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Abstract

This paper tests how a major cap-and-trade program, known as the NOx Budget
Trading Program (NBP), affected labor markets in those regions where it was imple-
mented. The cap-and-trade program dramatically decreased levels of NOx emissions
and added substantial costs to energy producers. Using a triple-differences approach
that takes advantage of the geographic and time variation of the program as well as
variation in industry energy-intensity levels, I examine how employment dynamics
changed in manufacturing industries whose production process requires high levels
of energy. After accounting for a variety of flexible state, county and industry trends,
I find that industries in the top quartile of the energy intensity index lost 4.4% of em-
ployment relative to industries in the bottom quartile of the energy intensity index.
Young workers experienced the largest employment declines and earnings of newly
hired workers fell after the regulation began. Employment declines are shown to
have occurred primarily through decreased hiring rates rather than increased sepa-
ration rates.
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1 Introduction

The Environmental Protection Agency’s regulation of the energy sector has become a
highly contentious topic in the public sphere. Proponents of the federal regulations
emphasize the health benefits that accrue to society when fewer pollutants are emitted
by power plants, while critics claim that the current regulations harm the economy by
imposing significant costs on industry. Job loss in particular is cited as a primary means
by which regulation inflicts damage on the economy and has gained special attention in
recent years as the unemployment level has risen sharply.1

The federal law that lies at the heart of this controversy is the Clean Air Act Amend-
ments (CAAA), which vests authority in the EPA to regulate the emissions of polluting
industries. Broadly speaking, there are two types of regulations that the CAAA im-
poses on pollution-emitting establishments. The first, known as the National Ambient
Air Quality Standards (NAAQS) began in the 1970’s as a result of the 1970 CAAA and
required polluting plants in counties with poor air quality to adopt “lowest available
emission rate” technology. The labor market impact of the NAAQS and its subsequent
expansions has been studied extensively by economists over the past decade (Green-
stone 2002; Kahn and Mansur 2010; Walker 2011; 2012). These studies examine changes
in manufacturing employment in counties that fail to meet NAAQS attainment standards
and are thus subject to tighter regulations.

Since the passage of the 1990 CAAA, however, a second and wider reaching policy
has taken form with the intent of regulating interstate air pollution. As counties began
to realize that their own air quality was affected not only by local polluters but also
by polluters from other counties and states, there was a push for the regulation of all
establishments whose air pollutants crossed state boundaries. In 1990, the Acid Rain
Program established a national cap-and-trade program for Sulfur Dioxide (SO2) and in
2003 and 2004 the Nitrogen Oxide (NOx) Budget Trading Program (NBP) was established
in nineteen states east of the Mississippi. Despite the size and far-reaching impact of
these two cap-and-trade programs, there has been no empirical research that has sought
to evaluate their labor market implications.

From an efficiency standpoint, cap-and-trade programs produce desired outcomes
by allocating permits which grant the owner the right to emit a given quantity of a
pollutant. The total quantity of permits is limited by the environmental authority and

1See Wall Street Journal July 26, 2011 op-ed “The Latest Job Killer from the EPA”. Also “Getting Ready
for a Wave of Coal-Plant Shutdown” was the most read post on Ezra Klein’s Washington Post “Wonkblog”
in 2011.
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firms are allowed to trade permits in an open and competitive market. Allowing firms to
participate in a market for permits guarantees that firms for whom pollution abatement
costs are cheapest will be the first to reduce their emissions. While they provide an
efficient and market-based solution, tradable permit systems may still have potentially
severe redistributional implications. Firms which previously paid nothing to pollute
now face a new input cost. This may lead to an increase in marginal cost and may result
in a re-optimization of their input bundle.

The Acid Rain Program was the first such large scale cap-and-trade program in the
United States but, given that it applied to all power plants in the country, empirically
estimating its impact on employment has been difficult due to the lack of a valid geo-
graphic counterfactual.2 However, for a variety of reasons, the attributes of the recently
implemented NBP make for a policy whose impacts are both important and possible
to identify. First, the NBP had a major impact on energy production. The regulation of
2,250 gas, oil and coal-fired electric generating units plus 350 large industrial units forced
NOx emitting firms to make difficult and costly decisions on how to comply with the
cap-and-trade scheme. Overall, complying with the NBP was expected to add $2.15 bil-
lion dollars of annual costs to utilities, which would largely be passed on to consumers
in the form of higher prices (Palmer et al. 2001). Second, this policy was implemented
in nineteen eastern states over a period of two years. Many states were not exposed to
the NBP and, under certain assumptions discussed below, may be considered a valid
counterfactual after controlling for preexisting differences. Finally, industries in the NBP
region that require high levels of energy in their production process would be expected
to be most affected by the NBP. These sources of geographic, time and industry hetero-
geneity form the basis for the identification strategy used to determine the impact of the
NBP on manufacturing employment. To the best of my knowledge, this is the first such
credible study of the employment effects of any major EPA cap-and-trade program.

One reason why empirical methods may prove particularly useful is that economic
theory gives no clear intuition regarding the effect of power plant regulation on manu-
facturing employment outcomes (Berman and Bui 2001). Environmental regulation that
causes an exogenous shock in the price of energy is likely to lead to two competing
employment effects on an establishment’s intensive margin. First, given that capital and
energy are complements and capital and labor are substitutes, a positive shock in the
price of energy may lead plant managers to employ more labor and less capital. How-

2For this reason, researchers have generally used structural models to estimate the costs and benefits
of the Acid Rain Program (see Burtraw et al. (1998)).
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ever, an increase in the price of electricity will also increase marginal costs and decrease
the demand for labor due to a decline in production. Furthermore, firm owners may
adjust the extensive margin as they take production costs into account when determin-
ing plant location. Plants in areas with increased energy prices are more likely to be
shut down and newly constructed plants are more likely to be built in regions that did
not experience a positive shock to energy prices.3 Each of these effects will be at play
whether the manufacturing plant produces its own energy and is directly regulated or
chooses to purchase energy from now regulated utilities.4

While qualitative predictions from theory may be somewhat ambiguous, recent em-
pirical research studying the impact of environmental regulation on employment has
shown either no change (Berman and Bui 2001) or a decrease in the employment levels
of regions where regulation of electric utilities has been implemented (Greenstone 2002;
Kahn and Mansur 2010; Walker 2011). Furthermore, the broader literature on the impact
of environmental regulation has consistently found a negative impact of regulation on
plant openings and productivity levels (Becker and Henderson 2000; Dean et al. 2000;
List et al. 2003; Henderson 1996; Hanna 2010; Greenstone et al. 2012).5

Using a similar technique as that employed by Kahn and Mansur (2010) to study
manufacturing industry location, this paper takes advantage of the heterogeneity in
industry energy intensity levels to perform a triple differences (DDD) analysis that es-
timates the NBP’s impact on manufacturing employment in the regions where it was
enforced. In addition to examining the impact on employment levels, this paper also
looks at worker turnover, earnings and examines heterogeneity of the impact by worker
age. Using County Business Patterns and Quarterly Workforce Indicator data on em-
ployment as well as NBER’s Productivity Database, I am able to account for important
state, county, industry and year controls as well as state, county and industry trends.
These controls will prove important as industries tend toward regional agglomeration
and as the manufacturing sector as a whole has experienced general geographic shifts

3Carlton (1983) and Kahn and Mansur (2010) find strong empirical evidence that electricity prices are
a major determinant of manufacturing establishment location decisions.

4The 350 non-EGU regulated units belong to 140 large manufacturing plants (Author’s calculation
based on records from EPA’s website). Not surprisingly, these plants are almost entirely in energy-
intensive industries. The aggregate nature of the employment data used in the paper prevent estimating
a separate effect for the manufacturing plants whose energy production was directly regulated. The need
for a separate estimate is mitigated as energy production is regulated whether or not it occurs within the
boundary of the firm.

5Of course there is also a large literature on the benefits of regulation and air quality improvements.
See Chay and Greenstone (2003); Jerrett et al. (2009); Deschenes et al. (2012); Zivin and Neidell (2012) for
a few representatitive examples.
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in recent years. Performing the DDD analysis with a broad set of controls, I find that
employment in industries with an additional percentage point of energy intensity de-
creased 1.38% in the region that was impacted by the NBP. Employment declines are
shown to be largest among young workers. Using data on worker flows from the QWI,
firms are shown to have reduced their employment levels primarily through a reduction
in hiring rather than an increase in separations. Furthermore, wage offers, as measured
by new hire earnings, are shown to have declined by as much as 3.5% for industries in
the top quartile of energy intensity as compared to the bottom quartile. The ability to
observe new hire earnings is important as firms may be unable to immeditely adjust
earnings of incumbent workers. In order to evaluate the plausibility of these findings I
then examine the NBP’s impact on electricity prices. While not conclusive, these results
suggest a rise in electricity prices within the range of ex-ante predictions. I then back out
an implied manufacturing employment electricity price elasticity, which is in line with
previous estimates (Kahn and Mansur 2010) and suggests a plausible causal mechanism
for the impact on labor markets.

This paper adds to the literature in two important ways. It is the first paper to
empirically estimate the impact of any EPA cap-and-trade program on labor markets.
Given the size of the cap-and-trade programs, as well as the current policy debate over
additional energy sector regulations, a better understanding of their impact is greatly
needed. Second, it provides evidence of which workers were affected; uses worker and
job flows to examine how the employment adjustments occurred; and examines the
impact on worker earnings by focusing on the earnings of new hires, the margin on
which earnings changes will most quickly adjust.

The remainder of the paper is organized as follows. Section 2 presents a brief history
of the Clean Air Act Amendments and how the NBP came to be implemented. Section
3 describes conditions required for identification and Section 4 details important aspects
of the data used in the analysis. Section 5 provides the econometric model, results and
specification checks. Section 6 discusses the results. Section 7 performs a plausibility
check and Section 8 concludes.

