57 126 106
Allcontrols Y Y Y Y Y Y

Notes: This table reports the results of several robustness exercises. The dependent variable of all
regressions are infant mortality rate within the first year of births. Column 1 is the baseline (col. 5,
Table 2). All controls are the controls from column 5 of Table 2. Column 2 drops counties that report
stack emissions but always report zero fugitive emissions. Column 3 controls for chemical emissions of
other non-lead emitting plants in the county. Column 4 only includes counties with at least 10 years of
lead monitor data in the sample. Columns 5 and 6 shorten the sample from 1988-2018 to 1988-2013 and
to 1988-2008. F-statistics are the joint significance of fugitive lead interacted with the wind variables.
Regressions are weighted by the number of births. Standard errors clustered at county level. *** denotes
statistical significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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