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Abstract

Productivity dispersion across firms is large and persistent, and worker reallocation among
firms is an important source of productivity growth. The purpose of the paper is to estimate the
structure of an equilibrium model of growth through innovation that explains these facts. The
model is a modified version of the Schumpeterian theory of firm evolution and growth developed
by Klette and Kortum (2004). The data set is a panel of Danish firms than includes information
on value added, employment, and wages. The model’s fit is good and the structural parameter
estimates have interesting implications for the aggregate growth rate and the contribution of
worker reallocation to it.
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1 Introduction

In their review article, Bertelsman and Doms (2000) draw three lessons from empirical productivity

studies based on longitudinal plant and firm data: First, the extent of dispersion in productivity

across production units, firms or establishments, is large. Second, productivity rank of any unit in

the distribution is highly persistent. Third, a large fraction of aggregate productivity growth is the

consequence of worker reallocation.

Although the explanations for productive firm heterogeneity are not fully understood, economic

principles suggest that its presence should induce worker reallocation from less to more productive

firms as well as from exiting to entering firms. There is ample evidence that workers do flow from

one firm to another frequently. As Davis, Haltiwanger and Shuh (1996) and others document, job

and worker flows are large, persistent, and essentially idiosyncratic in the U.S. Recently, Fallick and

Fleischman (2001) and Stewart (2002) find that job to job flows without a spell of unemployment

in the U.S. represent at least half of the separations and is growing. In their analysis of Danish

matched employer-employee IDA data, Frederiksen and Westergaard-Nelsen (2002) report that the

average establishment separation rate over the 1980-95 period was 26%. About two thirds of the

outflow represents the movement of workers from one firm to another.

In a companion paper, Lentz and Mortensen (2004) develop a stochastic general equilibrium

model in which more profitable firm’s grow faster and contribute more to the aggregate growth

rate through product innovation. The model is a variation on that proposed by Klette and Kortum

(2004), which itself builds on the endogenous growth model of Grossman and Helpman (1991). By

design, their model is consistent with stylized facts about product innovation and its relationship

to the dynamics of firm size evolution. We adopt the approach because it provides an explanation

for the fact that there is no correlation between labor force size and labor productivity but a strong

positive association between value added and labor productivity in Danish firm data. Furthermore,

the model provides a direct link between worker reallocation and productivity growth.

In the model, firms are monopoly suppliers of differentiated intermediate products that serve as

inputs in the production of a final consumption good. Better quality products are introduced from

time to time as the outcome of R&D investment by both existing firms and new entrants. As new
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products displace old, the process of creative destruction induces the need to reallocate workers

across productive activities. In the version of the model estimated here, product quality differs

across firms. In our earlier paper, we established the existence of a general equilibrium solution to

the model. In this one, we use the equilibrium relationships implied by the model and information

drawn from a Danish panel of firms to estimate the model’s parameters.

Given the parameter estimates obtained, we explore the model’s quantitative implications for

productivity growth and its sources. We find that the reallocation of workers from less to more

productive surviving firms accounts for over 39% of productivity growth in equilibrium. We also

show that the rate of growth implied by the solution to the social planner’s problem is almost six

times larger than the equilibrium growth rate. In the solution to the planner’s problem, firms that

can develop highes quality products invest much more in R&D than they do in equilibrium. As

a consequence, reallocation among surviving firms accounts for the lion’s share, 96%, of the much

larger growth rate.

2 Danish Firm Data

Danish firm data provide information on productivity dispersion and the relationships among pro-

ductivity, employment, and sales. The available data set is an annual panel of privately owned

firms for the years 1992-1997 drawn from the Danish Business Statistics Register. The sample of

approximately 6,700 firms is restricted to those with 20 or more employees. The variables observed

in each year include value added (Y ), the total wage bill (W ), and full-time equivalent employment

(N). In this paper we use these relationships to motivate the theoretical model studied. Both Y

and W are measured in Danish Kroner (DKK) while N is a body count.

Non-parametric estimates of the distributions of two alternative measures of a firm’s labor

productivity are illustrated in Figure 1. The first measure of firm productivity is value added per

worker (Y/N) while the second is valued added per unit of quality adjusted employment (Y/N∗).