2 Background

Originally passed in 1963, the Clean Air Act (CAA) is the main federal law that seeks to
control air pollution throughout the United States. The CAA has been amended multiple
times including 1966, 1970, 1977 and 1990. Perhaps the most researched of the regula-
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tions brought upon by CAA and its amendments is the NAAQS. The NAAQS were
established following the 1970 CAAAs and required polluting establishments located in
counties that failed to achieve certain air quality levels to meet stricter emissions stan-
dards than establishments located in counties whose air quality was deemed acceptable.
These emission regulations were by far the most important federal emissions regulations
to date.

The 1977 amendments, in addition to strengthening the NAAQS, included Section
126, a provision that allowed the EPA to regulate interstate air pollution and limit the
environmental harm that downwind states could impose on upwind states. The EPA
did not immediately enforce Section 126, however, choosing instead to focus regulation
efforts on establishments whose pollutants impacted the air quality of their local com-
munity rather than those impacting regions outside their immediate geographic region.
In fact, between 1977 and 1998, the EPA never granted a petition filed under the interstate
air pollution clause found in Section 126 of the CAA.

The passage of the 1990 Clean Air Act Amendments strengthened the language of
Section 126 and established the first cap-and-trade programs. It was passed in response
to the continued failure of many northeastern regions to meet air quality requirements
despite having already restricted emissions in their local region. Title IV of the 1990
CAAA established a cap-and-trade program for SO2. This would become known as the
Acid Rain Program and in 1995 the EPA began Phase I for the dirtiest 110 power plants.

In 1998 the EPA granted its first petition under Section 126, paving the way for the
NBP cap-and-trade of NOx, an important precursor of ground-level ozone. The grant-
ing of this petition came as the result of two factors. First, the 1990 amendments had
strengthened the interstate pollution protection law, calling for “reasonably available
control technology” throughout an ozone transport region. Second, numerous lawsuits
filed against the EPA by northeastern states requested that the EPA regulate NOx emis-
sions from states whose emissions directly contributed to their own levels of smog and
ozone. These upwind states argued that NOx pollution from downwind sources had not
only negative health impacts on their citizens but also prevented them from meeting the
NAAQS ozone non-attainment standards. In these lawsuits, a large body of scientific
evidence was presented showing that NOx gases can in fact be transported significant
distances by wind currents and that NOx emissions should therefore be subject to Sec-
tion 126 of the CAAA. By granting the petition of the northeastern states, the EPA agreed
to regulate and reduce the amount of NOx emitted by electric generating units (EGU’s)
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and large industrial plants in southern and central states.6

The NBP cap-and-trade program formally began for eight states and the District
of Columbia in 2003 (see Figure 1). States and utilities in the Midwest and Southeast
continued to fight legal battles against the EPA with varying outcomes, but in 2004
eleven additional states began compliance with the NBP, for a total of nineteen states.7

The program would regulate 2,250 EGU’s and 350 large industrial units that produced
energy and heat for their own consumption.

As can be seen in Figure 2, EGU’s dramatically decreased their output of NOx on
May 31, 2004, the first day in which all nineteen states began participating. Regulated
establishments could choose to reduce their NOx emissions in a variety of ways. One
option was fuel switching, whereby establishments would shift away from coal and
towards alternative energy sources such as natural gas that release far less NOx into
the atmosphere. Despite the additional production costs brought on by the NBP, most
coal remained a cheaper source of energy than the alternatives (Fowlie 2010). Because
electricity production from coal fired plants remained inframarginal, utilities largely
continued to burn coal and found alternative ways to comply with the NBP. Depending
on the preference of the plant, the compliance costs could be fixed and upfront or they
could be variable and spread out over time. Plants opting for the high upfront cost
option installed selective catalytic reduction (SCR) technology. This technology cuts NOx

emissions by up to 90% but costs the average plant $40 million dollars (Linn 2008). On
the other end of the spectrum, about 30% of NBP regulated establishments chose to make
no capital adjustments and simply purchased permits for every unit of NOx they emitted
(EPA 2009).8 Regardless of which reduction technique they choose, the production costs
of electric utilities will increase as a result of the NBP. Three estimates have been made
that calculate the cost of the NBP to utilities. Palmer et al. (2001) estimated the program’s
total costs to utilities at about $2.1 billion per year. Deschenes et al. (2012) use the market
price of permits to estimate the cost at $400-700 million and Linn (2010) examines utility

6The smaller and less restrictive program known as the Ozone Transport Commission NOx Budget
Program (not to be confused with the NBP) began for 11 northeastern states in 1999.

7Through negotiations and court battles, Missouri delayed compliance until 2007. Georgia, originally
slated to also begin in 2007, was eventually ruled exempt from the program altogether. Additionally, deals
were struck in Missouri, Alabama and Michigan which limited compliance to only certain counties.

8SCR is both the most expensive and most effective technology in reducing NOx emissions (Fowlie
2010). There are a variety of less expensive and less effective technologies that utilizes chose to install.
Selective non-catalytic technologies cost the average plant $10 million but only reduces NOx by 35 per-
cent. Additional pre-combustion and combustion technologies can decrease emissions between 15 and 50
percent depending on the specifications of the plant. Fowlie shows that regulated utilities are more likely
to pursue capital intensive solutions than deregulated utilities.
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stock prices to estimate a drop in expected utility profits of up to $25 billion dollars.
Palmer et al. (2001) argue that the costs of the NBP will be passed on to the consumer
in the form of higher electricity prices. Indeed, the EPA1997 estimated that electricity
prices would rise by 1.6% as a result of the NBP and a later report ("The NOx Challenge"
2003) by Platts Research and Consulting predicted a $1-$3/MWh increase in the price of
wholesale electricity.9

Carlton (1983) and Kahn and Mansur (2010) document that electricity prices are a
major determinant of where manufacturing firms choose to locate their workers. Given
the NBP’s substantial impact on electricity and energy production costs more generally,
firms that require high levels of energy in their production process may be expected to
reoptimize their input mixture in response to a change in the expected costs of a crucial
input. Using a DDD approach, I test whether firms with high energy requirements did
in fact respond to the NBP by decreasing employment levels after the implementation of
the NBP, relative to low-energy firms and relative to non-NBP control areas.

Since it began in 2003 and 2004, the NBP has changed names but the market for NOx

allowances continues to exist. In 2008 the NBP became part of the Clean Air Interstate
Rule (CAIR) and in 2011the EPA announced it would replace and expand the regula-
tions of CAIR with the new Cross-State Air Pollution Rule (CSAPR).10 These regulations
continue to be greatly debated and on August 21, 2012 the D.C. Circuit Court of Appeals
vacated CSAPR leaving the future of both the SO2 and NOx cap-and-trade programs in
doubt.

3 Identifying NBP Employment Effects

In order for a DDD methodology to accurately capture the causal effect of the NBP
on manufacturing employment there are certain identification assumptions that should
hold. One such crucial assumption is that control groups are not impacted by the treat-

9Using average wholesale prices in the Northeast ISO and the PJM in 2003 this is equal to an electricity
price increase of between 2.47% and 7.41%.

10In 2005 the EPA announced that the Clean Air Interstate Rule (CAIR) would replace the NBP’s regu-
lation of NOx emissions in 2009 and SO2 in 2010. CAIR was intended to expand the number of covered
states to twenty-five and further tighten emissions standards. Given that there was significant legal uncer-
tainty surrounding CAIR when it was announced, it is unlikely that manufacturing industries would have
immediately reacted. Because CAIR is a continuation of the NBP cap-and-trade program it is difficult and
perhaps even unnecessary to disentangle the impact of the CAIR announcement from the implementation
of NBP. In short, the interpretation of the evidence is influenced only slightly by CAIR, with all results
still attributable to the overall cap-and-trade policy.
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ment. Identication rests on two sources of employment change variation.The first is the
variation that occurs within a state across industries and the second is the variation that
occurs within an industry across states. When considering the within-state variation, it
is possible that workers leave high energy industries in the county and are hired by low
energy industries in the county. These local labor market spillovers are a potential source
of bias as this may result in increased employment levels for low energy industries in the
NBP region. To check whether these spillovers are driving the results, I consider models
where the identifying variation does not come from within-state differences. The second
source of variation is that which occurs across states. If firms shift production from NBP
to non-NBP states then estimates may overstate the effect.

Determining an appropriate start date is another important part of determining the
treatment effect. This analysis assigns start dates as the dates when the NBP went into
effect (2003 for eight states and 2004 for the eleven others). While the cap-and-trade
program was first approved in 1998, there was significant uncertainty until March of
2000 when the D.C. Court of Appeals ruled in Michigan et al. vs. EPA et al. that the
program was legal. Some states and utilities continued with lawsuits after the 2000
court decision and electric utilities did not face the full costs of the NBP until sometime
later, either when they purchased the abatement technology in the form of new capital,
or once the program began in the form of purchasing emissions credits.11 As seen in
Figure 2, electricity production itself was not affected until much closer to the beginning
of the NBP. By using the NBP start date I make the assumption that manufacturing firms
remained uncertain of how the program would affect their energy costs until after permit
trading began and NOx emitters faced the full costs of the program. If manufacturing
firms began decreasing employment before this date then the results would be biased
towards zero, as some of the treatment effect would be attributed to the pre-treatment
period.

