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Abstract

We study how air pollution affects productivity and work patterns among highly skilled tech

workers. Using data on coding activity from GitHub for a sample of 26,000 software developers

across 42 countries during the period 2014-2019, we estimate the causal effect of daily particulate

matter (PM2.5) concentration on activity and choice of tasks. Our findings imply that air pollution

has negative effects on the number of actions performed, but these effects differ across tasks: While

developers produce less code, their activity in interactive tasks is unaffected. We demonstrate that

coders adjust to pollution-induced productivity declines by switching to easier tasks, which allevi-

ates effects on output quantity. We find that a lower bound on the loss in output value due to air

pollution in our sample is $15.7 million.
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1 Introduction

Air pollution is a key environmental threat to health. It affects mortality (Deryugina et al., 2019), hos-

pital admissions (Schlenker and Walker, 2016), child health (Currie et al., 2015), and pharmaceutical

expenditures (Deschênes et al., 2017). Health effects arise from deteriorated pulmonary and cardiovas-

cular functioning, but also from irritation in ear, nose, throat, and lungs, or from particles entering the

brain through the central nervous system, provoking inflammation and cortical stress (cf. Manisalidis

et al., 2020). Through these physiological channels, air pollution can adversely affect labor market per-

formance, both in physically- and in cognitively-demanding occupations. This is especially relevant for

small particulate matter (PM2.5), a pollutant that can penetrate into buildings.

Several studies document a negative impact of pollution on productivity in manual and routine

tasks (e.g., Adhvaryu et al., 2019; Chang et al., 2016, 2019; Graff Zivin and Neidell, 2012; He et al., 2019).

A small number of papers examines the relationship between air quality and performance in more

cognitively-demanding tasks and occupations, e.g.baseball umpires or politicians (e.g., Archsmith et al.,

2018; Heyes et al., 2019). However, none of these studies analyzes an occupation that can be considered

representative of the work environment in highly-paying jobs which form the backbone of the modern

knowledge economy. Such jobs are characterized by cognitively-demanding tasks, but also frequent

collaboration, and flexibility in work schedules and task choice. Each of these characteristics might

affect the severity of pollution-induced productivity shocks. In particular, high-skilled workers in such

flexible work environments might be able to adjust to productivity shocks along several margins, e.g.

working hours or task choice. In the rather inflexible settings studied so far, an analysis of this type of

worker response is not feasible.

This papers examines how air pollution affects the productivity of high-skilled workers in jobs

that form the backbone of the modern economy and investigates how these workers adapt their work

patterns in response to pollution-induced productivity shocks. We study software development as an

occupation representative for these jobs, as it is cognitively demanding, collaborative, flexible and mul-

tidimensional. Moreover, software devlopers’ output generates high value for consumers, other indus-

tries, governments, and the research community.
1

We collect data onGitHub users and their activity in public repositories between 2014 and May 2019.

GitHub is the world’s largest platform for hosting and jointly working on coding projects. We focus

on 26,000 users across 42 countries who work on company-owned repositories, indicating that they

are professional developers. In the data, we observe the location of a user as well as records of several

actions with their respective timestamps. We construct a user×day panel including measures of work

quantity, quality, and task choice. The primary outcome for work quantity is the total number of actions

performed. We also consider subcategories of actions, e.g. number of commits (code changes) and

comments written in discussion fora because they represent distinct types of work, individual coding

activity (commits) vs. interactive work (comments). We further construct variables to analyze whether

workers switch to easier tasks when facing productivity shocks. Based on developers’ locations, we

match their output to city-level air quality monitor data on particulate matter smaller than 2.5 µm

(PM2.5).

To account for the endogeneity of air quality when estimating a model of user activity, we in-

1

Median pay of software developers in the US was $110,140 in 2020 (Bureau of Labor Statistics, 2021).
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strument PM2.5 concentration with daily average wind direction, exploiting the effect of regional air

pollution transport (as suggested by Deryugina et al., 2019).

Our research produces two key results. First, if a developer is exposed to unusually high levels of

PM2.5, relative to the city×month×day of week specific average, the number of daily actions observed

on GitHub falls by 3.9%. This effect is mainly driven by a decline in individual coding activity: The

number of commits, i.e. submitted code changes, decreases by 6.5%. On the other hand, collaborative

or interactive work (e.g., commenting on issues) is less affected.

Second, on high-pollution days users switch towards less complex tasks. Code submitted in pull

requests
2

changes 4.3% fewer files and contains 7.4% fewer new lines, pointing to a reduction in the

complexity of coding tasks. The finding that users focus on easy tasks is confirmed when considering

actions on the platform that relate to discussing issues. The share of actions referring to easy issues

increases by 7.1% relative to the mean. These findings imply that developers use their flexibility in choice

of tasks to adapt to health shocks. Among users with a stronger adjustment response to PM2.5 exposure,

effects on work quantity are attenuated. This form of adaptation in a flexible work environment might

explain why, compared to other professions, the effect of particulate matter is relatively small in our

setting.

To assess the economic relevance of our results, we leverage novel data from a platform called

Gitcoin where GitHub users can offer payments to incentivize external contributions to their projects.

We derive estimates for the value of GitHub activity in USD and find that, despite their relatively small

magnitude compared to other occupations, air pollution effects on software developers translate into

relevant monetary damages. A lower bound on the loss in output value due to PM2.5 exposure in our

sample is estimated at $15.7 million.

Related Literature. This paper directly links to the research on the effect of environmental factors

on economic outcomes. We make two contributions to this literature.

First, we extend the literature strand on air pollution and worker productivity to a profession that

is representative for a large group of high-skilled workers in flexible, modern work environments.

Previous research often studies low-skill, routine tasks such as textile workers (Adhvaryu et al., 2019;

He et al., 2019), pear packers (Chang et al., 2016), call center agents (Chang et al., 2019), or fruit pickers

(Graff Zivin and Neidell, 2012). A number of studies finds that worker productivity in high-skilled

professions is also reduced by air pollution. This evidence comes from studies on error detection of

baseball umpires in the US (Archsmith et al., 2018), the speech quality of Canadian politicians (Heyes

et al., 2019), and case handling time by Chinese and Mexican judges (Kahn and Li, 2019; Sarmiento,

2022). While these contexts allow to create precise measures of worker performance in a specific task,

these professions are rare and in general not characterized by the typical features of jobs that most

high-skilled workers do (e.g. frequent collaboration, multiple different tasks). Related work investigates

performance in cognitively-demanding tasks, but outside of standard work settings, e.g. among chess

players (Künn et al., 2019), individual investors (Huang et al., 2020), or brain game players (La Nauze

and Severnini, 2021). Our data, by contrast, measures performance in tasks from a common profession

which are similar to what other knowledge workers face on their jobs. It also enables us to present first

2

Pull requests are a tool to suggest changes to the code base of a repository, for more details see Section2.
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evidence on productivity effects separately for individual and collaborative activities. We also note that

our setting covers a vast number of countries, allowing to draw more general conclusions about the

pollution-productivity relationship and to explore effect heterogeneity e.g. with respect to local income

levels.

Second, we contribute to the literature strand on worker adaptation to environmental shocks, by

highlighting a new margin of adjustment in flexible high-skilled jobs, namely task choice. The rich

data we study allow us to analyze how the code written by developers changes, what kind of tasks are

performed and how difficult they are. We find evidence for a switch to easier work when air pollution

is high. Related papers studied e.g. how workers adjust working hours in response to temperature

shocks (Graff Zivin and Neidell, 2014; Neidell et al., 2021; LoPalo, 2020). With respect to air pollution

shocks, Adhvaryu et al. (2019) and Bassi et al. (2021) demonstrate an important role of managers who

can mitigate productivity losses, e.g. by reallocating workers to different tasks. These studies, however,

focus on rather low-skilled manufacturing workers. Our work demonstrates adaptation in a high-

skilled setting where workers have greater flexibility in organizing their work day.

Another contribution of this paper is that we demonstrate new ways to use publicly available data

on GitHub activity. While we are not the first to use this data in economics
3
, we present a strategy

to construct a sample of highly active users who are likely professional software developers and show

how the data can be used, e.g. to study task difficulty. We also complement this with information from

Gitcoin to estimate the monetary value of the output observed on GitHub.

With our detailed analysis of work behavior we also relate to a broader literature that studies drivers

of worker productivity. For example, Lazear et al. (2015) show that productivity increased during re-

cessions because of higher worker effort. Pencavel (2015) and Shangguan et al. (2021) examine how the

output of workers is driven by their work hours. We complement this literature of detailed analyses of

work patterns by demonstrating how external health shocks are an important factor to consider when

studying work patterns.

Outline. We begin in Section 2 by describing how Github and its underlying software Git work,

how we construct the data on developer activity, and how the different outcomes are defined. We also

provide information on the environmental data that are obtained on air quality, wind, other weather

conditions, wildfire smoke, and thermal inversions. In Section 3 we explain the research design and

how we implement the two-stages least squares strategy of Deryugina et al. (2019). Section 4 presents

result on how workers are affected by pollution in terms of work quantity, task adjustment, and quality.

Section 5 concludes.

2 Setting and Data

To analyze the effect of local air pollution on productivity and work patterns in a highly-skilled pro-

fession, we pair information on GitHub activity for a global sample of software developers with data

on local air quality obtained from several national environmental agencies. This is complemented with

data on meteorological conditions which we use to construct the instrumental variables and to control

3

McDermott and Hansen (2021), e.g. use the data for an analysis of the impacts of the COVID-19 pandemic on work

patterns.
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for local weather. This section starts with a short description of GitHub, followed by an overview of the

GitHub data and how we use it to measure productivity of tech workers. After checking the validity of

our primary outcome measures, we end with a description of the environmental data.

2.1 Setting: GitHub

GitHub is built on Git, an open source version control system, i.e., a software that facilitates keeping

track of different versions of a file over time. It records who changed which part of a file at what point

in time. Hence, it is particularly useful for collaborative projects where several people work on a set of

files. GitHub is a platform for hosting Git repositories
4

and, on top of the version control functionality,

provides additional features for collaboration. Although Git(Hub) can be used for various types of

files, it is intended and predominantly used for storing and jointly working on coding projects. For

each of their repositories, repo owners can choose whether to make it public or private, i.e., whether

the respective files are visible to every user of the platform, or only to the owners themselves. In 2019,

more than 30 million accounts were registered on GitHub, which together owned more than 120 million

public repositories, making it the world’s largest host of source code.

The core action in Git is a commit, which refers to the action of saving the current version of the

repository after implementing a change to a file, or a set of files. As such, a commit represents that

some work on code files has been conducted by the commit author.

The primary additional collaboration features offered by GitHub are issues and pull requests. An

issue is a message used to suggest improvements, organize tasks or make other requests related to a

given repo.
5

Each issue contains a discussion forum where users can leave comments to discuss the

problem or question at hand. Pull requests (PRs) are a tool which can be used to propose code changes,

including changes to repositories you do not own, i.e., whose files cannot be altered via a commit.

After a PR is submitted, the repo owners can review the suggested changes and decide whether to

accept (i.e., merge) or reject them. Like issues, PRs also include a discussion forum where users can

comment directly on the proposed changes. Apart from allowing users to contribute to projects of

which they are no member, project team members also use PRs as they facilitate collaborative coding.
6

These distinct GitHub actions reflect productive work, mostly aimed at building or improving soft-

ware products. Hence, we use these actions to measure output generated by highly-skilled tech work-

ers. A key advantage is that the distinct actions we observe reflect different types of tasks. In particular,

we consider the number of commits and the number of PRs opened as measures of individual work on

code, whereas the number of comments written (the sum of comments on issues, PRs and commits) and

the number of issues closed, opened, or reopened reflect collaborative work conducted in interaction

with other users. Finally, the number of PRs closed reflects work on code review and making decisions

on whether to merge or reject the proposed changes. This allows us to conduct the first analysis of the

productivity impacts of air pollution in a high-skilled profession that takes potential effect heterogene-

ity between individual and team work into account. In addition to these productive actions, users can

4

The term repository, or repo for short, refers to the location were all files belonging to a project are stored.