Standard labor productivity misrepresents cross firm productivity differences to the extent that

labor quality differs across firms. However, if more productive workers are compensated with

higher pay, as would be true in a competitive labor market, one can use a wage weighted index of
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Figure 1: Productivity Distributions.

employment to correct for this source of cross firm differences in productive efficiency. Formally,

the constructed quality adjusted employment of firm j is defined as N∗
j =Wj/w where

w =

P
j WjP
j Nj

(1)

is the average wage paid per worker in the market. Although correcting for wage differences across

firms in this manner does reduced the spread and skew of the implied productivity distribution

somewhat, both distributions have high variance and skew and are essentially the same general

shape.

Both distributions are consistent with those found in other data sets. For example, productivity

distributions are significantly dispersed and skewed to the right. In the case of the adjusted measure

of productivity, the 5th percentile is roughly half the mode while the 95th percentile is approximately

twice as large are the mode. The range between the two represents a four fold difference in value

added per worker across firms. These facts are similar to those reported by Bertelsman and Doms
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Table 1: Productivity — Size Correlations

Employment (N) Adjusted Employment (N*) Value Added (Y)
Y/N 0.0331 0.1397 0.3944
Y/N* 0.0114 -0.0076 0.2618

(2000) for the U.S.

There are many potential explanations for cross firm productivity differentials. A comparison of

the two distributions represented in Figures 1 suggests that differences in the quality of labor inputs

does not seem to be the essential one. The process of technology diffusion is a well documented.

Total factor productivity differences across firms can be expected as a consequence of slow diffusion

of new techniques. If technical improvements are either factor neutral or capital augmenting,

then one would expect that more productive firms would acquire more labor and capital. The

implied consequence would seem to be a positive relationship between labor force size and labor

productivity. Interestingly, there is no correlation between the two in Danish data.

The correlations between the two measures of labor productivity with the two employment

measures and sales as reflected in value added are reported in Table 1. As documented in the table,

the correlation between labor force size and productivity using either the raw employment measure

or the adjusted one is zero. However, note the strong positive associate between value added and

both measures of labor productivity. Non-parametric regressions of value added and employment

on the two productivity measures are illustrated in Figure 2. The top and bottom curves in the

figures represent a 90% confidence interval for the relationship. The positive relationships between

value added and both measure of labor productivity are highly significant.

The theory developed in this paper is motivated by these observations. Specifically, it is a

theory that postulates labor saving technical progress of a specific form. Hence, the apparent fact

that more productive firms produce more with roughly the same labor input per unit of value added

is consistent with the model.
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Figure 2: Firm Size-Productivity Relationships.

3 An Equilibrium Model of Creative Destruction

As is well known, firms come is an amazing range of shapes and sizes. This fact cannot be ignored

in any analysis of the relationship between firm size and productivity. Furthermore, an adequate

theory must account for entry, exit and firm evolution in order to explain the size distributions

observed. Klette and Kortum (2004) construct a stochastic model of firm product innovation and

growth that is consistent with stylized facts regarding the firm size evolution and distribution. The

model also has the property that technical progress is labor saving. For these reasons, we pursue
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their approach in this paper.

Although Klette and Kortum allow for productive heterogeneity, firm productivity and growth

are unrelated because costs and benefits of growth are both proportional to firm productivity in

their model. Allowing for a positive relationship between firm growth and productivity is necessary

for consistency with the relationships found in the Danish firm data studied in this paper.

3.1 Preferences and Technology

Intertemporal utility of the representative household at time t is given by

Ut =

Z ∞

t
lnCse

−ρ(s−t)ds (2)

where lnCt denotes the instantaneous utility of the single consumption good at date t and ρ

represents the pure rate of time discount. Each household is free to borrow or lend at interest rate

rt. Nominal household expenditure at date t is Et = PtCt. Optimal consumption expenditure must

solve the differential equation Ė/E = rt− ρ. Following Grossman and Helpman (1991), we choose

the numeraire so that Et = 1 for all t without loss of generality, which implies rt = r = ρ for all

t. Note that this choice of the numeraire also implies that the price of the consumption good, Pt,

falls over time at a rate equal to the rate of growth in consumption.