The timing of the policy should also be checked against other simultaneously occur-
ring events that may impact manufacturing employment. Given the controls described
above, in order for such an event to drive the results it would have to have a different im-
pact on the NBP region than the non-NBP region and it would have to differentially im-
pact industries based on their energy intensity levels. One potential event was a change
in NAAQS nonattainment standards which caused 408 counties across the country to
enter nonattainment status in 2004. These counties were disproportionately located in

11When examining the NBP’s impact on expected future utility profits, Linn (2010) uses 2000 as the
beginning date.
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the NBP treated region, and non-attainment designation is likely to differentially impact
industries based on their energy intensity. To control for this, I examine county-industry
data and allow for high energy industries in new NAAQS non-attainment industries to
experience a separate employment effect. My results are robust to controls for these
potential NAAQS effects.

A second potential concern is that certain regions may be particularly sensitive to
changes in fuel prices. If an increase in the price of oil raises energy prices uniformly
across the country, this will be picked up with the industry-year fixed effects. However,
certain regions rely heavily on one particular fuel source for their electricity production.
To account for the possibility that regional electricity prices may be differentially im-
pacted by changing relative fuel prices, I obtain average oil, natural gas and coal prices
for the years 1998-2008 as well as the percent of electricity that is derived from that
source in each North American Electric Reliability Corporation (NERC) region in the
country. Interacting the fuel price with the percent of electricity derived from that fuel
in the state’s NERC region and the industry indicator variables allows for the fact that
certain industries in certain regions may be particularly sensitive to a change in fuel
prices. My results are insensitive to these controls as well.

All time-invariant differences are absorbed by full sets of state-industry (or county-
industry) fixed effects. I use state, county and industry-specific linear time trends to
control for pre-existing trends; in other models industry-year and state-year indicator
variables flexibly account for nonlinear trends. Even after accounting for state and in-
dustry specific trends, results could still be driven by pre-existing trends whereby high
energy industries in the NBP region are trending differently than high energy industries
in the non-NBP region. For example, if energy intensive industries in the east and west
have different employment trends as a result of the NAAQS or some other feature of ear-
lier CAAA’s that disproportionately impacted the NBP region, then these pre-existing
trends could be mistakenly attributed to the NBP. To assure that separate pre-existing
trends are not being picked up, I allow for each industry to trend differently based on
the region in which its employment is located. If the implementation of the NBP causes
employment levels and trends to differ by region, then adding these separate trends is
likely to absorb some of the impact of the NBP. This again will result in a conservative
estimate of the NBP’s impact on employment. Thus, my results are identified off of very
weak assumptions, which allow for state and industry-specific non-parametric trends
and pre-existing east-west differences in industry-specific trends.
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4 Data

4.1 County Business Patterns

The two employment datasets used to analyze the impact of the NBP on manufacturing
employment are the Census Bureau’s County Business Patterns (CBP) and the Quar-
terly Workforce Indicators. The CBP is a yearly data product released by the Census
Bureau that provides sub-national economic data by industry. Data can be obtained at
the national, state, county and metropolitan levels and include the total number of es-
tablishments and workers by industry in a geographic area. The source of the CBP is the
Business Register, Census’ Company Organization Survey and other economic censuses
and surveys such as the Census of Manufactures and the Annual Survey of Manufac-
tures. Using CBP data from 1998-2008, I create panel data sets at both the state-industry
and county-industry level.

In 1998 the Census Bureau switched its industry classifier variable to account for the
changing face of the American economy. The Standard Industrial Classification (SIC)
system was abandoned in favor of the newer North American Industry Classification
System (NAICS). The change from SIC codes to NAICS codes in 1998 creates some
difficulties in consistently estimating industry employment across time periods. Given
that the NBP was implemented in 2003, it is logical to use 1998 as a starting year for
the data and avoid any inconsistencies that may arise from merging previous years with
different industry definitions. All data between 1998 and 2008 use NAICS codes which
are consistent across time periods. Following previous literature, this paper uses three-
digit NAICS codes as the industry level of observation (Greenstone 2002; Kahn and
Mansur 2010).

While the CBP has the distinct advantage of being publicly available, it also has the
disadvantage of having to undergo a thorough review process to prevent the release
of any data that would disclose the exact records of any single establishment. There-
fore, if very few establishments are located in a particular county or state-industry, then
employment data will be suppressed for that observation. The primary results of this
paper use state-industry data which has limited cell suppression for employment. In the
state-industry dataset 76% of state-industry cells are observed directly. These cells repre-
sents 93% of all manufacturing employment in the United States. For those cells that are
suppressed, I perform an imputation method similar to that used by Kahn and Mansur
(2010) and Mian and Sufi (2012), which takes advantage of the CBP’s establishment-size
cell count variables and imputes employment for the suppressed cells by multiplying the
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number of establishments in each establishment-size cell by the midpoint establishment
size of that category.12 The same imputation method is used for the county-industry
level data used in the robustness checks.13

4.2 Quarterly Workforce Indicators

Like the CBP, the QWI is a publicly available dataset that contains sub-national em-
ployment data by industry. The underlying microdata for the QWI is the Longitudinal
Employer Household Dynamics (LEHD) program at the U.S. Census Bureau, which uses
state unemployment insurance data as its primary input (see Abowd et al. (2006) for a
complete description of the QWI and the LEHD). In recent years a number of papers
have begun to use this data to evaluate the labor market impacts of the housing crash,
changes to minimum wage laws and workplace mandates (Abowd and Vilhuber 2012;
Gittings and Schmutte 2012; Dube et al. 2011; Curtis et al. 2013).14 The QWI has both
strengths and weaknesses compared to the CBP but there are two primary reasons to
use QWI data. First, it contains detailed cuts of the data by worker characteristic. That
is, the QWI provides not only total employment within a state-industry, but also breaks
down this employment by age group and gender. This data can then be used to un-
derstand the heterogeneity of the treatment effect along a number of dimensions that
are not available in the CBP. The second reason is that the QWI provides data not only
on employment levels but also on worker flows (hires and separations) and job flows
(creations and destructions). Finally, the quarterly nature of the data also provides more
frequent snapshots of employment variables and thus gives a better feel for the dynamics
at play and the impact of the program over time.

The disadvantages of the QWI lie in its coverage and its data suppression. Most
states have now agreed to share UI data with the LEHD system but the historical data
they provide differs by state. As a result, I use data from the 40 states whose data
goes back until at least 2000 so that there is a reasonable pre-treatment period for each
state. Of additional concern is the lack of information on suppressed cells. When cells

12All state and county-industry observations contain the number of establishments in narrowly defined
employee size categories (1-4, 5-9, 10-19, . . . , 5,000+). For the 5,000+ category employment is top coded at
6,000. See (Kahn and Mansur 2010) for a full explanation of the imputation method.

13As discussed later in the paper, regressions weight state-industry observations by their pre-NBP em-
ployment level. This is common in the literature and mitigates concerns about imputation related bias as
imputed cells are smaller and thus given less weight in the regressions.

14Data on job flows has been available for longer. See Davis and Haltiwanger (2001) for an example of
research examing job flows.
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are suppressed in the CBP they can be imputed using the employee size categories,
which are available for every observation. In the QWI there are no additional variables
which allow for the imputation of suppressed cells. Because of these disadvantages, the
benchmark and primary employment specifications use the CBP. Importantly, results
using the QWI not only confirm findings using the CBP but are able to paint a more
complete picture of how the NBP impacted labor markets. See the data appendix for
additional details on both the QWI and the CBP.

4.3 NBER Productivity Database

After obtaining annual (or quarterly) state-industry labor data, I merge in three-digit-
industry energy intensity data from the 1998 NBER Productivity Database. This database
contains total energy expenditure by industry in the given year and is based off of the
Census of Manufactures and the Annual Survey of Manufactures. To construct an en-
ergy intensity index for the 21 different 3 digit manufacturing industries, I divide total
industry energy expenditure by total value of shipments for the industry.15 As seen
in Table 1, energy intensity in the manufacturing sector varies from a low of 0.6% in
the computer and electronic product industry to a high of 5.5% in the primary metal
manufacturing industry.

5 Econometric Model and Results

In order to motivate the econometric analysis, provide summary statistics and preview
the results, it is informative to begin by viewing the raw employment data between 1998
and 2008. Based on the energy-intensity index in Table 1, I split the 21 industries into
three separate groups. The seven industries with the highest energy intensity measures
are defined as “high intensity industries”, the seven industries with the lowest energy
intensity measures are defined as “low intensity industries” and the middle seven are
defined as “medium intensity industries”.

Figure 3 plots out the east-west employment difference for each industry energy
intensity grouping from 1998-2008. Specifically, the figure plots the percentage change
in employment in the east minus the percentage change in employment in the west for
each industry grouping, using 1998 as the baseline year. This plot suggests a potential

15Because the NBP regulated NOx emissions from heat, steam and electricity production I use energy
intensity rather than electricity intensity.
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effect of the NBP on employment, but it also reveals that pre-existing trends may be
present that, if unaccounted for, could bias DDD estimates. The plot shows that between
1998 and 2008 the east-west employment difference falls most prominently for the high
intensity industries while there is little change in the east-west difference for the low-
energy industries. Employment in medium intensity industries tracks closely with high
intensity for the first four years, but starting in 2003, the east-west employment difference
begins to fall for high energy industries relative to medium energy industries. This gap
widens substantially between 2004 and 2008. Vertical lines are drawn in 2001, the year
after the courts determined the NBP’s legalitiy, and in 2003, the start date of the program.
Examining and accounting for any pre-existing trends will be important to the internal
validity of the DDD estimates.