5

For an example of an issue, see for instance https://github.com/microsoft/vscode/issues/39526.

6

Collaboration is facilitated by PRs as the author can request a code review from specific team members who can write

comments to provide direct feedback. Their comments can be implemented in follow-on commits within the same PR. An

example for a PR can be found at https://github.com/microsoft/vscode/pull/54244.

5
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also exploit the social network functions offered by GitHub, e.g., following other users or repositories.

Another important feature of GitHub allows us to study worker adjustment to the potential neg-

ative productivity shock induced by high air pollution: Repository owners can assign labels to issues

in order to reflect issue category (e.g., bug, feature request), issue priority or issue difficulty. The plat-

form provides nine default labels, and repository owners can create additional labels specific to their

repo. Several labels are indicative of a relatively easy issue, e.g., the default labels good first issue7
and

documentation,
8

or individual labels such as beginner friendly or low-hanging fruit. The complete list of

labels we use to identify easy tasks is depicted in Appendix Table A.1. Based on this we can measure

whether users adjust the share of actions on easy tasks when air quality is poor. This approach has sev-

eral advantages: We do not have to identify issue complexity ourselves but can rely on the assessment

by experts who know the project in question very well. Furthermore, the label is visible to all users,

i.e., workers who search for easy tasks due to an adverse productivity shock can easily identify these

issues as suitable.

2.2 GitHub Data on Productivity and Work Patterns

We collect data on GitHub activity from two sources, GHArchive and GHTorrent. The GHTorrent

project provides data in the form of a relational SQL database, containing information on GitHub users

and all actions they conduct in public repositories. We use the version of the database containing data

up to June 2019. The user table comprises login name, registration date, and account type (individual

or organizational) for all users registered on the platform by June 1st 2019. In addition, location and

company information as stated on the user profile is reported. Data on activities is available separately

by type of action (e.g., commits, issue comments etc.) and includes its exact timestamp, a unique iden-

tifier for the acting user and the repository the event was conducted in. For specific actions, further

information is reported, e.g., the text of pull request and commit comments.

GHArchive also provides data on all events in public repositories. For some event types, this source

contains additional information relative to the GHTorrent data, e.g., the titles and descriptions of issues

and PRs, the message attached to a commit, the number of lines of code added and deleted, as well as

the number of files changed within a PR. GHArchive and GHTorrent data can be linked via users’ login

names.

These data have multiple advantageous features, most prominently their global coverage (all GitHub

users are included) and the highly precise timestamps. This allows us, e.g., to analyze impacts of local

air quality on working hours, and gives us a clear advantage in terms of external validity compared to

previous studies based on data from only one country, and often even just one sampling site. However,

it also has clear limitations. Firstly, in order to assign local air quality to users, we rely on self-reported

locations. If some users report a wrong location or do not update the information when they move,

this measurement error introduces noise into our analysis which causes attenuation bias. Hence, any

adverse effects we find can be considered as a lower bound on the true effect. Secondly, the data does

7

This issue was introduced by GitHub to encourage first time contributions, but does not imply that the issue cannot be

addressed by more experienced developers.

8

The documentation label is included because work on the documentation is typically easier than work on code to fix

bugs or build new features. This follows, e.g., from Tan et al. (2020) and from the fact that GitHub also used the doc-

umentation label in their approach to construct the good first issue label (for details see https://github.blog/
2020-01-22-how-we-built-good-first-issues/).

6
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not provide information on work users conduct in private repositories or outside of the platform. We

observe only the part of total work that is carried out in public repos. For many GitHub users this is

such a marginal share that it is impossible to identify any negative productivity effects of air pollution

exposure based on their activity data. Thus, when constructing our analysis sample, we aim at capturing

users who are professional developers and do a substantial part of their formal work in public GitHub

repositories.

In a first step, we focus on non-organizational users who report a location at the city level, which is

the degree of geographic precision required to assign local air quality. Secondly, we keep only individ-

uals who ever committed in a repository owned by a company, i.e., users with the authority to change

the source code of a company-owned project. This step is intended to capture professionals who are

in some way affiliated with the companies. To identify these users, we compile a list of repositories

operated by companies
9

and then use the information on the repository a commit was conducted in

from the GHTorrent commits table. Moreover, to focus on cases where we can observe a substantial

part of an individual’s total work, we only admit users into the sample once they have at least 25 com-

mits in public repos in a given calendar month. In the following month, they enter the sample which

they do not leave until the end of the sample period (May 2019), unless we do not observe any unpro-

ductive action in a given calendar month. In this case we drop users from the sample for that month,

assuming that they might have moved to a different platform, work on projects in private repositories

or be on vacation. Unproductive actions are activities we do not use as outcomes in our analysis, based

primarily on the social network functions GitHub offers.
10

Lastly, we restrict the sample to users living

in cities with at least 20 developers and covered by our data on air pollution. This yields a sample of

26,737 users in 180 cities across 42 countries during the sample period February 2014 until May 2019.
11

These locations are depicted in Figure 1. The median user registered in April 2012.

For these users, we compile an unbalanced user-by-day panel including measures of output and

worker adjustment to productivity shocks. Both GHTorrent and GHArchive report timestamps in UTC.

We translate these timestamps into local time and aggregate activity to the the daily level. To measure

work quantity, we consider the total number of productive actions conducted as well as the number of

commits and comments, the two most frequent action categories on GitHub. We include these actions

separately because they reflect two distinct types of work: individual coding activity (commits) and

collaborative work, including discussions about issues and code changes (comments). This allows us to

study effect heterogeneity between individual and interactive work. We winsorize commits and total

actions at the 99.99th percentile to dampen the influence of outliers. To assess effects on worker adjust-

ment, we measure the share of commits and actions, respectively, conducted after standard working

hours, i.e., after 6 pm. We hypothesize that the share of evening work might increase on high pollution

days if workers try to make up for their reduced productivity by working longer hours. Secondly, we

9

This is based on a publicly available list of firms active on GitHub, which can be accessed at https://github.com/
d2s/companies/blob/master/src/index.md and on the lists of open-source projects operated by Google, Mi-

crosoft and Facebook published on their web pages.

10

The unproductive actions include following another user, watching a repository, (un)subscribing to an issue, labeling an

issue and (un)assigning an issue to a user.

11

During our sample period some users changed their location. Since the GHTorrent data on users is a snapshot taken

on June 1st 2019, we use earlier versions of the database (one snapshot in each year between 2015 and 2018) to check for

movements. In total, 6.3% of users reported more than one distinct location during this period. We identify the city were they

spend the biggest part of the sample period, and keep them in the sample only during the time they resided in this city.

7

https://github.com/d2s/companies/blob/master/src/index.md
https://github.com/d2s/companies/blob/master/src/index.md


Figure 1: Sample Cities

Note: Each dot represents one sample city. Circle size refers to the number of coders observed in the city.

build outcomes indicating whether workers adjust by switching to easier tasks on high pollution days.

Using the information on task difficulty derived from issue labels, we construct the share of all issue

events conducted by the user which refer to an easy issue. With respect to individual coding tasks, we

can assess the difficulty of PRs opened. In particular, we use the number of new lines of code added per

PR as well as the number of code files changed per PR as proxies for complexity.

To explore whether our sample selection approach succeeds in capturing professional develop-

ers with high activity levels in public repositories, we provide a brief discussion of summary statistics,

working hours and user self-descriptions. On average, users conduct 2.74 actions per day, of which 1.31

are commits and 0.90 are comments (see Table 1). This implies that users in our sample indeed conduct

a lot of work in public repos, as casual users who only occasionally work on GitHub can hardly reach

these values, especially given that we average across all days, including weekends, holidays and va-

cations. The remaining productive GitHub actions—opening and closing issues and PRs—are observed

less often. Thus, we will use the sum of all actions plus the number of commits and comments (proxies

for individual and interactive work) as primary outcomes when investigating effects of pollution on

work quantity. On average, 7% of all issue events refer to an easy issue. Issue events comprise the

actions of opening, closing and reopening an issue as well as writing an issue comment.

32% of commits are made after 6 pm. In Figure 2 we provide more detailed information on the

distribution of activity across days of the week and hours of the day. Distributions are plotted for all

actions (yellow) and for commits only (blue). The height of the bars refers to the share of all activity

that is conducted on the respective week day and during the respective hour. For the five days of the

8



Table 1: Summary Statistics for the Analysis Sample of GitHub Users

Mean St. Dev. Min Max Observations

actions 2.74 7.3 0 316 15,868,883

commits 1.31 3.95 0 256 15,868,883

comments .90 3.32 0 280 15,868,883

PRs opened .15 .70 0 151 15,868,883

issues opened .10 .80 0 222 15,868,883

PRs closed .17 .94 0 300 15,868,883

issues closed .12 .88 0 268 15,868,883

share easy issue events .07 .21 0 1.0 3,410,023

share commits after 6 pm .32 .41 0 1.0 4,269,709

share actions after 6 pm .29 .39 0 1.0 5,705,074

files changed per PR 6.12 16.37 0 1674 1,360,268

lines added per PR 178.09 501.73 0 6802 1,360,268

lines deleted per PR 65.98 200.17 0 2738 1,360,268

work week, we observe a consistent pattern: Activity is low during night hours, increases steeply in the

morning, exhibits a small dip during lunchtime, before reaching a second peak in the early afternoon.

Around 5 to 6 pm activity declines notably, and then continues during the evening hours, but only at

about half the level that is observed during core working hours. On the weekend, the level of activity is

substantially lower and it does not follow the same characteristic pattern across hours of the day that

is observed on working days. In summary, activity patterns in our sample resemble standard working

hours, but with notable activity during evening hours and on weekends, which is not uncommon among

highly educated workers (Mas and Pallais, 2020). Interestingly, the distribution for commits and other

actions seems to differ slightly. The share of commits is somewhat smaller in the morning hours and

slightly larger in the evening and night hours compared to the other actions. This seems plausible given

that the more interactive tasks are more productive during standard working hours, when other users

are working as well.

Figure 3 presents information about the work status of users in our sample. The left panel depicts

the most frequent terms individuals use in the biographies (bios) on their GitHub profiles. 36% of users

in our sample (9,507 users) use the option to provide a self-description. The data is accessed via the

GitHub API. For each term, we measure in what share of all bios it occurs, after stemming and removing

stop words. Three terms clearly stand out: engineer/engineering, software and developer/development

occur in 15% to 25% of all bios, much more often than any other words. While we cannot say whether the

sub-sample of users who provide a bio is representative of the full sample, the clear peak at these work

related terms strongly suggests that we do capture professional software engineers in our sample who

use GitHub as part of their formal work. The plot in the right panel complements this with information

on employers. Optionally, users can report the company they work at, and in our sample 61% (16,385

users) provide some information in this field. In the sub sample, Microsoft and Google are the most

frequent employers, followed by Facebook and Red Hat, i.e., big US tech companies which are strongly

engaged in open-source.

9



Figure 2: Distribution of Activity across Hours of the Day and Days of the Week

Note: Bar height reflects the share of total activity by sample users conducted during the respective hour on the respective

day of the week. Yellow bars refer to the sum of all actions, blue bars refer to commits only.

(a) Bios (b) Companies

Figure 3: Most Frequent Terms from User Self-Descriptions and Company Fields

Note: Panel (a) is based on data from 9,507 user bios, accessed in 2021 via the GitHub API. Words in the bios are transferred

to lower case, stemmed, and stop words are removed. The total word count is divided by the number of bios. Panel (b) is

based on data from the company column in the June 2019 GHTorrent user table for 16,385 users from our sample with any

information in this field.