The quantity of the consumption produced is determined by the quantity and quality of the

economy’s intermediate inputs. Specifically, there is a unit continuum of inputs and consumption

is determined by the production function

lnCt =

Z 1

0
ln(At(j)xt(j))dj = lnAt +

Z 1

0
lnxt(j)dj (3)

where xt(j) is the quantity of input j ∈ [0, 1] at time t, At(j) is the quality or productivity of input

j at time t, and At represent aggregate productivity. The level of productivity of each input and

aggregate productivity are determined by the number of technical improvements made in the past.

Specifically,

At(j) = Π
Jt(j)
i=1 qi(j) and lnAt ≡

Z 1

0
lnAt(j)dj. (4)

where Jt(j) is the number of innovations made in input j up to date t and qi(j) > 1 denotes the

quantitative improvement (step size) in productivity attributable to the ith innovation in product

j. Innovations arrive at rate δ which is endogenous but the same for all intermediate products.
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The model is constructed so that a steady state growth path exists with the following properties:

Consumption output grows at a constant rate while the quantities of intermediate products and

the endogenous innovation frequency are stationary and identical across all intermediate goods. As

a consequence of the law of large numbers, the assumption that the number of innovations to date

is Poisson with arrival frequency δ for all intermediate goods implies

lnCt = lnAt +

Z 1

0
lnx(j)dj =

Z 1

0

Jt(j)X
i=1

ln qi(j)dj +

Z 1

0
lnx(j)dj (5)

= E ln(q)δt+

Z 1

0
lnx(j)dj.

where EJt(j) = δt for all j is the expected number of innovations per intermediate product and

E ln(q) ≡ R 10 1
Jt(j)

PJt(j)
i=1 ln qi(j)dj is the expected quality step size. In other words, consumption

grows at the rate of growth in productivity which is the product of the creative-destruction rate

and the expected log of the size of an improvement in productivity induced by each new innovation.

3.2 The Value of a Firm

Each individual firm is the monopoly supplier of the products it created in the past that have

survived to the present. The price charged for each is limited by the ability of suppliers of previous

versions to provide a substitute. In Nash-Bertrand equilibrium, any innovator takes over the market

for its good type by setting the price just below that at which consumers are indifferent between the

higher quality product supplied by the innovator and an alternative supplied by the last provider.

The price charged is the product of relative quality and the previous producer’s marginal cost of

production. Given the symmetry of demands for the different good types and the assumption that

future quality improvements are independent of the type of good, one can drop the good subscript

without confusion. Given stationary of quantities along the equilibrium growth path, the time

subscript can be dropped as well.

Labor is the only factor in the production of intermediate inputs. Labor productivity is the

same across all inputs and is set equal to unity. Hence, p = qw is the price in terms of the

numeraire of every intermediate good as well as the value of labor productivity where w, the wage,

represents the marginal cost of production of the previous supplier and q > 1 is the step up in

quality of the innovation. As total expenditure is normalized at unity and there is a unit measure
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of product types, it follows that total revenue per product type is also unity given the specification

of preferences and technology, i.e., px = 1. Hence, product output and employment are both equal

to

x =
1

p
=

1

wq
. (6)

and the gross profit associated with supplying the good is

1 > π = px− wx = 1− 1
q
> 0. (7)

The labor saving nature of improvements in intermediate input quality is implicit in the fact that

labor demand is decreasing in q.

Following Klette and Kortum (2004), the discrete number of products supplied by a firm, de-

noted as k, is defined on the integers and its value evolves over time as a birth-death process

reflecting product creation and destruction. In their interpretation, k reflects the firm’s past suc-

cesses in the product innovation process as well as current firm size. New products are generated

by R&D investment. The firm’s R&D investment flow generates new product arrivals at frequency

γk. The total R&D investment cost is wc(γ)k where c(γ)k represents the labor input required in

the research and development process. The function c(γ) is assumed to be strictly increasing and

convex. According to the authors, the implied assumption that the total cost of R&D investment is

linearly homogenous in the new product arrival rate and the number of existing product, "captures

the idea that a firm’s knowledge capital facilitates innovation." In any case, this cost structure is

needed to obtain firm growth rates that are independent of size as typically observed in the data.