5.1 Baseline Regression Specification

The identification strategy of this paper takes advantage of the geographic, time and
industry heterogeneity found in the data in order to estimate the impact of the NBP on
manufacturing employment outcomes. As a first step towards exploiting this hetero-
geneity, I consider the following DDD model:

ygkt = βT(Postgt × Eastg × EnIntk) + βpe(Postgt × Eastg)+

+βpen(Postgt × EnIntk) + θxgkt + δgk + ξt + εgkt (1)

In this model, ygkt is the employment outcome of interest (logged employment, hiring
rate, separation rate, etc.) in geographic region g, in industry k in period t. All findings
listed in the following section maintain the same definitions for the variables Postgt,
Eastg and EnIntk. Post is an indicator variable equal to one if the date is after the start of
the NBP.16 The NBP began in May of 2003 in eight states and in May of 2004 for eleven
states. For the eight states beginning in 2003, Post equals one for years 2004 and later.
For all other states Post equals one for years 2005 and later.17 The baseline specification

16See Figure 1 for a map of the NBP region and the year which each state began compliance. Missouri is
dropped because it did not begin until 2007 and only certain Missouri counties were required to comply.

17Results using QWI assign the start time likewise as the quarter following the NBP. Linn (2010) per-
forms a similar analysis in which he estimates the impact of the NBP on electric utility profits. His
empirical work, which examines the impact on utility stock prices, uses 2000, the year the Federal Court
of Appeals confirmed the NBP would be implemented the first date in which the policy was known to be
occurring with certainty. As can be seen in Figure 2, electricity production itself was not altered until the
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also uses a broad definition of the variable East. The definition of the treated region is
informed by the mechanism through which a change in employment would occur. I set
East equal to one for all states whose electric utility provider is impacted by the NBP.
This expands the treated region to include areas that were not directly regulated by the
NBP. The results are shown to be insensitive to alternate specifications that restrict the
treated region to only those states and counties that were directly regulated. Figure 4
provides a map of the treated region and provides additional details. Finally, the vari-
able EnIntk is a time-invariant measure of the industry’s energy intensity as defined by
total energy expenditure divided by total value of shipments for the entire industry in
1998. The primary employment specifications will be at the state level such that gkt is
state-industry-year data. Robustness checks will use county level data where a unit of
observation is at the county-industry-year level and g refers to county rather than state.

The main coefficient of interest is βt, which captures the triple interaction of an obser-
vation being in the treatment group, after the treatment has been applied and allowing
for differences by industry based on their energy-intensity level. The variables δgk and
γt represent full sets of state-industry and year indicator variables in order to control for
time-invariant differences across state-industries and any shock that occurs in a given
year and is common to all manufacturing industries and all states. A vector of vari-
ables, represented by xgkt is included in the robustness checks to ensure the results are
not being driven by omitted variables. This specification does not capture secular state
and industry trends that are unrelated to the NBP but are likely a driving source of the
employment change within a state-industry.18

These and other concerns are addressed shortly, but before discussing the results and
additional specifications, a few important details and assumptions bear mention. First,
as is common in the literature, observations are weighted by their pre-treatment 1998
employment levels to ensure that state-industries with little or no employment do not
drive the results (Greenstone 2002; Walker 2011). Second, while using aggregate state-
industry data reduces the computational burden and accounts for some of the inference
concerns raised by (Bertrand et al. 2004), given that the indentifying variation occurs
at a level higher geographic level than the state, it is crucial to account for serial and
spatial correlation of the error term to avoid understating the size of the standard errors.
The standard errors are clustered at the NBP region-Industry level to address these

NBP was implemented. For the purposes of this analysis I assume that manufacturers did not react to the
policy until electricity production was actually altered and the price of permits had been established.

18Note that the variable Eastg × EnIntk is absorbed by higher order fixed effects.
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concerns.19

A final feature to note is that the model assumes a linear effect in energy inten-
sity. When logged employment is the outcome variable, the triple difference coefficient
should be interpreted as the percentage change in employment that occurs for every ad-
ditional percentage point in energy intensity. While there are strong theoretical reasons
to believe that the most energy intensive industries will experience the greatest impact
from the NBP, deciding exactly how to model this differential impact is not immediately
straightforward. Imposing a linear assumption allows for results to be obtained in a sin-
gle DDD coefficient which is easily interpretable for the manufacturing sector as whole.
However, I provide additional results which calculate the impact of the NBP separately
on each of the 21 industries. This is done by replacing the triple interaction variable with
21 separate industry-specific triple interaction terms. Results from this non-parametric
approach, presented later, reveal that the linearity assumption is not unreasonable.

5.2 Employment Results Using County Business Patterns

The main employment results of the paper are found in Table 2 and use employment
data from the CBP, which contains data for every state-industry-year cell between 1998
and 2008. Column 1 reports estimates from the base model with additional controls
being added in each subsequent column to account for potential confounding factors.
The preferred specification is reported in column 6 and includes state trends, industry
trends as well as separate industry by region trends. Tables 3 and 4 report a variety of ro-
bustness checks using a similar table layout but alternate samples and control variables.
Each column represents a separate regression where the dependent variable is logged
employment plus one. In each table the coefficient on the primary triple difference
variable PostgtxEastgxEnIntk is reported as well as the coefficient on the PostgtxEastg

variable for those specifications in which it is not absorbed by higher order fixed ef-
fects. The coefficient on the triple difference variable signifies the percentage change in
employment that occurred for industries with an additional percentage point of energy
intensity after the policy was enacted, in the states to which it applied. The coefficient
on the variable PostgtxEastg represents any change that occurred to all manufacturing
employment in the NBP region relative to the non-NBP region apart from the differen-

19In separate results not presented here, standard errors were clustered at a variety of other levels
including state-industry, state and NBP region. Clustering at the NBP region-Industry level accounts for
spatial and serial correlation within an indstry over time and proved the most conservative of all clustering
methods.
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tial impact by energy intensity. This coefficient, when it is not absorbed by State-Year
fixed effects, is close to zero in all of the specifications, thus supporting the case that
the primary mechanism through which the policy impacted employment was through a
heterogeneous treatment effect that varied by the industry’s energy intensity.

The results of the baseline model, listed in the column 1 of Table 2, show a large but
statistically insignificant impact of the NBP on manufacturing employment in higher en-
ergy industries. The imprecise nature of these estimates is unsurprising given that much
of the employment change within a state industry is likely to be driven by exogenous
state and industry trends which are not controlled for in this base model.

Because state and industry trends are likely to be important, I consider two methods
of controlling for this source of variation. The first takes a non-parametric approach by
including a full set of industry-year and state-year indicator variables. The inclusion of
industry-year indicator variables accounts for any industry-specific shock that is com-
mon to all states in a given year while the inclusion of state-year indicator variables
accounts for any shock that is common to all manufacturing employment in a state in
a given year. The non-parametric specification provides the model with a high degree
of flexibility but the large set of indicator variables, particularly the set of state-year
dummies, are quite demanding of the data as they dramatically reduces the degrees of
freedom in the regression.20 Results using the fully non-parametric approach with sets
of state-year and industry-year indicator variables are given in column 2 of Table 2. The
triple difference coefficient is negative and statistically significant, implying that employ-
ment in high energy industries fell relative to low energy industries and relative to other
high energy industries in non-treated states.

If we are willing to relax these non-parametric trend assumptions we may continue
to account for state specific time trends by including a full set of state indicator vari-
ables that have been interacted with a linear time trend variable. While not as flexible
as the non-parametric approach, these state-specific linear trends are likely to capture a
substantial portion of the year to year change as employment levels rarely make discon-
tinuous jumps within a state from one year to the next. Column 3 reports results using
these state specific linear trends. As expected, assuming linear state trends does not
impact the magnitude of the triple difference coefficient but does shrink the standard er-
rors, thus providing a slightly tighter confidence interval. These smaller standard errors

20The dataset used in the main specification contains 11,319 observations. Including state-year indicator
variables adds 539 additional variables to the regression. Using linear instead of non-parametric state
trends reduces the number of state-trend variables from 539 to 49.
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will prove useful in upcoming specifications.
Columns 4-6 repeat the specifications used in columns 1-3 with one exception. Columns

4-6 now include separate region-by-industry trends to account the possibility that, for
example, high energy industries in the east may be trending differently than their coun-
terparts in the west before the start of the program. If high energy industries in the east
are trending down faster than high energy industries in the west then failing to account
for these trends will overstate the impact of the policy. While including these trends is
essential to accurately estimating the impact of the policy, it is also important to note
that if the NBP lead high energy industries to experience a change in employment levels
as well as a change in trends, then including these trends variables may pick up some of
the impact of the program thus masking its full effect.

The size of the estimates in Columns 4-6 are lower than their counterparts in columns
1-3 and suggest that accounting for these separate region by industry trends is impor-
tant. The new coefficients, now ranging from -1.46 to -1.16 imply a smaller but still
sizable impact of the NBP. The coefficient in column 5, which includes the full set of
539 state-year indicator variables is no longer statistically different from zero. Including
this set of fixed effects on top of the 1,029 State-Industry fixed effects is quite demand-
ing of the data. If we are willing to replace these state-year fixed effects with a more
parsimonious set of forty-nine state-specific trend variables then the coefficient becomes
statistically significant with little impact on its magnitude. This model, written out fully
in equation (2) below represents the preferred specification of the paper.

ygkt = βT(Postgt × Eastg × EnIntk) + θxgkt + δgk + αkt+

+
G

∑
g=1

β
g
trend[trendt × 1(States = g)]+

+
K

∑
k=1

βk
e [trendt × Eastg × 1(Indi = k)] +

K

∑
k=1

βk
w[trendt × Westg × 1(Indi = k)] + εgkt (2)

As described above, this model controls for industry trends non-parametrically by in-
cluding αkt, a set a industry-year fixed effects. It accounts for state trends through the use
of forty-nine state-specific linear trend variables as represented in the first summation
term. And finally, the last two summation terms represent separate region by industry
trends, which allow for industry employment to trend differently based on the region in
which it is located. The results from this model, are listed in column 6 of Table 2. The
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coefficient is -1.38 and is statistically significant at the 5 percent level. This implies that
for each additional point of energy intensity, an industry’s employment level declined
by 1.38 percent.