10



2.3 Gitcoin: Monetary Value of GitHub Activity

To assess the validity of the productivity metrics derived from GitHub data and to translate estimated

effects of air pollution on these outcomes into monetary damages, we use data from a platform called

Gitcoin. Gitcoin was founded in 2019 and is complementary to GitHub. Project teams can use Gitcoin

to offer monetary payments to incentivize outside contributions to their projects. In this way, free-

lance developers who provide these contributions can earn money for their work on open-source. In

particular, GitHub users may post open issues from their public repos along with information on issue

characteristics and a payment they offer for solving the issue (called bounty on Gitcoin). Interested de-

velopers can apply and submit a PR in the respective repo to solve the task described in the issue. The

PR is reviewed by the issue funder, and if accepted and merged into the repo, the bounty is paid to the

PR author, typically in crypto currencies. All work is conducted in public GitHub repos and thus visible

to us. In the end of 2021, about 300,000 GitHub users were registered on Gitcoin. We collect data on

292 issues for which PRs were submitted and payments were made by March 2022 via the Gitcoin API.

These data include the URL to the PR, the type of the issue (one of bug, documentation,improvement,

feature, or other), the expected issue difficulty as assessed by the issue funders (one of beginner, inter-

mediate, or advanced), hours worked on the PR as stated by the author, and the value of the payment in

USD.
12

We merge the Gitcoin data with information on pull request size obtained via the GitHub API

(number of commits, number of lines of code added and deleted, and number of files changed).

In total, the work on the sample issues was rewarded with $103,313, which implies a mean payment

of $354 per pull request and an average value of $112 per commit, one of our primary outcome variables.

In this context, a pull request reflects complete work on a certain issue. Commits can be interpreted

as single work steps in completing this task. The average monetary value per commit ranges from

$32 in the subsample of issues of difficulty level beginner to $679 among issues marked as advanced.

On average, developers spend 1.8 hours on one commit, again with a steep gradient with respect to

difficulty: The mean time input per commit is 1 hour at the beginner level, but 5.3 hours at the advanced

level.

In Table 2 we present results from regressions of the payment awarded for a PR, log(paymenti), on

the number of commits it comprises, commitsi (columns 1-3), or the logarithm thereof (columns 4-6).

We run specifications without any controls (columns 1 and 4), with controls for issue difficulty, issue

type and the year of PR creation (columns 2 and 5), and lastly with repository fixed effects (columns 3

and 6).
13

Across specifications we find statistically significant positive effects, indicating that a higher

number of commits is associated with higher payments. In terms of magnitude, the results from the

regressions without any controls imply that one additional commit is associated with a 5.4% increase

in payment (column 1), or that a 10% increase in the number of commits is correlated with a 3.5% rise

in payment (column 4). When adding controls for issue difficulty and type, the magnitude of the effect

is reduced. This reduction implies that part of the increase in payments in commits is driven by higher

issue complexity. Even when using only variation across PRs submitted to the same repo, i.e., work on

the same project, the positive relationship persists. We view this as a confirmation that changes in the

number of commits observed per user and day indeed reflect fluctuations in developer productivity. In

12

The number of issues is relatively low compared to the volume of our GitHub data because Gitcoin is much younger than

GitHub and only used by a small share of GitHub users.

13

The omitted difficulty category is advanced.
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Table 2: Validity Check: Impact of Number of Commits on Gitcoin Payments

Dependent variable: log(paymenti)

(1) (2) (3) (4) (5) (6)

commitsi 0.054
∗∗∗

0.039
∗∗∗

0.034
∗∗∗

(.010) (.009) (.010)

log(commitsi) 0.348
∗∗∗

0.264
∗∗∗

0.192
∗∗∗

(.071) (.068) (.059)

1{Difficultyi = Beginner} −2.399
∗∗∗ −2.412

∗∗∗

(.439) (.419)

1{Difficultyi = Intermediate} −1.878
∗∗∗ −1.851

∗∗∗

(.415) (.405)

Year dummies ✓ ✓ ✓ ✓
Issue difficulty dummies ✓ ✓
Issue type dummies ✓ ✓
Repository fixed effects ✓ ✓
Observations 292 274 292 292 274 292

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits

(column 1) or the logarithm thereof (column 4). Columns 2 and 5 add dummies for the year the pull request was created, dummies for issue

difficulty, and dummies for issue type. Column 3 and 6 instead add dummies for the year the pull request was created and fixed effects for

the repository. Robust standard errors are reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

Appendix Table A.2 we present results from models where the dependent variable is hoursworkedi,

the time input as reported by the PR author. We find that the time required to complete a task increases

in the number of commits, and more so for issues of higher difficulty.

We also find that, holding the number of commits constant, adding more lines of code and changing

more files is associated with a higher payment, confirming the use of our proxies for PR complexity.

We find this by running the specifications from columns 4 to 6 of Table 2 again, but add the number

of files changed in the PR and the logarithm of lines of code added as additional regressors. Detailed

results are presented in Appendix Table A.3.

While the Gitcoin data allows us to assess the monetary value of commits, there are certain lim-

itations: We only observe payments for a small subset of GitHub repositories that use Gitcoin, and

these are likely not representative of the average public GitHub project the users in our sample work

on. Incentivizing external contributions via Gitcoin is more attractive for small projects where the core

team cannot handle all open issues by itself. Moreover, the coders who get paid via Gitcoin are mostly

freelancers or casual contributors. By contrast, in our main sample we focus on professional tech work-

ers who conduct work in repositories owned by larger tech-companies. These limitations imply that

Gitcoin-derived valuations of GitHub contributions in our main sample based on Gitcoin will likely be

underestimates. Gitcoin payments made by small projects to freelancers are probably lower than the

payment professional tech workers at big companies would receive for the same output.

2.4 Environmental Data

AirQuality. The pollutant of primary interest in our analysis is PM2.5 for two key reasons: It can pen-

etrate indoors and is thus of direct relevance for indoor office workers and the smallest pollutants are

12



known to have the largest health effects. We collect data on PM2.5 concentration measured at outdoor

monitors from several environmental agencies to cover all the cities represented in the productivity

sample. For nine cities, we could not obtain monitor-measured data, but instead used high-resolution

reanalysis data from the Copernicus Atmosphere Monitoring Service (CAMS). Appendix table A.4 pro-

vides a detailed list of the data sources. All data is provided at either the daily or the hourly level. Where

necessary, we transfer hourly data into local time and aggregate to the daily level. Cities are assigned

the simple average of all available monitor readings within a 40km radius around the city centroid.
14

Our data on PM2.5 covers 93% of all city×day observations, with best coverage in North America (97%)

and lowest coverage in Asia (83%), where in some cities PM2.5 monitors have only been installed during

our sample period.

We winsorize PM2.5 at the continent-specific 0.1
th

percentile and the 99.9
th

percentile to ensure

that our results are not driven by extreme outliers (e.g., extremely high concentration of fine partic-

ulate matter due to heavy wildfire smoke). The population-weighted average PM2.5 concentration in

our sample is 14.9 µg/m
3

(standard deviation: 26.5 µg/m
3
, within-city: 21.1 µg/m

3
), i.e., close to the

World Health Organization’s recommended 25-hour limit value (15 µg/m
3
). Figure 4 displays the dis-

tribution of daily PM2.5 concentrations in our sample, separated by seven large geographic regions,

R ∈ {Northern Europe, Southern Europe, Western Europe, Eastern Europe, North America, Oceania,

Asia}.
15

Air quality exhibits substantial heterogeneity across regions: Cities in North America, Oceania

and Northern Europe have relatively clean air, with concentrations above 20 rarely observed. Locations

in Southern and Eastern Europe by contrast experience this level of pollution on 26% of all days, and

Asian cities even 71% of the time.

Wind conditions. The instrumental variable approach is based on regional air pollution transport

driven by wind direction. We collect reanalysis data on wind conditions from the Japan Meteoro-

logical Agency’s JRA-55 product. Reanalysis datasets are constructed by combining measurements

taken at ground-level monitors, satellite images, and atmospheric transport models. The u- and v-

component of wind are reported every six hours (in UTC) on a global grid with a spatial resolution

of 1.25° longitude×1.25° latitude.
16

We translate timestamps into local time and aggregate to the daily

level. Each city is assigned the inverse distance weighted average of u- and v-vectors at the four grid

points located closest to its centroid (median distance = 92.5km). Finally, daily average wind speed and

direction are computed from the city-level u- and v-vectors.

Meteorological Conditions. To construct control variables for daily weather conditions, which can

be correlated with wind conditions and affect working patterns, we use the ERA5-land product from

the European Centre for Medium-Range Weather Forecasts (ECMWF). It provides hourly data on air

temperature two meters above the surface, precipitation and dewpoint temperature on a fine grid with

0.1° longitude×0.1° latitude horizontal resolution. To construct city×day level variables, we follow the

14

CAMS reanalysis data is reported on a 0.1° longitude×0.1° latitude grid. Given the large number of grid points, we only

use measurement points within 25km of the centroids for the relevant cities.

15

We show the distribution of observations in our user x date panel across these regions in table A.5. The regions are

illustrated on a map in figure A.1.

16

We deliberately use data reported on such a coarse spatial grid in order to capture broad wind patterns driving regional

air pollution transport instead of very local wind conditions which only affect air quality in a small area. The choice of data

follows a suggestion by Tatyana Deryugina which we gratefully acknowledge.
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Figure 4: Distribution of daily PM2.5 Concentrations by Geographic Region

Note: The plot shows densities of PM2.5 concentration based on 331,025 city×day observations, separately by geographic

region. Oceania: Australia, New Zealand. Northern Europe: Scandinavia, UK, Ireland, and the Baltic countries. Southern

Europe: Portugal, Spain, Italy, Greece, Croatia, Serbia, Turkey, Israel. Asia: China, India, Japan, Singapore, Hong Kong,

S-Korea. Northern America: US, Canada, Mexico. Western Europe: Switzerland, Austria, France, Germany, Belgium, and

the Netherlands. Eastern Europe: Poland, Czech Republic, Hungary, Belarus, Ukraine, Russia, Slovakia, Bulgaria, Romania.

same approach as taken with the wind data, the only difference being that sample cities are assigned

the inverse distance weighted average weather conditions from the eight, instead of four, closest grid

points (median distance = 11.0km). The variables constructed are daily mean, minimum and maximum

temperature, precipitation, and relative humidity.
17

Wildfire Smoke. In recent years, especially in 2017 and 2018, the North American west coast expe-

rienced several severe wild fires generating heavy smoke that strongly increased the concentration of

air pollution. Some of the largest cities within our sample are located in this area (the tech clusters in

the San Francisco Bay Area and around Seattle). Given recent research by Burke et al. (2021), showing

that exposure to heavy wildfire smoke can trigger avoidance behavior, especially among high income

individuals, we construct control variables for heavy smoke to make sure the effects we estimate reflect

physiological productivity impacts of PM2.5 exposure, not behavioral responses to the phenomenon of

wildfires. The required data is derived from satellite images and provided by the National Oceano-

graphic and Atmospheric Administration’s Office of Satellite and Product Operations in the form of

shape files. The data covers the North American continent, is reported at the level of individual smoke

plumes and includes a measure of smoke intensity. We define a city as being affected by a smoke event

if the smoke plume overlaps with a 10km radius around its centroid. We aggregate the data to the daily

level (in local time) by summing over the intensity measure of all smoke plumes covering a city on a

given calendar day. Lastly, we define a heavy smoke indicator which is one if the city was covered by

a plume of the highest intensity on the respective day or if the total daily smoke intensity exceeds a

17

Relative humidity is inferred from mean daily air temperature and dewpoint temperature using the R package

weathermetrics which uses formulas provided by the US National Weather Service.
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value of 54 (which corresponds to twice the value of the highest smoke intensity), and zero otherwise.