The market for any current product supplied by the firm is destroyed by the creation of a

new version by some other firm, which occurs at the rate δ. Below we refer to γ as the firm’s

creation rate and to δ as the common destruction rate faced by all firms.1As product gross profit

and product quality are one-to-one, the profits earned on each product reflects a firm’s current

labor productivity. The firm chooses the creation rate γ to maximize the expected present value

of its future net profit flow.

Firms differ with the respect to the quality of their products. Hence, each type is characterized

1These are in fact the continuous time job creation and job destruction rates respectively as defined in Davis et
al. (1996).
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by profitability, π, as defined in equation (7). The value of the firm of type π that currently markets

k products is

rVk(π) = maxγ≥0
½
[π −wc(γ)] k + γk[Vk+1(π)− Vk(π)]

+δk[Vk−1(π)− Vk(π)]

¾
. (8)

The first term on the right side is current gross profit flow accruing to the firms product portfolio

less current expenditure on R&D. The second term is the expected capital gain associated with the

arrival of a new product line. Finally, the last term represents the expected capital loss associated

with the possibility that one among the existing product lines will be destroyed.

The unique solution to (8) is proportional to the number of product lines. Formally,

Vk(π) = kmax
γ≥0

½
π − wc(γ)

r + δ − γ

¾
(9)

as one can verify by substitution. Consequently, any positive optimal choice of the product creation

rate for a type π firm must satisfy the first order condition

wc0(γ(π)) = Vk+1 − Vk = max
γ≥0

½
π − wc(γ)

r + δ − γ

¾
. (10)

Hence, the second order condition, c00(γ) > 0, and the fact that the marginal value of a product

line is increasing in π imply that the a firm’s creation rate increases with profitability.

3.3 Firm Entry and Labor Market Clearing

The entry of a new firm requires innovation. Suppose that there are a constant measure m of

potential entrants, identical ex ante. The rate at which any one of them generates a new product is

γ0 and the total cost is wc(γ0) where the cost function is the same as that faced by an incumbent.

The firm’s type is unknown ex ante but is realized immediately after entry. Since the expected

return to innovation is Eπ{V1} and the aggregate entry rate is η = mγ0, the entry rate satisfies the

following free entry condition

wc0
³ η

m

´
=

Z
π
V1(π)φ(π)dπ =

Z
π
max
γ≥0

½
π −wc(γ)

r + δ − γ

¾
φ(π)dπ (11)

where φ(π) is the density entrant types. Of course, the second equality follows from equation (9).

There is a fixed measure of available workers, denoted by L, seeking employment at any positive

wage. In equilibrium, these are allocated across production and R&D activities, those performed by
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both incumbent firms and potential entrants. Since the number of workers employed for production

purposes per product of quality q is x = 1/wq = (1 − π)/w from equations (6) and (7), the

total number demanded for production activity by firms of type π with k products is Lx(k, π) =

k(1 − π)/w > 0. The number of R&D workers employed by incumbent firms of type π with k

products is LR(k, π) = kc(γ(π)). Because each potential entrant innovates at frequency η/m, the

aggregate number of worker engaged by all m in R&D is LE = mc(η/m). Hence, the equilibrium

wage satisfies the labor market clearing condition

L =

Z
π

∞X
k=1

[Lx(k, π) + LR(k, π)]Mk(π)dπ + LE (12)

=

Z
π

µ
1− π

w
+ c(γ(π))

¶ ∞X
k=1

kMk(π)dπ +mc(η/m)

where Mk(π) represents the mass of firms of type π that supply k products.