Interpreting the results requires careful consideration of the assumptions at hand
and the identifying variation used in the analysis. The coefficient on the triple difference
variable represents the percent employment change that occurred in an industry for
every additional percentage point of that industry’s energy intensity level. One straight-
forward way to calculate the overall employment loss due to the policy is to take the
pre-NBP employment levels in each industry, multiply them times their energy intensity
level and then times the triple difference coefficient. This calculation suggests the transi-
tion or loss of 192,000 manufacturing jobs in the NBP region as a result of the program.
While it is interesting to calculate this simple, back-of-the-envelope estimate it is, for
a number of reasons, likely to give an upper bound for the overall employment effect
for two reasons. First, as previously discussed, some workers who leave high intensity
industries and NBP states will find employment in low energy industries and non-NBP
states. Thus, if the intention is to calculate overall declines in employment in the NBP re-
gion, then this may overestimate as the number of jobs, particularly in the long run once
separating workers have found new employment. Section 5.4 explores this possibility by
examining worker flows and periods of non-employment for separating workers.

The second reason is specific to the assumptions made by the triple difference model.
With the exception of column 5, which includes state-year fixed effects, all specifications
report the coefficient on the PostxEast variable. This coefficient captures any overall
shift that may have occurred to all manufacturing employment in the NBP region rela-
tive to the non-NBP region after the policy went into effect. Deciding whether or not this
coefficient should be included as part of overall employment effect depends on the as-
sumptions the reader is willing to make. While it is possible that an overall shift occurred
due to the NBP, there are reasons to think this was not the case. First, the coefficient on
the postxeast variable is small, often positive and statistically insignificant in all specifi-
cations. That this coefficient should come close to zero is not surprising given the large
set of industry and state trends in the specification. If the positive coefficient were to
be interpreted as part of the NBP’s employment effect, this would suggest a smaller im-
pact as the differential employment loss associated with each industry’s energy intensity
would be slightly offset by an overall rise in all manufacturing employment. Given that
there are other factors likely to be driving an overall shift in manufacturing that are un-
related to the NBP, a more reasonable interpretation will allow for overall shifts to occur
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and limit the impact of the NBP to be only the employment change that varies by energy
intensity. This allows for the identifying variation to come from differential shifts that
occurred across industries based on the industries’ energy intensity level. Any event that
impacts all manufacturing employment in the east relative to the west will be controlled
for in the results.

Given that the NBP did not result in an overall shift in all manufacturing employ-
ment, a decision must still be made regarding the appropriate baseline against which
the triple difference coefficient should be judged. The back of the envelope method used
above assumes that an industry with zero energy intensity experienced zero employ-
ment change. Because all industries have energy intensity greater than zero, this would
imply that all industries experience some employment loss due to the NBP. A more con-
servative interpretation would compare the overall employment loss in the most energy
intensive industry with the loss in the least intensive industry. Under this method, we
see that the NBP caused the loss of 5.8% of employment in the most energy intensive
industry relative to the least intensive industry. More conservative yet, the triple dif-
ference coefficient implies that the average employment loss of an industry in the top
energy intensive quartile lost 4.4% of employment relative to the average industry in the
bottom quartile of the energy intensive measure.

5.3 Alternative Employment Specifications

To examine the robustness of the result in the preferred specification, I consider models
which: (1) include additional controls in the regression model; (2) more narrowly define
the treated region; (3) examine county-level rather than state-level data and (4) relax
the assumption of a linear employment effect in energy intensity. Panel A of Table 3
reports results from identical models as Table 2 but controls for exogenous changes in
fuel prices that may impact the energy costs of certain regions more than others. Any
shock in energy prices that is common to the entire country will be picked up in the
industry-year fixed effects but if, for example, there is a shock to the price of oil and
certain regions heavily rely on oil for electricity, then it is possible that these regions will
see an increase in the cost of energy that is unrelated to the NBP.21 To ensure that shocks

21Annual oil, natural gas and coal prices are the Brent Price, the Henry Hub Natural Gas spot price and
the EIA total average coal price and were downloaded from http://www.eia.gov/totalenergy/data/

annual/showtext.cfm?t=ptb0709. NERC region resource mix data comes from EPA’s eGRID summary
tables. Georgraphic boundaries of NERC regions do not always correspond to state boundary lines. For
those states which belong to more than one NERC, I assign them a fuel-intensity level equal to a weighted
sum of the fuel-intensity level of the NERCs to which they belong where the weight is the percent of
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to oil, natural gas and coal prices are not driving the results I gather data on annual fuel
prices for each of these fuels and interact these prices with the percent of electricity that
is derived from that fuel in the NERC region to which that state belongs. This variable is
then interacted with the energy intensity variable to control for the fact that high energy
industries in certain regions may be particularly sensitive to certain fuel price shocks.
The results are shown to be insensitive to these controls.

Panel B of Table 3 continues to use state level data but uses an alternate definition
for the treated region. Rather than use the broad definition described in Figure 4, this
specification defines the NBP region as only those states that were directly impacted
by the program. Using this narrower definition, North Dakota, Minnesota, Iowa, Wis-
consin, Maine, New Hampshire and Vermont are dropped from the sample. Results
using this new definition find the coefficient on the triple difference variable to be -1.57,
thus suggesting a slightly greater impact of the NBP than was found in the baseline
specification.

Table 4 provides new estimates of the NBP’s employment impact using county rather
than state level data. The use of county level data comes with both benefits and costs.
The primary reason why county data may be useful is that it allows the specifications
to control for county level changes to the NAAQS non-attainment standards that oc-
curred to 408 counties in 2004, the first year that the NBP was fully implemented. These
counties were located across the United States but a disproportionate number were lo-
cated east of the Mississippi. Using county data also allows for additional robustness
checks that allow the NBP treatment group to be defined along county rather than state
lines. While the NBP was a state level program, certain counties in both Alabama and
Michigan were ruled exempt of the regulation and can be excluded from the treated
region when using county level data.22 The major downside of the county level data is
the increased prevalence of data suppression. Due to disclosure concerns, employment
for 51% of all observations is suppressed. This represents 72% of all manufacturing
employment. When suppressed, employment is imputed by assigning the midpoint of
the employment range provided in the data. This imputation process reduces the true
employment variation in the data and raises other concerns regarding when cells may
fall into and out of suppression status. These concerns are mitigated with the use of
state data which is suppressed far less often Panel A of Table 4 reports results using a

manufacturing employment in the state that lies in that NERC region.
22As discussed earlier these counties were likely still impacted by the policy as their utility providers

produced electricity in NBP regions.
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nearly identical set of regression specifications in Table 2 but at the county rather than
state level. County-industry fixed effects control for any time invariant differences in
employment levels and industry, state and industry by region trends are controlled for
in an analogous manner. Reassuringly, Panel A reveals the county level results to be
of similar magnitude to their state level counterparts. Results are no longer statistically
significant for columns 2 and 3 but are statistically significant at the 5% level in column
6, the preferred specification which includes separate region by industry trends.

Panel B of Table 4 restricts the treated region to only the counties that were directly
impacted by the NBP. The results for the preferred specification suggest a slightly smaller
impact than suggested by the state level counterpart, but the coefficient falls well within
the confidence interval of the state level results. The final important use of the county
level data is to control for changes in county level NAAQS non-attainment standards.
To isolate the impact of the NBP from any impact of the NAAQS, I include a term in the
econometric model which interacts 2004 county NAAQS nonattainment status with the
Post and EnergyIntensity variables.23

As a final specification, I return to the state-level data and consider the effect that the
NBP had separately on each specific manufacturing industry. To do this, the main triple
difference interaction variable is replaced with 21 different industry-specific interaction
variables.24 The coefficients on the industry specific interaction variables represent the
estimated effect of the NBP on each industry. Figure 5 plots each of the resulting co-
efficients on the y-axis and the industry’s energy intensity on the x-axis. As expected,
the higher the energy intensity of the industry, the greater it was impacted by the NBP.
There are no clear outlier industries that would be driving the results in the benchmark
specification. Low energy industries generally experienced no clear impact while high
energy industries experienced a negative impact. The apparent linearity of the relation-
ship between an industry’s energy intensity and their NBP related employment change
supports the identification strategy used in the triple difference models.

23Specifically, a NAAQS non-attainment indicator variable is set equal to one for all counties that enter
non-attainment for any criterion pollutant in 2004. This variable is then interacted with the PostxEast
variable and included in the model. Panel C shows that the results in the preferred specification are
robust to including these controls.

24That is, I drop the Postst × Easts × EnIntk variable and replace it with Postst × Easts × Ind1k,
Postst × Easts × Ind2k, . . . , Postst × Easts × Ind21k where Postst × Easts has been separately interacted with
each of the twenty-one industry indicator variables (Ind1k,. . . ,Ind21k).
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5.4 Worker Flows and Earnings by Age Group: Results from the

Quarterly Workforce Indicator Data

While employment is one outcome of interest, estimating changes in industry employ-
ment levels does not fully capture the impact of regulation on workers. Of great interest
is how these employment shifts occurred, who was impacted and whether workers ex-
perienced a drop in earnings. These are all crucial, policy-relevant outcomes that are
not captured by simply measuring changes in industry employment levels. To capture
these important outcomes, I turn to data from the QWI. As discussed in Section 4 and
the data appendix, the QWI has advantages and disadvantage in comparsion to the CBP.
As a validity check, it is useful to begin by replicating the primary employment regres-
sion descriced in equation (2) using the QWI data. Column of Table 5 shows the DDD
estimate using QWI data to be smaller (-0.871 as compared to -1.38) but it remains neg-
ative and statistically significant at the 5% level. That these two estimates differ is not
altogether surprising given that the QWI contains only forty states.