This yields 0.4% of all city-by-day observations and 8.8% of all observations with any smoke exposure

as heavy smoke days.

Thermal Inversions. In robustness checks, we use temperature inversions instead of wind direction

as an instrument for PM2.5 concentration. The required data is obtained from the ECMWF’s ERA5

products
18

. Hourly temperature at the surface level as well as several pressure levels is reported on

a 0.25° longitude×0.25° latitude grid. We collect surface temperature as well as temperature at the

pressure level 25 hPa above the surface level. To construct daily inversion measures, we compute the

temperature difference between upper air and surface level, averaged during local nighttime hours

(midnight to 6 am), following several recent papers (e.g., Jans et al., 2018). Cities are assigned the

inverse distance weighted average from the four closest grid points. An inversion indicator is defined

to be one if the difference between upper air and surface temperature is positive, invcd = 1{∆T > 0}.

A measure of inversion strength, inv strengthcd, is defined as the temperature difference whenever it

is positive and as zero whenever the difference is negative.

3 Research Design

Regression Model. We want to model how short-run variation in local particulate matter concen-

tration affects the output of professional software developers. To do so, we specify a model for the work

output y of developer i living in city c on day d.

yi,c,d = βPMc,d + µi + x′
i,tπ

+w′
c,dγ + δhc,d + µc + µdow(d) + µR(c),yr(d),m(d) + µr(c),m(d) + εi,c,d

(1)

PMc,d is a measure of particulate pollution and varies across cities c and days d. The fixed effect µi

captures unobserved heterogeneity at the developer level. A developer’s experience is controlled for

by xi,t, a vector of indicators for time since registration on GitHub falling into a specific bin, where

each bin has a length of three months. The vector wc,d contains weather variables measured for city c

on day d. It includes a series of indicator variables for daily mean temperature falling into bins defined

based on the 5th, 10th, 20th, 35th, 65th, 80th, 90th, and 95th percentiles of the city-specific temperature

distributions. We also control for cubic polynomials of precipitation, relative humidity, and wind speed.

The vector further contains a dummy indicating whether the city is affected by wildfire smoke on day

d. The regression equation also accounts for public holidays hc,d as well as city fixed effects µc and day-

of-week fixed effects µdow(d). Year-month fixed effects µR(c),yr(d),m(d) can vary for each of the seven

large geographic regions R, which are listed in table A.5. Monthly seasonality µr(c),m(d) is allowed to

vary across smaller geographic region r, which we define in a way to assure that each region contains

several sample cities. Examples are Scandinavia, France, Canada, or US Census Divisions. Figure A.1

illustrates the large and small geographic regions.

The coefficient of interest β is identified from city-level day-to-day variation in pollution and de-

18

We use the products ERA5 hourly data on single levels from 1979 to present and ERA5 hourly data on pressure levels from
1979 to present
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veloper level output, conditional on average developer-output and after netting out other drivers of

output such as weather, the workweek, and region-wide business cycle dynamics.

As the variable of interest only varies at the city-day level and the number of developer level obser-

vations is large, we make use of an auxiliary regression to aggregate Equation (1) to the city level (cf.

Donald and Lang, 2007; Currie et al., 2015). To do so, we regress yi,c,d on all variables at the developer

level, i.e., xi,t and µi, and on a city-day fixed effect yc,d. The estimates of the city-day fixed effects ỹc,d

then become the dependent variable of a new regression model.

ỹc,d = βPMc,d +w′
c,dγ + δhc,d + µc + µdow(d) + µR(c),yr(d),m(d) + µr(c),m(d) + εc,d (2)

Regression model (2) can then be estimated at the city level where the number of underlying developer-

observations are used as weights.

Air quality is not assigned randomly. In Equation (2), pollution PMc,d may be endogenous for

several reasons. Local variation in economic conditions will affect air pollution and developer level

output at the same time. Similarly, local events like a football match or the closing of a bridge may

affect both traffic and work patterns at the same time. A naı̈ve estimation of the model might not only

suffer from such unobserved variable bias, but also from reverse causality. For example, if coders are

more productive when working at home than in the office, the reduction in commuting may affect

air pollution readings. A third source of bias is measurement error in pollution. We cannot observe

individual-level exposure to air pollution and instead have to proxy for it by city-level averages. While

our design includes a wide range of controls to account for sorting into different cities or fluctuations

in local economic conditions, we still require an exogenous source of variation in local air pollution

and rely on an instrumental variable estimation.

IV estimation. We address endogeneity in Equation (2) by instrumenting local pollution levels with

wind direction. This approach was first introduced by Deryugina et al. (2019) and is based on the idea

that wind direction affects local particulate matter concentration because it is a key driver of pollution

transport. Wind blowing from the ocean or less densely populated areas may carry substantially lower

amounts of pollutants into the city than wind blowing from more densely populated or industrial areas.

It is important to note that local weather conditions, e.g., rainfall, also depend on wind. For example,

wind blowing from the ocean could reduce temperatures. These local conditions could affect labor-

leisure trade-offs (Graff Zivin and Neidell, 2014) and thereby the output of developers via channels other

than air quality. Therefore, it is important to control for a wide range of weather conditions contained

in wc,d to ensure that the instrument wind direction does not violate the exclusion restriction.

The effect of wind direction is certainly not uniform across all cities in our global sample due to

differences in geography. In some cases, more pollution might be transported into the city by wind

blowı́ng from the east, in other cases west wind might carry in most pollution. To account for this,

we allow the impact of wind on PM2.5 to vary. In principle, we could estimate the effect of wind

direction for each city separately. To ensure that identification comes from regional pollution transport

that affects the whole city instead of highly local transport that simply redistributes particulate matter

within the boundaries of a city, we resort from doing so and restrict the effect of wind to vary at a

geographically more aggregate level. As suggested by Deryugina et al. (2019), we use a k-means cluster
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Figure 5: The effect of wind direction on PM2.5

Notes: This figure provides a graphical illustration of the first stage. Graphs present estimated coefficients from regressions

of PM2.5 measured in µg/m
3

on wind direction. Solid black line: connects estimated coefficients on seven dummies for seven

45° bins of wind direction. The omitted direction is north-north-west, (315°, 360°]. Dashed lines: 95% confidence intervals.

Blue line: estimated relationship when wind direction is parameterized as the sine of wind direction in radians and wind

direction in radians divided by two. City groups comprise New York and Philadelphia (left), Frankfurt, Nuremberg, Munich,

Stuttgart, Karlsruhe (center), Chengdu and Xi’an (right).

algorithm to assign cities into groups based on their longitude and latitude. In our baseline specification

we form 65 groups.

We parametrize the pollution-wind relationship by a trigonometric function.
19

By specifying wind

direction θc,d in radians instead of using many indicators for wind direction bins we can substantially

reduce the required number of variables to appropriately model the wind-pollution relationship. The

first stage of the IV estimation is as follows.

PMc,d = ρg1 sin (θc,d) + ρg2 sin

(
θc,d
2

)
+w′

c,dγ + δhc,d

+ µc + µdow(d) + µR(c),yr(d),m(d) + µr(c),m(d) + εc,d

(3)

The coefficients ρg1 and ρg2 are determined at the city-group level.

Figure 5 illustrates for the city groups represented by Frankfurt, New York City and Chengdu how

this trigonometric function can capture the effect of wind direction (on the horizontal axis) on PM2.5

levels (on the vertical axis). This estimate (in blue) is close to an alternative specification (in black,

95% confidence interval dashed) where wind direction is measured by eight indicators representing 45°

sections of the wind rose, e.g. (0°-45°], (45°-90°], etc.

Measures of pollution. Given the large variation in pollution levels across cities in our sample (see

figure 4), we define PMct in Equations (2) and (3) as PM2.5 concentration measured in city-specific

standard deviations. This ensures that we estimate the effect of usual fluctuations in pollution levels

19

We are grateful to Tatyana Deryugina for this suggestion.
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across all cities. As an alternative, we define what we will refer to as a pollution shock:

PM2.5 shockcd = 1

{
PMc,d >

√
V̂ar [PM | c] + Ê [PM | c,m(d), dow(c)]

}
(4)

This shock is an indicator that takes the value one if the city-day level PM2.5 is more than one city-

specific standard deviation above the level expected for the given city, month of year, and day of week.

The proposed measure, therefore, captures non-linear effects of pollution and allows these to differ by

location and time. On average, 10.5% of all days experience such a PM2.5 shock.

4 Results

4.1 WorkQuantity

Columns 1 to 3 of Table 3 display 2SLS estimates of the effect of PM2.5 exposure on the three primary

quantity outcomes—the number of total actions, commits, and comments. In panel A, we use PM2.5

measured in city-specific standard deviations as regressor. The first stage F-statistic on the excluded

instruments exceeds 100, indicating that the IVs based on wind direction are sufficiently strong. Our

first main finding is that developers’ output, measured by total actions, falls if the concentration of fine

particulate matter increases. In terms of magnitude, an increase in PM2.5 concentration by one local

standard deviation reduces the number of actions by 0.026, which corresponds to 0.9% of the mean.

This effect is mainly driven by a reduction in individual coding activity, measured by the number of

commits. This outcome falls by 0.018 or 1.4% of the mean, if PM2.5 concentration rises by one standard

deviation. The number of comments—our proxy for interactive work conducted in collaboration with

other users—is much less affected by air pollution. The point estimate is close to zero and not statistically

significant.

In panel B we repeat the analysis, now using the binary PM2.5 shock variable as regressor. The F-

statistic drops to a value of 34.6, indicating that wind direction is a better predictor of usual fluctuations

in PM2.5 concentration than of the dummy measuring unusually poor air quality. Still, the F-statistic is

well above the common threshold for a sufficiently strong first stage relationship. The 2SLS estimates

imply that on a day with unusually high pollution relative to the city×calendar month×day of week

specific average, the number of total actions (commits) falls by 0.1 or 3.9% (0.08 or 6.5%) of the mean

value. Again, no effect on the number of comments is found.

In sum, the results in columns 1 to 3 of Table 3 suggest that the effect of fine particulate matter on

output is mostly driven by days with unusually poor air quality given that the effect of a high pollution

day in Panel B corresponds to an increase in PM2.5 concentration by roughly four local standard devi-

ations based on the coefficients in Panel A. Secondly, a novel finding is the strong effect heterogeneity

across different types of work: We observe a highly significant negative impact on individual work on

code, but no effect on interactive work.

In column 4 we explore the contribution of the extensive margin to the overall reduction in work

quantity. To that end, we replace the dependent variables with an indicator for a positive activity level,

i.e., 1{actionsid > 0}. We find that the probability to conduct any action falls when PM2.5 increases.

For both measures of pollution, extensive margin effects contribute approximately 20% to the full effect
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Table 3: Effect of PM2.5 on Work Quantity

Actions Commits Comments Any actions
(1) (2) (3) (4)

Panel A.
PM2.5 (st. dev.) −0.0258

∗∗ −0.0177
∗∗∗ −0.0059 −0.0020

∗∗

(0.0104) (0.0053) (0.0052) (0.0009)

F-statistic 112.3 112.3 112.3 112.3

% change in Y -0.9 -1.4 -0.7 -0.6

% of full effect 21.2

Panel B.
PM2.5 shock −0.1075

∗∗ −0.0845
∗∗∗ −0.0164 −0.0080

∗

(0.0503) (0.0262) (0.0233) (0.0042)

F-statistic 34.6 34.6 34.6 34.6

% change in Y -3.9 -6.5 -1.8 -2.2

% of full effect 20.3

Observations 331,025 331,025 331,025 331,025

Dep. Variable Mean 2.74 1.31 0.90 .36

Note: The table presents IV estimates of the parameter β in Equation (2). In Panel A, the regressor of interest is PM2.5 concentration

measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes a value of one if

city×day PM2.5 concentration exceeds the city×month×day-of-week specific average by at least one city-specific standard deviation. The

first stage specification is given in Equation (3). Covariates include eight bins for mean daily temperature, third-order polynomials in wind

speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, year-by-month,

and region-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across world

regions R. Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the

city level are reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

on actions. Hence, the extensive margin does explain part of the effect on output, but the intensive

margin response is quantitatively much more important. This result is plausible given that our sample

of GitHub users likely comprises mostly young and middle-aged adults who generally do not suffer

severe health damages from short-run pollution exposure. The results are consistent with subtle effects

on health and cognitive function slowing down users progress while working.