Columns 2 through 5 of Table 5 estimate the impact of the regulation on job flows,
using a similar specification to that described in equation (2). The hiring rate, defined as
the number of new quarterly hires divided by the total employment, is shown to have
declined for energy intensive industries. The coefficient of -0.225 implies that for every
additional percentage point in energy intensity, an industry decreased their hiring rate
by .225 percentage points. The average hiring rate for all industries over this time period
was 6.9 per 100 employees. This coefficient would imply that there were 1.24 fewer hires
per 100 workers in the most energy intensive industry. The programs impact on sepa-
ration rates is not precisely estimated. Coefficients points negative but are statistically
insignificant.

Regression results are also reported for job creation and destruction rates. Job cre-
ation is defined as the employment increase at expanding establishments while destruc-
tion is defined as the employment decrease at contracting establishments. Previous work
by Davis and Haltiwanger (2001) has shown destruction rates increase in response to en-
ergy price increases. Walker (2011) finds that regulation both increases destruction and
decreases creation. While the coefficient estimates in columns 4 and 5 are imprecisely
measured, it is of interest that they both point negative.

Table 6 reports the major findings for each of the key variables in the QWI by age
group. Each cell reports the results of a separate regression using a different outcome-
population combination. All regressions use the main specification listed in equation (2).
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The first row of Table 6 uses the entire population of workers. The first three columns
of this row are therefore identical to the first three columns of Table 5. Columns 4
through 6 now report results examining the impact of the program on three different
outcome variables: Periods of non-employment for separating workers, average earnings
of new hires and average earnings of all workers. The QWI calculates periods of non-
employment for separators calculating the average length of time separated workers are
not observed in UI data following their separations. Each separated worker is defined as
having a quarter of non-emoloyment if they are not observed working for any firm in the
quarter following their separation. Each separated worker is tracked for four quarters
following the separation. This variable, while somewhat crude, provide a sense of how
workers fare after separating from their jobs. For example, over the recession, average
quarters of non-employment for separating workers jumped from 1.6 to 2.1. If workers
who separated from regulated industries see no increase in periods of non-employment,
this suggests they may have shifted quickly to other jobs. An increase in this variable,
particularly for middle aged workers, suggest regulation may have forced people into
unemployment. See the Data Appendix for more details on this variable.

Regression results are unable to capture any impact on periods of non-employment.
The coefficient points negative for all workers, is positive for young workers and turns
negative for older workers. While it is of interest that there is no clear increase in periods
of non-employment for separating workers in regulated industries, given the noisiness
of this variable no meaningful conclussions can be drawn.

Earnings are also crucially important to an understanding of how regulations impact
labor markets. Columns 5 and 6 report results using the same mthodology to examine
the regulation’s impact on earnings and specifically new hire earnings. As noted by Cur-
tis et al. (2013), the effects of labor demand shocks will be more evident in new hire flows
rather than the overall wage levels which will dominated by incumbents. The QWI pro-
vides data not only on average earnings of all workers, but also on the average earnings
of all new hires. Due to existing wage contracts, firms that experience negative shocks,
such as an increase in energy costs, may be unable to reduce the wages of incumbent
workers. New hire earnings provide a margin over which firms are most likely to be
able to adjust. Regression results reported in columns 5 and 6 support this claim. While
the NBP appears to have no distinguishable effect on earnings of all workers, there is
a statistically significant decline in the earnings of new hires. This decline is common
across age categories with a coefficient of -1.277 for all workers. This implies a decline
in new hire earnings of 4.2% for industries in the top quartile of the energy intensity in-
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dex compared with those in the bottom quartile. No decline is observed when examing
average earnings of all workers which consists primarily of incumbent workers whose
contracts were negotiated before the regulation.

The final important aspect of these findings is the break down of the regulation’s
effect on each age grouping. Column 1 shows that the young workers, particularly
those in the 19-21 and 22-24 age groupings, experienced the largest percent employment
declines. Losses are less severe and statistically insignificant for older workers in the
45-54 and 55-64 categories but increase again for workers 65 and over. Separation rates
decline for the youngest two categories, none of the age groups experience an increase
in periods of non-employment following a separation and the earnings of new hires
are shown to decline for all ages. While the 95% confidence intervals overlap for the
employment age group coefficients, they suggest a heterogeneous impact along the age
dimension.

5.5 Event-Time Models

To understand how the effects of the policy evolved over time it is useful to perform an
event-time study. In the context of the above models, an event-time study tracks how
the coefficient on the variable Eastg × EnIntk changes throughout the study period. I
use the second quarter of 2003 to be the start date and normalize the coefficient for this
period to be zero. Specifically I estimate the following model:

ygkt =
44

∑
t=1

βt
T[1(Qtrq = t)× Eastg × EnIntk)] + βpen(Postst × EnIntk)+

+
G

∑
g=1

β
g
trend[trendt × 1(States = g)] + θxgkt + δgk + αkt + εgkt (3)

This model mirrors that of equation (2) but removes the industry specific east-west
trends and replaces the triple interaction variable with forty-four event-time coefficients.
This model allows us to view trends both before and after the implementation of the
NBP. Figure 6 plots he event-time coefficents on the logged employment model. The
coefficients before the policy are slightly positive but none are statistically different from
zero. The coefficients become negative after the NBP’s implementation with zero falling
outside of their confidence intervals.

As a comparison, Figure 7 reports the same coefficients where the left hand side
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variable is periods of non-employment for separating workers. The pattern here is quite
distinct from that seen in Figure 6. Here, the coefficients consistently hover around zero
and are not statistically significant before or after the NBP. The NBP appears to have had
no noticeable impact on periods of non-employment for separating workers. This anaysis
is a particularly important compliment to the the DDD model for this variable. DDD
models takes the average of the pre-period and compares it to the average outcome in
the post period. This model may not uncover an impact of the policy if the impact is short
lived. By contrast event-time studies capture quarter-specific policy effects. The plot in
Figure 7 shows that there was no clear positive spike in quarters on non-employment for
separating workers in any of the quarters following the NBP.

6 Discussion

Taken as a whole, the results paint a picture of how labor markets in energy intensive
industries respond to energy sector regulation. The findings show that employment in
industries in the top quartile declined 4.4% compared to manufacturing employment
in the bottom quartile. This employment decline provides evidence of a labor demand
shock, but there are important, policy relevant measures that the employment decline
does not capture. To gain a more complete picture of the labor market impact, it is
useful to look at how the declines, occurred, which workers were impacted and how
wages changed in response to the policy.

Results suggest that the employment drop occurred primarily through a decrease in
hiring rates rather than an increase in separation rates. It is unsurprising then that young
workers, a group with high turnover, experienced the largest employment declines as a
result of the policy. These workers are likely to have less firm and industry-specific
capital and have high turnover rates.25 While young workers experience a decline in
separation rates, they continue to separate at higher rates than older workers. The de-
cline in firm hiring rates thus results in these workers not being replaced.26

Separating workers, regardless of their age, did not experience increased periods
of non-employment following their regulation. While more research and better data is
needed, this, together with the decline in the hiring rate suggests that firms may have

25For example, quarterly turnover rates, defined as (hiresq + separationsq)/(employmentq × 2) were
roughly 0.13 compared to 0.05 for workers 45-54.

26Jacobson et al. (1993) and Walker (2012) both find that young workers experience faster earnings
recovery following job displacement than older workers.
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reduced employment through natural separations, such as job-to-job transitions rather
than layoffs. Given the presence of labor adjustment costs, such as severance packages
and increased unemployment insurance taxes, it is not surprising that firms will choose
to adjust to small demand shocks primarily through natural separations.27 Distinguish-
ing between layoffs and natural separations (job-to-job transitions and retirements) is
important. A variety of studies have found that workers who experience mass displace-
ment events experience extended periods of unemployment, large earnings losses and
increased mortality rates (Sullivan and von Wachter 2009; Davis and von Wachter 2011;
Farber 2011).

Earnings results show that firms reduced their wage offers to new workers but that
average earnings of all workers experienced little to no change. This, together with
the worker flow findings, suggest that incumbent workers do not bear the brunt of
regulation’s impact. The effects are felt by future workers who receive lower wages, and
potential future workers, who are no longer hired due to the regulation. These effects are
important to labor markets and the economy but are quite distinct from the traditional
job loss story that portrays long-time incumbent workers as the primary losers from
environmental regulation.

7 Plausibility Check: Electricity Results

In order to evaluate the plausibility of the employment loss figures, it is useful to revisit
the causal mechanisms that connect the NBP to declines in manufacturing employment.
First, large manufacturing plants that were directly regulated by the program may have
made employment adjustments on their intensive margin in response to the new costs
imposed upon them. Second, energy intensive firms may have chosen to locate new
large industrial plants in regions where they would not be subject to these new di-
rect regulations. A third way in which the NBP affected manufacturing employment is
through electricity prices. Firms may have adjusted their input bundle in response to
either increased uncertainty regarding the future price of electricity or to an actual price
increase.

These causal mechanisms suggest two primary strands of literature which may be
useful in interpreting the magnitude and plausibility of the findings. The first is to
simply compare these findings with previous work on environmental regulation and

27There is a large literature on firm adjustment costs and their implications. See Hamermesh (1989),
Caballero and Engel (1993), Bloom et al. (2007) and Cooper and Willis (2009) for a few examples.
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manufacturing employment. The second is to evaluate the NBP’s impact on industrial
electricity prices and then determine if the employment results fit in line with previous
estimates of the employment electricity price elasticity. Labor markets may also have
reacted to energy price uncertainty brought on by the regulation. While there is little
empirical work on the employment effect of energy price uncertainty, to the best of my
knowledge, only two ex-ante simulations of the NBP estimated the impact it would have
had on electricity prices and there have been no ex-post studies. The first, performed
by the EPA (1999) predicted an increase in electricity prices of 1.6%. The second, per-
formed by Platts Research and Consulting titled "The NOx Challenge" (2003), predicted
an increase of $1-$3/MWh in the price of wholesale electricity or an increase of between
2.47% and 7.42%. Fowlie (2010) notes that in every state where electricity is regulated,
firms successfully petitioned for rate base adjustments in order to cover the compliance
costs of the NBP. Linn (2010) and Deschenes et al. (2012) estimate the NBP’s cost on
utilities, but to my knowledge, there has been no ex-post evaluation of the program’s
impact on electricity prices.