In Appendix Table A.6, we investigate the effect of PM2.5 on further action types—the number of

issues and PRs opened and closed, respectively. These actions occur less frequently than commits and

comments, with mean values between 0.11 and 0.17. Like a commit, opening a PR reflects individ-

ual coding work whereas opening/closing issues generally starts/ends a discussion with other users

and thus constitutes interactive work. Closing a PR implies a code review and decision-making about

whether to accept or reject the proposed changes. Consistent with the results in Table 3, the number

of PRs opened falls significantly in PM2.5 concentration, and the relative effect magnitude is similar to

the effect on commits. Issue events are unaffected by air pollution. Overall, these results confirm the

conclusions drawn from Table 3.

EffectMagnitude. We conduct several exercises to assess the magnitude and the economic relevance

of the estimates. Firstly, we compare the impact of a PM2.5 shock on users’ output to the effect of
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another highly relevant environmental shock, exposure to extreme outdoor temperatures.
20

Secondly,

we compute elasticities based on the estimated effect of PM2.5 on commits and total actions and compare

these to elasticities found in previous studies on other occupations. Finally, we leverage the information

from Gitcoin to translate the effects into monetary damages.

The upper panel of Figure 6 reproduces the estimated effects of a PM2.5 shock on actions, commits,

and comments in graphical form (point estimates with 95% confidence interval displayed in black on

the right). In addition, coefficients from an OLS regression of the same outcomes on maximum daily

temperature are presented. The quantity measures are regressed on eight dummy variables indicating

whether maximum daily temperature falls in a specific percentile range, as displayed on the x-axis.

The reference category is a maximum temperature value between the 35th and the 65th percentile.

In addition, regressions control for minimum daily temperature, measured in the same way, further

weather controls and fixed effects as in Equation (2).

For all three outcomes the effects of temperature follow the familiar inverse u-shape: Both unusually

cold and unusually hot temperatures have adverse effects, but only the impact of heat is statistically

significant.
21

Even though the users in our samples might work in climate-controlled office buildings,

exposure to heat during commuting times or while running other errands might plausibly generate

these negative effects. The impacts of heat are negative for both categories of actions considered, with

slightly larger magnitude and higher level of statistical significance for commits than for comments,

but the differences are not as pronounced as for the air pollution shock. Importantly, for commits and

total actions, the point estimate on the PM2.5 shock is substantially larger than the point estimate for

the highest temperature bin which reflects maximum daily temperature above the 95th percentile.
22

For total actions the effect of the pollution shock is more than twice, for commits more than four times

as large. The IV estimates (PM2.5 shock) are less precise than the OLS estimates (temperature), but still,

at least for commits also the lower bound of the 95% confidence interval in the pollution effect is larger

than the point estimate for heat. Hence, the adverse productivity effects of poor air quality exceed those

of extreme temperatures, an environmental shock of high relevance given climate change.

The height of the bars displayed in the bottom panel reflects the size of the elasticities of produc-

tivity or performance with respect to air pollution found across different studies.
23

We obtained the

elasticities of total actions and commits with respect to PM2.5 from a version of our IV model where the

regressor is the logarithm of PM2.5 (see Appendix Table A.10).
24

Given that these estimates are derived

from very different settings and rely on different approaches (IV vs. OLS estimation, measurements of

indoor vs. outdoor pollution), we need to proceed with caution when drawing comparisons between

them. However, it stands out very clearly that our estimates are at the lower end of the range of effect

sizes found so far. In particular, the effect on developers’ output is much smaller than the estimates

20

This is motivated by recent findings that, in the U.S., heat exposure exerts adverse effects, e.g., on student performance

on high stake exams (Park, 2020), on sentiment among twitter users (Baylis, 2020), and on mental health (Mullins and White,

2019). Please refer to these papers for more complete overviews of this literature and potential mechanisms.

21

This is unsurprising given that by analyzing the effects of maximum daily temperature, we can better capture the impact

of heat than the effect of cold, and, especially in Europe, not all office buildings are equipped with air conditioning, while

heating devices are omnipresent.

22

Median maximum temperature in this bin is 30.9° C, while the median value in the omitted bin is 16.7° C.

23

Air pollution is measured by PM2.5 in all cases except for call center agents and fruit pickers.

24

When computing elasticities based on the results in panel A of Table 3, we obtain similar values, -0.012 and -0.018 for

actions and commits, respectively.
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(a) Effects of PM2.5 and Heat on Work Quantity

(b) Effects of PM2.5 Across Occupations

Figure 6: Effect Magnitude

Note: Panel (a) reproduces the estimated effects of a PM2.5 shock on actions, commits, and comments from Panel B of Table 3 in graphical form

(point estimates with 95% confidence interval displayed in black on the right). The colored lines represent estimates from an OLS regression

of the same outcomes on maximum daily temperature measured by eight dummy variables indicating whether maximum daily temperature

falls in a specific percentile range, as displayed on the x axis. The reference category is a maximum temperature value between the 35th

and the 65th percentile. The shaded areas are 95% confidence bands. Control variables are eight corresponding dummies for minimum daily

temperature, third order polynomials for precipitation, wind speed, and relative humidity, indicators for heavy wildfire smoke and holidays,

as well as city, day-of-week, year-by-month and region-by-month fixed effects. Day-of-week and year-by-month fixed effects can vary across

world regions R. Standard errors are clustered at the city level and regressions are weighted by the number of active workers in a city in the

current month. Panel (b) shows the elasticities of commits and actions with respect to PM2.5, based on the estimates in column (4) and (5)

of table A.10. Besides, it presents elasticities of performance with respect to air pollution from other studies, in particular: Künn et al. (2019)

(Chess players), Sarmiento (2022) (Judges), Kahn and Li (2019) (Judges (2)), Chang et al. (2019) (Call center agents), He et al. (2019) (Textile

Workers (2)), Adhvaryu et al. (2019) (Textile Workers), Chang et al. (2016) (Pear packers), and Graff Zivin and Neidell (2012) (Fruit pickers).
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for judges and chess players, who are also engaged in cognitively demanding tasks. As outlined fur-

ther above, a potential explanation for this is that the chess players and judges considered act in quite

inflexible settings, namely a chess tournament and court hearings. These circumstances offer no pos-

sibility to adapt working hours or the choice of tasks to productivity shocks. This is very different in

our setting, and we provide evidence on worker adjustment to an increase in PM2.5 in the next section.

This underscores the importance of our analysis: drawing conclusions on the total economic cost of air

pollution based on the estimates for cognitively-demanding tasks in highly inflexible settings might be

misleading because many high-skilled occupations are characterized by some degree of flexibility of

workers in organizing their working day.

Even though productivity effects are small in comparison to other contexts, they might still be

economically relevant, given that software development is a high-paying occupation generating large

economic value. Combining our estimates with the average monetary value per commit of 112$ (see

Section 2.3) implies that a standard deviation increase in PM2.5 reduces the value of daily output by

$1.98. This is of the same order of magnitude as effects reported by Chang et al. (2016) who find that a

10 µg/m3
increase in PM2.5 reduces hourly output among pear packers by $0.41, which would imply a

damage of $3.28 for a working day of eight hours.
25

During a PM2.5 shock, which occurs on 11% of all

days, output value falls by $9.5. As discussed in Section 2.3, a value of 112$ per commit is likely a very

conservative estimate for our setting. Thus, these estimates can be interpreted as a lower bound. When

we base calculations of monetary damages on the average value per commit derived from Gitcoin issues

of advanced difficulty level, we find a reduction in daily output by $12 for a standard deviation increase

in PM2.5 and by $57 for a PM2.5 shock.

In summary, in our setting, the impact of air pollution on productivity exceeds the effect of heat,

which can be informative for individuals and firms, showing that the benefits of an investments in

air purifiers or HEPA filters might be as large as investments into air conditioning. In comparison

to other professions, however, the effect of particulate matter is relatively small, pointing towards an

important role of worker adaption in flexible work environments. Economically, the productivity effects

are nevertheless relevant, given the high monetary value of software.

4.2 Worker Adjustment

Switching to Easy Tasks. Exploiting the information on issue labels, we analyze whether workers

switch to easier tasks on days with worse air quality, which might dampen the adverse effect on out-

put quantity. In Table 4 we present estimates of the impact of pollution on the share of issue events

completed that refer to an easy issue (Column (1)). As this outcome is only defined for city×day obser-

vations if any issue event was conducted (issue opened, closed or reopened, or a comment written on

an issue), the number of observations is somewhat reduced. We find that the share of events referring

to easy issues increases if PM2.5 concentration rises. In terms of magnitude, an increase in pollution by

one local standard deviation raises the share by 1.2%. On days hit by a fine particulate matter shock,

the variable even increases by 7.1% of the mean, or 0.5 percentage points.

In the second column we analyze how the denominator of the share changes. Consistent with prior

results on the effect of PM2.5 on interactive tasks, we find no statistically or economically significant

25

The average city-specific standard deviation of PM2.5 in our sample is 11.38 µg/m3
.
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Table 4: Effect of PM2.5 on Activity on Easy Issues

Share Easy Issue Events Issue Events
(1) (2)

Panel A.
PM2.5 (st. dev.) 0.0008

∗ −0.0037

(0.0005) (0.0044)

[0.092] [0.399]

F-Statistic 94.3 112.3

% change in Y 1.2 -0.4

Panel B.
PM2.5 shock 0.0047

∗∗ −0.0103

(0.0022) (0.0197)

[0.038] [0.600]

F-Statistic 30.0 34.6

% change in Y 7.1 -1.2

Observations 258,031 331,025

Mean Dep. Var 0.066 0.87

Note: The table presents IV estimates of the parameter β in Equation (2). The outcome in Column (2) is defined as the sum of actions referring

to issues, i.e., the number of issues opened, closed, reopened, and the number of issue comments written. The outcome in Column (1)

is defined as the ratio of the number of these activities which refer to an issue classified as easy based on issue labels (see Section 2 for

details) and the total number of issue events. In Panel A, the regressor of interestis PM2.5 concentration measured in city-specific standard

deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds

the city×month×day-of-week specific average by at least one city-specific standard deviation. The first stage specification is given in

Equation (3). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation and relative

humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, year-by-month and region-by-month fixed effects.

Day-of-week and year-by-month fixed effects and the temperature controls can vary across world regions R. Regressions are weighted by

the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.

P-values are reported in brackets.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

effects. Thus, changes in the share of easy issue events are not driven by changes in the denominator,

but by a switch towards more easy issues for a relatively constant activity level with respect to issue

events.

We find similar evidence for switching towards easier tasks, when we consider the complexity of

coding tasks. In particular, we analyze effects of PM2.5 on three measures for the scope of the task

addressed in the pull request: number of files changed, lines of code added, and lines of code deleted,

all measured per PR opened.
26

While there can be highly complex tasks that involve a lot of thinking

but require only a small change in the code, we believe that these measures provide reasonable proxies

of action complexity. Fixing a severe bug for instance likely requires changes in different parts of the

source code, which implies a larger number of files changed. While our primary measure of coding

activity is the number of commits, information on the number of lines of code written or files changed

in a commit is not included in the data. Given that both, commits and PRs, reflect individual coding

activity and that we found very similar effects in terms of relative magnitude for both types of actions,

26

These variables are based on GHArchive data, whereas work quantity results used GHTorrent data. GHArchive data is

only available from 2015 onward. In Appendix Table A.7 we show that using data on pull requests opened from GHArchive

we can replicate the result presented in Table A.6 for PRs opened measured in the GHTorrent data, i.e., we find a negative

and statistically significant effect on the variable when air quality deteriorates.
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results on PRs likely carry over to commits as well.