Using a similar differences-in-differences technique as that employed in the previ-
ous section, I can examine whether the predicteded increases in the price of electricity
occurred in states that were subject to the NBP. Table 7 presents the results of these elec-
tricity price regressions. As discussed in the previous section, controlling for the price of
fuels used in electricity production is important if certain regions in the country have a
relatively high reliance on certain fuels to produce electricity. Using the same technique
as in the robustness check, I interact the average annual fuel price with the percent of
electricity that is derived from that fuel in the NERC region and include these terms in
the regression. This allows for the electricity price in regions with high reliance on cer-
tain fuels to vary with the price of those fuels. Column 2 contains the results with a full
set of state and year fixed effects. The coefficient on the PostxEast variable indicates that
the NBP increased industrial electricity prices by approximately 5.8% in states impacted
by the NBP. Column 3 includes separate East and West trends and while the coefficient
is less precisely estimated it remains positive and of an economically significant magni-
tude. In short, the results in Table 7 suggest that the NBP led to an increase in the price
of electricity and while the estimates are not always precisely estimated, they fall within
the range provided in ex-ante simulations.

Using this figure together with the employment loss calculated in the previous section
allows us to estimate the implied employment electricity price elasticity associated with
the NBP and to compare it to recent studies which have sought to estimate this elasticity.
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Deschenes (2010) estimates an employment electricity price elasticity of -0.10. Using only
manufacturing employment, Kahn and Mansur (2010) find an employment electricity
price elasticity ranging between -0.15 for the computer products industry to -1.17 for the
energy intensive primary metals industry. Using results from columns 2 and 3 of Table 7
along with the primary employment findings in column 6 of Table 2, this paper suggest
an employment electricity price elasticity of between -0.12 and -0.20 for the computer
products industry and between -1.12 and -1.88 for the primary metals industry. The
implied elasticities associated with the NBP in this study fall more in line with the Kahn
and Mansur range.

Although imprecisely estimated, the electricity price results together with a reason-
able employment electricity price elasticity adds credence to the main employment find-
ings. To be clear, this elasticity estimate is meant to serve as a plausibility check to the
employment finding in the previous section and should not be interpreted as a stand-
alone, well identified employment electricity price elasticity. Again, the NBP is likely
to have had other impacts on employment in energy intensive manufacturing industries
that did not occur through its’ impact on electricity prices. Most obviously, the NBP di-
rectly regulated the energy production (in the form of heat, steam and electricity) of 140
large manufacturing plants. Furthermore, energy intensive manufacturing firms may
have responded to the uncertainty the NBP created in the markets rather than an actual
increase in electricity prices themselves. Attributing the entire employment change to
electricity prices will overstate the magnitude of the elasticity. Nevertheless, as a plau-
sibility check, the estimates are reassuringly in line with previous estimates, lending
confidence to the overall employment effects.

8 Conclusion

This paper has examined the impact of the NOx Budget Trading program on a variety of
labor market outcomes. Employment is seen to have declined among energy intensive
manufacturing industries. This decline occurred largely as a result of firms decreasing
hiring rates. Employment declines were most severe for young workers, but even for this
group there is no evidence suggesting increased periods of non-employment for separat-
ing workers. Wage offers to new workers fell following the regulations, but incumbent
workers say no decline in earnings. These findings also suggest that natural separations
are an important mechanism by which firms adjust to demand shocks.

Looking forward, future research should perform ex-post evaluations of energy sec-
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tor regulation’s impact on electricity prices. While a number of papers have examined
the impact of energy prices on employment (Davis and Haltiwanger 2001; Deschenes
2010; Kahn and Mansur 2010), there have been surprisingly few ex-post studies of regu-
lation’s impact on energy prices. More precise estimates of these impacts will permit a
better understanding of the causal mechanisms at play.
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Figures and Tables

Figure 1: NBP Compliance Region

NBP Compliance Dates
NBP Start Date: May, 2003
NBP Start Date: May, 2004
NBP Start Date: May, 2007
Not Subject to the NBP
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Figure 2: NOx Emissions From all NBP Affected States

2000

4000

6000

8000

10000

N
O

x 
E

m
is

si
on

s 
(T

on
s)

Jan 1 Apr 1 Jul 1 Oct 1
Date

2002 NOx Emissions 2004 NOx Emissions 

While some northeastern states began in 2003, the program started in full on May 30,
2004. This graph plots daily NOx emissions in 2002, when no states were participating,
and 2004 for the nineteen participating states. There is a visible reduction in the amount
of NOx emissions in NBP states beginning on the start date that is not present in 2002.
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Figure 3: East-West Difference in Employment by Energy-Intensity Grouping
−

.1
5

−
.1

−
.0

5
0

1998 2000 2002 2004 2006 2008
year

High Energy Industries Medium Energy Industries
Low Energy Industries

Note: Each point is calculated by empg,t,east
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. This shows the percent em-
ployment change in the east minus the percent employment change in the west. Here t
is the year (1998-2008), g is energy intensity group (low, medium, high) and empg,t,east
is the total employment for industry grouping g in east (treated) region in year t. All
east-west differences assume the 1998 difference to be the baseline difference, set to zero,
against which future differences can be compared. The vertical lines are drawn at 2001,
after the policy was approved and 2003, the year the NBP went into effect.
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Figure 4: NBP Treated Region

NBP "Treatment" Region
Untreated Region

Note: An area is defined as treated if its electricity provider is part of an ISO with
coal-burning power plants that were subject to the NBP. For example, Iowa, Minnesota,
Wisconsin and North Dakota, while not part of the geographic area of the NBP are
part of the Midwest Independent System Operator whose geographic region includes
Indiana, Illinois and Michigan.
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Figure 5: Industry Coefficients Vs. Energy Intensity
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Note: This chart plots the each industry specific triple difference coefficient against
that industry’s energy intensity measure. The coefficients are obtained by replacing the
PostxEastxEnInt variable with 21 industry specific triple interaction variables (PostxEastxInd1,
PostxEastxInd2, . . . , PostxEastxInd21) and then running the specification described in
equation (2). Other model specifications yield similar plots.
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Figure 6: Impact of NBP on Employment by Quarter
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Note: This chart plots the coefficient estimates from a version of equation 3 where the
outcome variable is logged employment. Specifically, it plots the coefficients on the event
time indicator variables which demonstrate how the impact of the policy on employment
evolved over time. The dashed lines represent the 95% confidence intervals. Before the
policy the coefficients are slightly above zero but statistically insignificant. After the
policy the coefficients fall below zero and their confidence intervals do not include zero.
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Figure 7: Impact on Periods of Non-employment for Separating Workers by Quarter
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Note: This chart plots the coefficient estimates from a version of equation 3 where the
outcome variable is periods of non-employment for separating workers. Specifically, it
plots the coefficients on the event time indicator variables which demonstrate the impact
of the policy on periods of non-employment for separating workers evolved over time.
The dashed lines represent the 95% confidence intervals. The coefficients are always
close to zero and are never statistically distinguishable from zero.
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Table 1: Energy Intensity of 3-Digit NAICS Manufacturing Industries

NAICS 3-Digit Code Industry Description Energy Intensity Level
311 Food Manufacturing 1.46%
312 Beverage and Tobacco Product Manufacturing 0.71%
313 Textile Mill 3.47%
314 Textile Product Mill 1.33%
315 Apparel Manufacturing 1.03%
316 Leather and Allied Product Manufacturing 0.98%
321 Wood Product Manufacturing 1.84%
322 Paper Manufacturing 4.32%
323 Printing and Related Support Activities 1.27%
324 Petroleum and Coal Products Manufacturing 2.88%
325 Chemical Manufacturing 3.25%
326 Plastics and Rubber Products Manufacturing 2.18%
327 Nonmetallic Mineral Product Manufacturing 4.96%
331 Primary Metal Manufacturing 5.46%
332 Fabricated Metal Product Manufacturing 1.59%
333 Machinery Manufacturing 0.79%
334 Computer and Electronic Product Manufacturing 0.61%
335 Electrical Equipment, Appliance, and Component Manufacturing 1.00%
336 Transportation Equipment Manufacturing 0.63%
337 Furniture and Related Product Manufacturing 0.97%
339 Miscellaneous Manufacturing 0.78%

Note: The energy intensity measure is created by dividing the industry’s total energy
expenditure by their total value of shipments. These variables are obtained from the
NBER Productivity Database and use 1998 values.
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Table 2: Employment Results: County Business Patterns
(1) (2) (3) (4) (5) (6)

ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp)
PostxEastxEnInt -3.861 -2.293∗∗ -2.301∗∗ -1.458∗ -1.164 -1.385∗∗

(2.991) (0.966) (0.869) (0.798) (0.729) (0.631)
PostxEast 0.0024 0.0155 0.0113 0.0043

(0.0799) (0.0166) (0.0151) (0.0164)

State-Ind FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes
Ind-Year FE Yes Yes Yes Yes
State-Year FE Yes Yes
State Linear Trend Yes Yes
E / W Ind Trends Yes Yes Yes