Table 5 presents the results. The sample size is reduced relative to the previous tables, because the

outcomes are defined only for city×day observations were any PR was opened. Consequently, the F-

statistics also drop, but still reach a level above 60 for PM2.5 measured in standard deviations and a value

above 20 for the binary shock treatment. Given the fact that the mean values of the three outcomes

are considerably larger than for the output measures analyzed before (6.1, 178.1, and 66.0), we apply

the inverse hyperbolic sine transformation to the variables. Hence, coefficients can be interpreted as

percentage changes. We find negative point estimates across all three outcomes and the two distinct

ways to measure air pollution. The number of files changed falls by 0.9% in response to an increase

in PM2.5 concentration by one local standard deviation, while the number of lines added drops by

1.7%. The effect on the number of lines deleted is also negative, but only about half as large and not

significantly different from zero. This pattern is plausible, given that tasks related to deleting code, e.g.,

cleaning or polishing a file or dropping a deprecated or redundant part, are often easier than creating

new code. The same pattern emerges for the PM2.5 shock regressor. However, the effects are somewhat

less significant, likely due to the lower first stage strength.

In sum, the results imply that, on top of the overall reduction in the number of actions completed,

users switch towards less complex tasks on high pollution days. Thus, estimates of monetary effects of

air pollution exposure presented in the previous section provide a lower bound, given that estimates

in Table A.3 imply that more complex pull requests, measure by the number of lines of code added and

files changed, are rewarded higher payments, even when holding the number of commits constant.

Working Hours. To be completed

4.3 WorkQuality

To be completed

4.4 Effect Heterogeneity

Experience. In this section we explore heterogeneity in the effect of fine particulate matter on work

quantity and adjustment. We start by investigating heterogeneity along user characteristics. While we

do not observe any user demographics, we can measure experience in working with GitHub. Specifi-

cally, we combine tenure (time since registration on GitHub) and the number of followers at the point

in time the user enters our sample into an index which represents a users experience and popularity.
27

We split the sample users into terciles based on experience and run the IV regression at the user×day

level (the second stage is given by Equation 1). Table 6 presents results estimated separately for the

users in the bottom and the top tercile, respectively.
28

The first three columns display estimated effects of PM2.5 measured in local standard deviations on

the three primary measures of work quantity. The point estimates are negative in both samples, but

larger in absolute terms as well as relative to the sample means for the most experienced users. In the

inexperienced subsample, effects are not significantly different from zero. For the adaptation variables

27

The index is computed as the average of tenure and the number of followers, after standardizing both variables.

28

Median tenure (number of followers) is 1.4 years (11) in the bottom tercile and and 5.6 years (30) in the upper tercile.
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Table 5: Effects of PM2.5 concentration on Pull Request Size

Files changed Lines added Lines deleted
per PR per PR per PR

(1) (2) (3)

Panel A.
PM2.5 (st. dev.) −0.0094

∗∗ −0.0171
∗ −0.0086

(0.0041) (0.0087) (0.0069)

[0.023] [0.051] [0.210]

F-Statistic 67.6 67.6 67.6

Panel B.
PM2.5 shock −0.0429

∗∗ −0.0742 −0.0501

(0.0207) (0.0449) (0.0322)

[0.040] [0.100] [0.121]

F-Statistic 21.0 21.0 21.0

Observations 155,060 155,060 155,060

Note: The table presents IV estimates of the parameter β in equation (2).Inverse hyperbolic sine transformations are applied to all outcomes.

In Panel A, the regressor of interest is PM2.5 concentration measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock

variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the city×month×day-of-week specific average

by at least one city-specific standard deviation. The first stage specification is given in equation (3). Covariates include eight bins for mean

daily temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and

holidays, as well as city, day-of-week, year-by-month, and region-by-month fixed effects. Day-of-week and year-by-month fixed effects and

the temperature controls can vary across world regions R. Regressions are weighted by the number of active workers in a city during the

current month. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets.
∗

p<0.1;
∗∗

p<0.05;

∗∗∗
p<0.01
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examined in the last three columns, the pattern is reverse: While the direction of the effects is again the

same in both samples, effects are now stronger among the less experienced users and not significantly

different from zero in the upper tercile.

We view these results as a confirmation that switching to easier tasks is indeed an adaptation strat-

egy to increases in particulate matter exposure that allows users to maintain their usual level of work

quantity. A potential reason why the least experienced users show the strongest adjustment response

might be that they have the largest incentive to keep up a high activity level because the number of

actions performed per day in public repositories is visualized on a user’s GitHub profile and might be

an important signal to other users or potential employers. Work complexity on the other hand is less

easily observable.

Table 6: Heterogeneity: User Experience

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

Panel A: Bottom Tercile of Experience
PM2.5 (st. dev.) −0.019 −0.0172 −0.0056 0.0033

∗∗∗ −0.0307
∗∗ −0.0177

∗∗∗

(.023) (.0106) (.0118) (.0011) (.0143) (.0065)

F-Statistics 2955.2 2955.2 2955.2 568.7 239.2 239.2

% change in Y -0.7 -1.3 4.4 -3.1 -1.8

Observations 3,837,730 3,837,730 3,837,730 772,169 331,159 331,159

Panel B: Upper Tercile of Experience
PM2.5 (st. dev.) −0.0630

∗∗∗ −0.0355
∗∗∗ −0.0129

∗
0.0009 −0.0115 −0.0058

(.0196) (.0097) (.0077) (.0006) (.0127) (.0071)

F-Statistic 3094.5 3094.5 3094.5 783.0 309.4 309.4

% change in Y -1.9 -2.5 -1.1 1.5 -1.2 -0.6

Observations 4,157,687 4,157,687 4,157,687 1,059,060 410,361 410,361

Note: The table presents IV estimates of the parameter β in equation (1). Inverse hyperbolic sine transformations are applied to outcomes in

columns 5 and 6. The regressor of interest is PM2.5 concentration measured in city-specific standard deviations. The first stage specification

is given in equation (3). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation,

and relative humidity, indicators for heavy wildfire smoke and holidays, as well as user, day-of-week, year-by-month, and region-by-month

fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across world regions R. Standard errors

clustered at the city level are reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

Local Income. Secondly, we explore differences in effect magnitude between places with relatively

high vs. low income levels. We assign cities into subsamples based on GDP per capita in 2014, the

first year of our sample period, converted by the purchasing power parity conversion factor to adjust

for differences in local price levels. The required data is collected from the OECD, World Bank, and

national statistical offices.
29

Specifically, we split the sample cities into two groups based on whether

29

The main data source is the OECD’s database on metropolitan areas, available atstats.oecd.org/Index.aspx?
DataSetCode=CITIES. It provides GDP per capita for metropolitan areas, i.e., for some smaller cities in our sample we

do not have city-specific data, but instead assign the value for the respective metro area. Small cities in Silicon Valley, e.g.,

26

stats.oecd.org/Index.aspx?DataSetCode=CITIES
stats.oecd.org/Index.aspx?DataSetCode=CITIES


GDP per capita in the city is above or below the region-specific median
30

. This classification is chosen to

ensure that this heterogeneity analysis does not simply correspond to comparing effects across different

regions, as these might differ in aspects other than income. Hence, the above median GDP per capita

subsample contains the cities with relatively high income from each of the seven geographic regions,

but includes some cities with lower income than the below median GDP per capita sample. Median

GDP per capita amounts to $41,548 in the low income sample, and $63,560 in the high income sample.

Overall, GDP per capita spans from less than $10,000 in, e.g., Bengalore and Hyderabad, to more than

$80,000 in, e.g., Geneva, Singapore, Greater Boston, and Greater San Francisco. The full distributions

by group are displayed in panel (a) of Figure A.2. Results for the work quantity outcomes are reported

in Table 7, starting with the below median GDP sample, i.e., the relatively poor cities. As in the full

sample, the number of total actions conducted and the number of commits fall in response to an increase

in air pollution, while comments are less affected. The effect magnitudes are larger than in the main

sample. Point estimates in the high-income (above median income) subsample, displayed in the last

three columns, are of smaller magnitude, and only the effect on commits is marginally significant.

Given the definition of the regressor, the differences in effects between samples could be driven by

higher local standard deviations in less wealthy and more polluted cities. The finding that the effect

on total actions in the rich subsample is not even statistically significant alleviates this concern. In

panel (b) of Figure A.2 we plot the cumulative distribution function of the local standard deviations

for both samples. While the relatively poor sample indeed includes more cities with extremely large

standard deviations, the curves track each other very closely up to the 80th percentile. In sum, this

suggests that the differences reflect true heterogeneity and not just a mechanical effect. Locations with

low income levels bear a larger burden of the negative impacts of PM2.5 on worker productivity, even

in a high-paying, skilled profession like software development.

Non-Linearity. Lastly, we explore non-linearity of the relationship between PM2.5 and work quan-

tity. To that end, we turn to OLS estimation of the model in equation 2, but replace PMc,d by a series of

dummy variables indicating whether PM2.5 concentration falls into a specific bin.
31

As outlined above,

the OLS estimator is likely inconsistent due to endogeneity from omitted variables and measurement

error. In Table A.8 we present OLS estimates to assess the direction and size of the bias. We find that

the OLS estimator yields negative, but insignificant results and is biased towards zero. When we in-

clude region×date fixed effects, which absorb all region-wide shocks to user activity on a given date

which might be correlated with PM2.5 concentration, the bias is reduced and the effect on commits

gets significant. The results replicate the pattern that effects on commits are larger than on comments.

Given the finding that the OLS results underestimate the true effects, we now turn to an exploration of

non-linearity, bearing in mind that all results should be interpreted as reflecting lower bounds. Figure 7

displays estimated effects of the PM2.5 bin variables on actions and commits. Estimated coefficients re-

flect the impact of moving from a PM2.5 concentration between 15 and 20 µg/m3
to the respective bin.

Cupertino, Palo Alto and Mountain View are assigned the GDP per capita reported for Greater San Francisco. Data for cities

outside OECD countries is collected from national statistical agencies, the OECD regional statistics database, or the World

Bank.

30

This refers to the big regions R, i.e., North America, Northern, Western, Eastern, and Southern Europe, Asia, and Oceania.

31

Bins are defined for (0-5], (5-10], (10-15], (20,25], (25,30], (30,40], (40,50], (50,60], (60,70], (70,80], (80,120],(120, 160] and

(160,1200], all in µg/m3
, with (15-20] as reference bin.
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Table 7: Heterogeneity: GDP per capita

Below Median GDP per capita Above Median GDP per capita

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

PM2.5 (st. dev.) −0.0384
∗∗∗ −0.0213

∗∗ −0.0110 −0.0122 −0.0117
∗ −0.0010

(0.0133) (0.0083) (0.0072) (0.0129) (0.0066) (0.0059)

[0.005] [0.012] [0.128] [0.347] [0.082] [0.863]

Dep. Var. mean 2.59 1.27 0.82 2.81 1.33 0.93

Observations 164,754 164,754 164,754 166,271 166,271 166,271

F- Statistic 90.8 90.8 90.8 86.0 86.0 86.0

Note: To form the sub-samples of cities with above and below median GDP per capita, a city’s GDP per capita in 2014 is compared to the

median value in the geographic region R the city lies in. Data on per capita GDP is collected from the OECD, World Bank and national

statistical offices. Estimated coefficients reflect 2SLS estimates of the parameter β in Equation (2). The first stage specification is given in

Equation (3). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative

humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, year-by-month and region-by-month fixed effects.