Observations 11,319 11,319 11,319 11,319 11,319 11,319
R-Squared 0.985 0.994 0.994 0.993 0.994 0.994
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table reports the main employment results using versions of equations (1)
and (2). Robust standard errors are reported in parentheses and are clustered at the NBP
Region-industry level. Results are not sensitive to clustering at other levels including,
but not limited to, state, industry and state-industry. Column 1 gives the results using
equation (1). Column 2 includes industry-year and state-year fixed effects and Column
3 includes state linear trends and industry-year fixed effects. Columns 4 through 6
repeat the specificatios in columns 1 through 3 but now each industry is allowed to
trend differently based on it’s location. For example, steel industries in the east have a
separate trend than steel industries in the west. The coefficient on the PostxEast variable
drops whenever State-Year fixed effects are included.
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Table 3: Employment Results: State Robustness Checks

Panel A: Fuel Price / Composition Controls
(1) (2) (3) (4) (5) (6)

ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp)
PostxEastxEnInt -4.405 -2.509∗∗ -2.459∗∗∗ -1.247 -1.379∗ -1.326∗∗

(3.203) (1.037) (0.904) (0.909) (0.711) (0.633)
PostxEast 0.0100 0.0184 0.0083 0.0039

(0.0816) (0.0162) (0.0165) (0.0164)

Observations 11,319 11,319 11,319 11,319 11,319 11,319
Panel B: Restricted NBP Region

PostxEastxEnInt -3.925 -2.185∗∗ -2.247∗∗∗ -1.739∗∗ -1.207∗ -1.575∗∗∗

(3.329) (0.866) (0.798) (0.821) (0.664) (0.554)
PostxEast -0.0100 0.0130 0.0135 0.00397

(0.0901) (0.0137) (0.0152) (0.0142)

Observations 9,240 9,240 9,240 9,240 9,240 9,240
State-Ind FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes
Ind-Year FE Yes Yes Yes Yes
State-Year FE Yes Yes
State Linear Trend Yes Yes
E / W Ind Trends Yes Yes Yes
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: These results use the same specifications as those reported in table 2. Panel
A controls for changes in fuel prices that may disproportionately affect certain regions.
Panel B limits the NBP region to only states which are directly regulate. States which
were part of the NBP region but are not directly regulated are dropped from the speci-
fication. See the text for additional details.
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Table 4: Employment Results: County Robustness Checks

Panel A: Base Regressions
(1) (2) (3) (4) (5) (6)

ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp) ln(Emp)
PostxEastxEnInt -3.223 -1.510 -1.456 -1.546∗ -1.465 -1.250∗∗

(2.847) (0.898) (0.932) (0.896) (0.889) (0.597)
PostxEast 0.0156 -0.0003 0.0108 -0.0033

(0.0803) (0.0159) (0.0161) (0.0153)

Observations 374,356 374,356 374,356 374,356 374,356 374,356
Panel B: Restricted NBP Region

PostxEastxEnInt -3.270 -1.416 -1.318 -1.689∗ -1.550 -1.211∗

(2.997) (0.897) (0.913) (0.955) (0.943) (0.655)
PostxEast -0.0293 -0.0084 0.00980 -0.0102

(0.0852) (0.0156) (0.0168) (0.0161)

Observations 320,323 320,323 320,323 320,323 320,323 320,323
Panel C: NAAQS Controls

PostxEastxEnInt -3.326 -1.573∗ -1.523 -1.651∗ -1.540∗ -1.345∗∗

(2.825) (0.914) (0.935) (0.915) (0.912) (0.593)
PostxEast -0.0161 0.0083 0.0096 -0.0025

(0.0806) (0.0162) (0.0157) (0.0152)

Observations 374,356 374,356 374,356 374,356 374,356 374,356
State-Ind FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes
Ind-Year FE Yes Yes Yes Yes
State-Year FE Yes Yes
State Linear Trend Yes Yes
E / W Ind Trends Yes Yes Yes
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Note: See text for additional details.
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Table 5: Job and Worker Flows

(1) (2) (3) (4) (5)
VARIABLES ln(Emp) Hiring Separation Job Creation Job Destruction

Rate Rate Rate Rate

PostxEastxEnint -0.871** -0.225** -0.187 -0.140 -0.104
(0.411) (0.0999) (0.128) (0.0919) (0.118)

Observations 33,596 33,256 33,272 33,511 33,511
*** p<0.01, ** p<0.05, * p<0.1

Note: Robust standard errors in parentheses are clustered at the NBP region-industry
level. Each column represents the regression coefficient on the triple interaction variable
from the model in equation (2) using a different outcome variable.
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Table 6: Employment, Flows and Earnings by Age Group
(1) (2) (3) (4) (5) (6)

ln(Emp) Hires Rate Seps Rate Seps: Qtrs of ln(New Hire ln(Avg
Non-Emp Earnings) Earnings)

All -0.871∗∗ -0.225∗∗ -0.187 -0.516 -1.277∗∗∗ 0.435
(0.411) (0.0999) (0.128) (0.636) (0.470) (0.299)

Age 19-21 -1.939∗∗ -0.0559 -0.477∗∗ 0.719 -0.689∗ -0.387
(0.722) (0.254) (0.179) (0.585) (0.352) (0.274)

Age 22-24 -2.121∗∗∗ -0.288∗ -0.358∗∗ 0.688 -0.737∗ -0.417
(0.647) (0.171) (0.163) (0.738) (0.400) (0.287)

Age 25-34 -0.860 -0.144 -0.154 0.0354 -0.982∗∗ 0.141
(0.588) (0.122) (0.126) (0.699) (0.436) (0.217)

Age 35-44 -0.861∗∗ -0.222∗∗ -0.149 -0.170 -1.214∗∗ 0.370
(0.398) (0.0868) (0.142) (0.723) (0.482) (0.332)

Age 45-54 -0.718 -0.156 -0.0986 -0.724 -0.887 0.434
(0.521) (0.117) (0.136) (1.216) (0.550) (0.327)

Age 55-64 -0.304 -0.113 -0.214 -0.984 -1.877∗∗ 0.303
(0.387) (0.105) (0.138) (1.370) (0.723) (0.328)

Age 65-99 -0.748∗ -0.0391 -0.0635 -1.829 -1.664 0.361
(0.400) (0.0927) (0.0888) (1.111) (1.267) (0.484)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Electricity Price Regressions
(1) (2) (3)

ln(Elec Price) ln(Elec Price) ln(Elec Price)
PostxEast 0.0456 0.0587∗ 0.0350

(0.0321) (0.0322) (0.0319)
PerCoalxCoalPrice 0.0228∗∗∗ 0.0121 0.0122

(0.0054) (0.0122) (0.0121)
PerOilxOilPrice 0.0091∗∗∗ 0.0088∗∗∗ 0.0089∗∗∗

(0.0008) (0.0010) (0.0009)
PerNatGasxNatGasPrice 0.0663∗∗∗ 0.0811∗∗∗ 0.0819∗∗∗

(0.0126) (0.0231) (0.0229)

State FE Yes Yes Yes
Year FE Yes Yes
E / W Trends Yes

Observations 539 539 539
R-Squared 0.918 0.924 0.925
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: See text for details on fuel prices. Standard errors are robust and clustered at
the state level. The dependent variable is log of average industrial electricity prices in a
state-year.
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A Data Appendix

County Business Patterns does not report observations for which there is no employ-
ment in a given year. If firms shutdown and employment in a state-industry goes from
1,000 one year to zero the following year then this drop will not be observed because
there will be no record for the zero employment (the same issue could occur in reverse.
whereby employment growth that is attributable to new establishments locating in a
state-industry with zero previous employment will not be captured because the zero
employment wasa not observed in the prior years. To address this concern, I create a
balanced panel of every state-industry between 1998 and 2008 by adding zeros when
there is no record listed in the CBP. Data that is suppressed for disclosure purposes is
imputed by the method used by Kahn and Mansur (2010) as described in the text. Other
methods of imputation were explored, but results were not sensitive to the use of other
methods.

Employment data is observed for 49% of county-industry pairings. Observed cells
contain 68% of all employment in the U.S. A large percent of the overall employment re-
mains because employment is only suppressed for observations with few establishments.
Also, some noise is infused in observations for which there are few establishments, but
these noise infusions are always less than 5%, sum to zero at the state level and are made
in fewer than 5

The QWI is the seond source of data in this paper. It is built from state Unemploy-
ment Insurance records and contains 98% of all private-sector, non-agriculture employ-
ment at high levels of demographic, geographic and industry detail. Importantly, it
contains data on job and worker flows. A job is a relationship between a worker and an
establishment where the worker receives positive earnings from that establishment in a
quarter. Unlike the CBP, there is no way to impute suppressed data.

Quarterly Workforce Indicator data is also suppressed at times though this is likely
to bias against finding a result. If small drops in employment lead to an observation be-
coming suppressed, then it is possible that employment declines resulting from the NBP
will not be observed if the observation becomes suppressed. This would bias against
finding a result. The ten states not included in the QWI results are Alabama, Arkansas,
Arizona, Kentucky, Massachusetts, Michigan, Mississippi, Missouri, New Hampshire
and Wyoming.

Hiring, Separations, Creations and Destructions are all refer to stable jobs. A job
is considered stable if the worker receives positive earnings from the establishment for
three consecutive quarters. Periods of non-employment for separating workers is ob-
tained by tracking each worker that separates from their firm for the following four
quarters. If they are not observed working at any other employer then they are as-
signed four quarters of non-employment. If, in the quarter following their separation
they are observed working at another firm, then they are assigned zero quarters of non-
employment. Currently, the QWI is only able to track workers if they find employment
in the same state in which they separated. Using state-industry fixed effects accounts
for, among other things, time-invariant differences that may arise due to a state’s size.
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EPA’s website provides a list of regulated plants in the NBP. Based on the author’s
calculation, 93% of regulated manufacturing facilities are in the high intensity industry
grouping as defined in section 5.
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