Day-of-week, and year-by-month fixed effects and the temperature controls can vary across world regions R. Regressions are weighted by

the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.

P-values are reported in brackets.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01.

Interestingly, being exposed to a PM2.5 level below 5 µg/m3
has a significant positive impact on both

total actions (point estimate = 0.033, p-value = 0.038) and commits (point estimate = 0.013, p-value =

0.090). This implies that even in cities with low to moderate levels of PM2.5, further improvements in

air quality can generate positive effects on worker productivity. We find significant negative effects

starting at a concentration of approximately 80 µg/m3
, but not significant differences in the outcomes

for concentrations between 5 and 70 µg/m3
. As mentioned above, we have to bear in mind that the OLS

estimates likely underestimate true effects of PM2.5 exposure. The point estimates suggest a roughly

linear relationship between air pollution and output.
32

4.5 Robustness and Further Results

Robustness Checks. In Appendix Tables A.9 to A.11 we show that our qualitative results are not

sensitive to specific choices on how we set up the first and second stage models. First, we examine

robustness to the specification of the wind direction instruments. Instead of sin (θc,d) and sin
(
θc,d
2

)
, we

use three indicator variables for average daily wind direction falling into a specific 90° bin (south-west,

south-east and north-east, with north-west as omitted category), following Deryugina et al. (2019). The

results are reported in columns (1) to (3) of Table A.9. In the remaining three columns we report results

from a specification where we used a hierarchical clustering algorithm, instead of k-means clustering,

to form the city-groups g across which the effects of wind direction are allowed to differ in the first

stage. In both cases, results on work quantity are very similar to the baseline results.

Secondly, we test robustness to the functional form chosen in the second stage model. Table A.10

32

While the point estimate on the highest bin (PM2.5 above 160) is more than twice as high as for the second highest bin,

note that average concentration in that bin is 293 µg/m3
, also more than twice as high as the average level of 137 in the

second highest bin.
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Figure 7: Non-linear effects of PM2.5 on Work Quantity (OLS estimates)

Note: Plot depicts point estimates for different bins of PM2.5 concentrations from an OLS regressions of total actions (left) and commits

(right), respectively, on indicators for each bin and covariates as in A.8, Column (2) and (4). Bin width is given at the bottom and refers to

µg/m3
. Shaded areas indicate 95%-confidence intervals.

shows estimated effects of PM2.5 when work output is measured by the inverse hyperbolic sine trans-

formation of total actions, commits, and comments, respectively. Again, the direction and statistical

significance of the baseline results persist, but the specification using inverse hyperbolic sine trans-

formations implies somewhat smaller effect magnitudes. The last three columns of the table display

results when PM2.5 in logs is used as regressor. This yields a high F-Statistics and the same pattern for

second stage effects on work quantity as the baseline model.

Finally, in panel B of Table A.11 we show that the statistical significance of our results persists if we

cluster standard errors at the level of the city-groups g across which the effects of wind direction are

allowed to differ in the first stage, instead of the city level. Panel A shows “reduced form” results, where

we regress the outcomes on an indicator variable which is one when wind blows to the city from the

direction which increases local PM2.5 levels most in the respective city-group g, WDir highPMc,d.
33

For work quantity and adjustment outcomes, sign and significance of the estimated coefficients are the

same as in the 2SLS estimation. The first stage effect reported at the bottom of panel A, implies that

wind from a city’s high pollution direction raises PM2.5 concentration on average by 0.39 local standard

deviations relative to days where wind arrives from another direction. While this approach is much

less flexible than our main 2SLS model, it provides an intuitive check for the underlying idea.

33

To identify this direction for each city-group g, we run the first stage model with the level of PM2.5 concentration as

outcome and three dummies for average daily wind direction falling into a specific 90° bin as instruments, interacted with

the city-group indicators.

29



−0.08

−0.04

0.00

0 5 10 15

C
um

ul
at

iv
e 

E
ffe

ct

Commits

−0.10

−0.05

0.00

0 5 10 15
Days with wind blowing from most polluted direction

All actions

−0.08

−0.04

0.00

0 5 10 15
Days with wind blowing from most polluted direction

C
um

ul
at

iv
e 

E
ffe

ct

Comments

Figure 8: Effect Dynamics: Work Quantity

Note: The plots depict estimates of the cumulative effect of wind blowing from the high pollution direction on three measures of users’ work

quantity. Effects are derived from a fourth order polynomial distributed lag specification. The x-axis denotes the number of days over which

the cumulative effect is computed. Shaded areas represent 95% confidence intervals. Regressions control for city, day-of-week, year-by-month

and region-by-month fixed effects, a holiday indicator and weather controls for the current day and eight lags (third order polynomials in

mean daily temperature, precipitation, relative humidity and wind speed). Regressions are weighted by the number of active workers in a

city during the current month and standard errors are clustered at the city level.

30



Effect Dynamics. We use a version of this “reduced form” model including lags ofWDirhighPMc,d

to explore effect dynamics. The existing literature on air pollution and worker productivity found mixed

results on the lagged impact of exposure. He et al. (2019) for example demonstrate evidence for lagged

effects of PM2.5 and SO2 on the productivity of textile workers in industrial towns in China, while Künn

et al. (2019) find that chess players’ performance is unaffected by pollution exposure on the previous

days.

We estimate the cumulative effect of elevated pollution exposure on the current day and up to 15

lags, using the indicator for wind blowing to city c from the high pollution direction,WDirhighPMc,d−p,

where p ∈ {0, 1, ..., 15} denotes the lag order. Following He et al. (2019) we use a polynomial distributed

lag (PDL) specification, where the coefficients on the current and lagged wind direction indicators,

β0, β1, ...., β15, are restricted to follow a smooth polynomial function. This serves to constrain the pa-

rameters as an unrestricted distributed lag model typically yields very imprecise estimates due to high

serial correlation in the regressors WDir highPMc,d−p. Imposing that the coefficients follow a poly-

nomial function reduces the number of parameters that have to be estimated. Specifically we assume

that βp = α0+α1p+α2p
2+α3p

3+α4p
4

for p ∈ {0, 1, ..., 15}, i.e., we use a fourth order polynomial.

Substituting this imposed shape of the βp into the unrestricted distributed lag model, yields five new

regressors which replace the WDir highPMc,d−p and exhibit much less multicollinearity.

We estimate the PDL model for our three main quantity outcomes, recover the estimated effects

β̂p, and plot the cumulative effect of exposure to wind from the high pollution direction for s con-

secutive days,

∑s
p=0 β̂p for s = 0, 1, .., 15 in Figure 8. All models include the same covariates as

our main contemporaneous model plus eight lags of weather conditions. For both total actions and

commits we observe that contemporaneous exposure to particulate matter has the largest impact on

activity, but exposure on the two preceding days also generates negative effects. The current day effect

of WDir highPMc,d is estimated to be -.014 for total actions and -.010 for commits, very close to the

estimates in the contemporaneous model (see Appendix Table A.11). After three consecutive days of

wind from the high pollution direction, the cumulative effect is -.023 and -.018, respectively. For more

prolonged exposure the point estimate of the cumulative effect remains rather constant, but becomes

much more noisy. For comments, the cumulative effect always remains close to zero. In sum, pollution

exposure generates an adverse effect on current-day output and, to a smaller extent, also reduces pro-

ductivity on the following two days. Compared to health impacts, the productivity effects are rather

immediate.
34

Appendix Figure A.3 shows cumulative effects estimated from PDLM for the adjustment

outcomes, which confirm this result.

5 Conclusion

This paper provides evidence that air pollution adversely affects the productivity of software developers—

highly-skilled workers in a work environment that can be considered as representative of many white-

collar jobs that form the backbone of a modern information economy.

On a day with unusually high levels of PM2.5, relative to the city-month-day of week specific aver-

age, total actions conducted by the developers fall by 3.9%. This effect is mostly driven by a reduction

34

Barwick et al. (2018) for instance find that PM2.5 exposure raises medical expenditures up to 90 days post exposure.
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in individual coding activity by 6.5%, while the level of collaborative activity is unaffected.

Relative to outdoor heat, another relevant environmental shock, the impact of such an air pollution

shock is sizable. However, in comparison to effects found for PM2.5 exposure in other occupations

in previous research, our estimate is at the lower end. We provide novel evidence that this might be

explained by typical features of highly-paid white-collar jobs, namely a certain degree of flexibility in

the choice of tasks as well as a lot of interactive work. In particular, we find that users switch towards

less complex tasks on more polluted days: The share of of actions referring to easy issues increases by

7.1% relative to the mean. Besides, submitted pull requests contain 4.3% fewer files and 7.4% fewer new

lines of code. Among users with a stronger adjustment response to PM2.5 exposure, effects on work

quantity are alleviated.

Even though the productivity effects are relatively small compared to other professions, they are

economically relevant due to the high value generated by software developers. Using novel data from

Gitcoin, we can translate our estimates into monetary effects. Given a mean value of $112 per commit,

on a day with a pollution shock, output value falls by $9.50 per user. As pollution shocks occur on 10.5%

of all days, the total monetary damage for our sample of 26,000 users observed between February 2014

and May 2019 amounts to $15.7 million. This is likely a conservative estimate and does not account

for the lower value of work on easier tasks. Using the monetary value of commits of difficulty level

advanced, the implied damages are as high as $95.6 million.

Our heterogeneity analysis implies that effects are larger in less wealthy cities, suggesting that

high pollution levels in developing countries with large software industries, e.g., India and Bangladesh,

might be an important barrier to industry growth.

In ongoing work, we explore effects of PM2.5 on work quality and on worker adjustment with

respect to working hours.
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A Appendix

Table A.1: Labels Indicating Easy Issues

good first issues good first bug good-first

documentation polish cleanup

simple easy small

trivial minor help wanted
junior job newcomer starter

beginner newbie novice

low hanging low-hanging

NoteIf a label contains any of these terms, the issue is classified as ”easy”. Bolt text indicates GitHub default labels.

Table A.2: Number of Commits and Hours Worked on a PR

Dependent variable: hoursworkedi

(1) (2) (3) (4)

commitsi 0.375
∗∗∗

0.939
∗∗∗

(.132) (.341)

log(commitsi) 2.375
∗∗∗

10.346
∗∗∗

(.648) (3.535)

x 1{Difficultyi = Beginner} −0.882
∗∗ −9.748

∗∗∗

(.354) (3.574)

x 1{Difficultyi = Intermediate} −0.667
∗ −8.471

∗∗

(.349) (3.560)

Observations 271 267 271 267

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable is the number of hours worked reported by the PR author. In colunm 1 the only explanatory variable is the number

of commits in the PR. Column 2 adds dummies for issue difficulty and interactions between the number of commits and the difficulty

dummies. The ommited difficulty category is advanced. In columns 3 and 4 report results from the same models except that the number of

commits is replaced by the logarithm thereof. Robust standard errors are reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01
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Table A.3: Gitcoin payments, PR size and complexity

Dependent variable: log(paymenti)

(1) (2) (3)

log(commitsi) 0.143
∗∗

0.136
∗∗

0.070

(0.067) (0.068) (0.058)

files changedi 0.005 0.007
∗

0.011
∗∗∗

(0.005) (0.004) (0.004)

log(lines addedi) 0.152
∗∗∗

0.112
∗∗∗

0.091
∗∗∗

(0.036) (0.035) (0.028)

Year dummies ✓ ✓ ✓
Issue difficulty dummies ✓
Issue type dummies ✓
Repository fixed effects ✓
Observations 292 274 292

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable isthe logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits and

the number of lines of code added in the PR (both in logs), the number of code files changed and dummies for the year the pull request was

created. Column 2 adds dummies for issue difficulty and issue type. Column 3 instead adds fixed effects for the repository. The number of

lines of code added and of files changed in the PR are winsorized at the 1st and the 99th percentile. Robust standard errors are reported in

parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

37



Table A.4: Sources of Air Quality Data

Geographic Area Data Source
United States U.S. Environmental Protection Agency (EPA)

Canada Canadian National Air Pollution Surveillance (NAPS) Program

Mexico City Gobierno de la Ciudad de México

Europe European Environment Agency (EEA)

Russia, Ukraine, Copernicus Atmosphere Monitoring Service (CAMS)

Belarus, Turkey,

Israel

China National Environmental Monitoring Centre

Mumbai US Embassies (AirNow.gov)

Hyderabad

Chennai

New Delhi

Bengaluru Central Pollution Control Board (CPCB)

Japan National Institute for Environmental Studies

Hong Kong Hong Kong Environmental Protection Department

Singapore National Environment Agency

South Korea Air Korea

Australia New South Wales Department of Planning and Environment

Victorian Government open data portal

Queensland Government open data portal

South Australian Government Data Directory

New Zealand Stats NZ Tatauranga Aotearoa

Note: Data sources for data on PM2.5. Airbase, the EEA’s database on air pollution, contains monitor data for 33 countries,

including all EU members, as well as further EEA member and cooperating countries, e.g., Switzerland, Norway and Serbia.

Table A.5: Distribution of user-by-date observations across large geographic regions R

region R observations share of total

Northern America 7,279,903 46.7

Asia 2,375,988 15.2

Western Europe 2,209,076 14.2

Northern Europe 1,780,537 11.4

Eastern Europe 1,006,935 6.5

Oceania 487,242 3.1

Southern Europe 457,136 2.9

Note: The table shows the distribution of observations in the user x date panel described in section 2.2 across large geographic

regions R, displayed in figure A.1

38



(a)

(b)

Figure A.1: Illustration of large regions R, small regions r, and city groups g

Note: Maps show our sample cities. The number on top of the city markers refers to the group g we assign a city to for the

first stage estimation of the effect of wind direction on air pollution (see section 3, especially equation (3)). Shape of the city

markers refers to the large geographic regions R (see section 2 and equation (2)), and color refers to the small geographic

regions r we use for region x month fixed effects (see section 3, especially equation (2)).
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Table A.6: Effect of PM2.5 on Quantity of Issue and Pull Request Actions

PRs closed PRs opened Issues closed Issues opened
(1) (2) (3) (4)

Panel A.
PM2.5 (st.dev.) −0.0012 −0.0018

∗∗
0.0008 0.0001

(0.0011) (0.0008) (0.0009) (0.0007)

F-statistic 112.3 112.3 112.3 112.3

% change in Y -0.1 -1.2 0.1 0.1

Panel B.
PM2.5 shock −0.0043 −0.0085

∗∗
0.0058 0.0006

(0.0048) (0.0036) (0.0042) (0.0030)

F-statistic 34.6 34.6 34.6 34.6

% change in Y -2.5 -5.7 4.8 0.5

Dependent Variable mean 0.17 0.15 0.12 0.11

Observations 331,025 331,025 331,025 331,025

Note: The table presents IV estimates of the parameter β in equation (2). In Panel A, the regressor of interest is PM2.5 concentration

measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes a value of one if city x

day PM2.5 concentration exceeds the city x month x day-of-week specific average by at least one city-specific standard deviation. The first

stage specification is given in equation (3). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed,

precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, year-by-month and

region-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across world regions R.

Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are

reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

(a) (b)

Figure A.2: Subsamples based city-level GDP per capita 2014

Note: Panel (a) shows distributions of 2014 GDP per capita across cities separately for the poor and rich subsample, as

described in Section 4.4, using data from OECD, World Bank and national statistical officies. Panel (b) shows the empirical

cumulative distribution function of standard deviations of PM2.5 across cities in the two subsamples. Red: below median

GDP per capita subsample, blue: above median subsample.
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Table A.7: Effect of PM2.5 on Quantity of PRs opened based on GHArchive and GHTorrent data

PRs opened (GHA) PRs opened (GHT)
(1) (2)

Panel A.
PM2.5 (st. dev.) −0.0031

∗∗ −0.0019
∗∗

(0.0013) (0.0009)

[0.020] [0.032]

F-statistic 98.1 98.1

Panel B.
PM2.5 shock −0.0184

∗∗∗ −0.0096
∗∗

(0.0069) (0.0044)

[0.008] [0.030]

F-statistic 29.6 29.6

Observations 279,537 279,537

Note: The table presents IV estimates of the parameter β in equation (2), where the outcome is the number of pull requests (PRs) opened.

This is measured based on GHArchive data in column (1) and GHTorrent data in column (2). In Panel A, the regressor of interest is

PM2.5 concentration measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes

a value of one if city x day PM2.5 concentration exceeds the city x month x day-of-week specific average by at least one city-specific

standard deviation. The first stage specification is given in equation (3). Covariates include eight bins for mean daily temperature,

third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city,

day-of-week, year-by-month and region-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls

can vary across world regions R. The sample period is 2015 to May 2019. Regressions are weighted by the number of active workers in a

city during the current month. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets.

∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table A.8: OLS Results for Work Quantity

Actions Commits Comments

(1) (2) (3) (4) (5) (6)

PM2.5 (st. dev.) −0.003 −0.007 −0.003 −0.005
∗ −0.0002 −0.001

(0.005) (0.006) (0.002) (0.003) (0.002) (0.002)

Observations 331,025 331,025 331,025 331,025 331,025 331,025

city FE ✓ ✓ ✓ ✓ ✓ ✓
region R×day-of-week FE ✓ ✓ ✓
region R×year-month FE ✓ ✓ ✓
small region r×month FE ✓ ✓ ✓ ✓ ✓ ✓
region R×date FE ✓ ✓ ✓

Note: The table presents OLS estimates of the parameter β in equation (2), where the dependent variables are displayed in the upper part of

the table. The regressor of interest is PM2.5 concentration measured in city-specific standard deviations. Covariates include eight bins for

mean daily temperature, third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke

and holidays as well as city fixed effects. The temperature controls can vary across world regions R. Further included fixed effects are

displayed in the bottom part of the table. Regressions are weighted by the number of active workers in a city during the current month.

Standard errors clustered at the city level are reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01
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Table A.9: Robustness: First Stage Specification

Actions Commits Comments Actions Commits Comments

Panel A.
PM2.5 (st. dev.) −0.0188

∗ −0.0181
∗∗∗ −0.0006 −0.0245

∗∗ −0.0170
∗∗∗ −0.0056

(0.0103) (0.0047) (0.0055) (0.0102) (0.0052) (0.0053)

F-Statistic 68.6 68.6 68.6 106.1 106.1 106.1

Panel B.
PM2.5 (shock) −0.0819

∗ −0.0868
∗∗∗

0.0029 −0.1098
∗∗ −0.0824

∗∗∗ −0.0186

(0.0430) (0.0203) (0.0222) (0.0507) (0.0259) (0.0240)

F-Statistic 22.3 22.3 22.3 33.3 33.3 33.3

IV-Specification 3 wind direction bins Hierarchical clustering

Observations 331,025 331,025 331,025 331,025 331,025 331,025

Note: The table presents IV estimates of the parameter β in Equation (2). In Panel A, the regressor of interest is PM2.5 concentration

measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes a value of one if

city×day PM2.5 concentration exceeds the city×month×day-of-week specific average by at least one city-specific standard deviation.

Relative to specifications underlying results in Table 3, the first stage model is changed: In columns (1) to (3) instruments are three indicators

for wind direction falling in specific bins, each covering 90° of the wind rose. In columns (4) to (6), the first stage specification is as in

Equation (3), but we form city-groups g using hierarchical clustering instead of k-means clustering. Covariates as described in Table 3.

Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are

reported in parentheses.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01

Table A.10: Robustness: Second Stage Specification

Asinh(Actions) Asinh(Co’its) Asinh(Co’ents) Actions Commits Comments

Panel A.
PM2.5 (st. dev.) −.0054

∗∗∗ −.0035
∗∗∗ −.0025

∗

(.0021) (.0014) (.0014)

Panel B.
PM2.5 (shock) −.0229

∗∗ −.0162
∗∗ −.0089

(.0101) (.0072) (.0062)

Panel C.
log(PM2.5) −.0446

∗∗∗ −.0271
∗∗∗ −.0102

(.0147) (.0082) (.0074)

F- Statistic 170.7 170.7 170.7

Observations 331,025 331,025 331,025 331,025 331,025 331,025

Note: The table presents IV estimates of the parameter β in Equation (2). In Panel A, the regressor of interest is PM2.5 concentration

measured in city-specific standard deviations. In Panel B, a binary PM2.5 shock variable is used instead, which takes a value of one if

city×day PM2.5 concentration exceeds the city×month×day-of-week specific average by at least one city-specific standard deviation. In

Panel A, the regressor is the logarithm of PM2.5 concentration. Inverse hyperbolic sine transformations are applied to outcomes in the first

three columns. The first stage specification is given in Equation (3). Covariates as described in Table 3. Regressions are weighted by the

number of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.
∗

p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table A.11: Reduced Form and clustering level

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

Panel A: Reduced Form
High Pollution −0.0128

∗∗ −0.0112
∗∗∗

0.0017 0.0006
∗ −0.0116

∗∗ −0.0068
∗∗

W. Direction (0.0060) (0.0026) (0.0032) (0.0004) (0.0047) (0.0026)

[0.036] [0.00003] [0.584] [0.096] [0.015] [0.011]

First Stage Effect on PM2.5 (st. dev.): 0.39*** (.030)

Panel B: Clustering Level
PM2.5 (st. dev.) −0.0258

∗∗ −0.0177
∗∗∗ −0.0059 0.0008

∗ −0.0171
∗∗ −0.0094

∗∗

(0.0128) (0.0060) (0.0060) (0.0004) (0.0082) (0.0043)

[0.049] [0.005] [0.329] [0.056] [0.042] [0.032]

F-Statistic 112.3 112.3 112.3 94.3 67.6 67.6

Observations 331,025 331,025 331,025 258,031 155,071 155,071

Note: Panel A displays OLS estimates of the outcomes displayed in the upper part of the table on an indicator variable for wind blowing

towards a city from the direction that has the largest positive effect on local PM2.5 concentration. Standard errors clustered at the city

level are reported in parentheses. Panel B presents IV estimates of the parameter β in Equation (2). The regressor of interest is PM2.5

concentration measured in city-specific standard deviations. The first stage specification is given in Equation (3). Standard errors clustered

at the level of city-groups g across which the effect of instruments in the first stage are allowed to differ are reported in parentheses. P-values

are presented in squared brackets. All regressions include covariates as described in Table 3 and are weighted by the number of active

workers in a city during the current month.
∗

p<0.1;
∗∗

p<0.05;
∗∗∗

p<0.01
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Figure A.3: Effect Dynamics: Adjustment

Note: The plots depict estimates of the cumulative effect of wind blowing from the high pollution direction on three measures of user

adjustment by switching to easier tasks, the inverse hyperbolic sine transformations of the number of new lines added per PR opened, the

inverse hyperbolic sine transformations of the number of files changed per PR opened, and the share of issue events that refer to an easy

issue. Effects are derived from a fourth order polynomial distributed lag specification. The x-axis denotes the number of days over which the

cumulative effect is computed. Shaded areas represent 95% confidence intervals. Regressions control for city, day-of-week, year-by-month

and region-by-month fixed effects, a holiday indicator and weather controls for the current day and eight lags (third order polynomials in

mean daily temperature, precipitation, relative humidity and wind speed). Regressions are weighted by the number of active workers in a

city during the current month and standard errors are clustered at the city level.
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