3.4 The Steady State Distribution of Firm Size

Once a firm enters, its size as reflected in the number of product lines supplied evolves as a birth-

death process. As the set of firms with k products at a point in time must either have had k

products already and neither lost nor gained another, have had k − 1 and innovated, or have had
k + 1 and lost one to destruction over any sufficiently short time period, the equality of the flows

into and out of the set of firms of type π with k > 1 products requires

γ(π)(k − 1)Mk−1(π) + δ(k + 1)Mk+1(π) = (γ(π) + δ)kMk(π)

for every π whereMk(π) is the steady state mass of firms of type π that supply k products. Because

an incumbent dies when its last product is destroyed by assumption but entrants flow into the set

of firms with a single product at rate η,

φ(π)η + 2δM2(π) = (γ(π) + δ)M1(π)

where φ(π) is the fraction of the new entrants that realize profit π. Births must equal deaths in

steady state and only firms with one product are subject to death risk. Therefore, φ(π)η = δM1(π)

and

Mk(π) =
k − 1
k

γ(π)Mk−1 =
ηφ(π)

δk

µ
γ(π)

δ

¶k−1
(13)
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by induction.

The size distribution of firms conditional on type can be derived using equation (13). Specifically,

the total firm mass of type π is

M(π) =
∞X
k=1

Mk(π) =
φ(π)η

δ

∞X
k=1

1

k

µ
γ(π)

δ

¶k−1
(14)

=
η

δ
ln

µ
δ

δ − γ(π)

¶
δφ(π)

γ(π)
.

where convergence requires that the aggregate rate of creative destruction exceed the creation rate

of every incumbent type, i.e., δ > γ(π) ∀π. Hence, the fraction of type π firm with k product is

Mk(π)

M(π)
=

1
k

³
γ(π)
δ

´k
ln
³

δ
δ−γ(π)

´ . (15)

This is the logarithmic distribution with parameter γ(π)/δ.2Consistent with the observations on

firm size distributions, that implied by the model is highly skewed to the right.

By equation (15), the mean of the firm size distribution conditional on product profitability is

E{k|π} =
∞X
k=1

kMk(π)

M(π)
=

γ(π)
δ−γ(π)

ln
³

δ
δ−γ(π)

´ , (16)

As the product creation rate increases with profitability, expected size does also. Formally, because

(1 + a) ln(1 + a) > a > 0 for all positive values of a, the expected number of products is increasing

in firm profitability,

∂E{k|π}
∂π

=

µ
(1 + a(π))ln(1 + a(π))− a(π)

(1 + a(π))ln2(1 + a(π))

¶
δγ0(π)

(δ − γ(π))2
> 0 (17)

where a(π) = γ(π)
δ−γ(π) .

Although more profitable firms supply more products, total expected employment, nEk where

n = (1− π)/w + c(γ(π)), need not increase with π in general and decreases with π if innovation is

not related to profitability because innovation is labor saving. Hence, the hypothesis that firms with

the ability to create products of better quality grow faster is consistent with dispersion in labor

productivity and the correlations between value added, labor force size, and labor productivity

observed in Danish data reported above.

2This result is in Klette and Kortum (1992). We include the derivation here simply for completeness.

12



Finally, the rate of creative-destruction is the sum of the entry rate and the aggregate creation

rates of all the incumbents given that the total mass of products is fixed. Because the new product

arrival rate of a firm of type π with k products is γ(π)k and the measure of such firms is Mk(π),

δ = η +

Z
π
γ(π)

∞X
k=1

kMk(π)dπ. (18)

3.5 Equilibrium

Definition A steady state market equilibrium is a triple composed of a labor market clearing wage

w, entry rate η, and creative destruction rate δ together with an optimal creation rate γ(π)

and a steady state size distributionMk(π) for each type that satisfy equations (11), (12), (10),

(13), and (18) provided that γ(π) < δ, for every π in the support of the entry distribution.

Proposition If the cost of innovation, c(γ), is strictly convex and c0(0) = c(0) = 0, then a steady

state market equilibrium with positive entry exists. In the case of a single firm type, there is

only one.

Proof. See Lentz and Mortensen (2004).3

4 Estimation

If product quality is a permanent firm characteristic, then differences in firm profitability are asso-

ciated with differences in the product creation rates chosen by firms. Specifically, more profitable

firms grow faster, are more likely to survive in the future, and supply a larger number of products

on average. Hence, a positive cross firm correlation between current gross profit per product and

sales volume should exist. Furthermore, worker reallocation from slow growing firms that supply

products of lesser quality to more profitable fast growing firms will be an important sources of

aggregate productivity growth. On the other hand, if product quality were iid across innovations

and firms, all firms grow at the same rate even though persistent differences in profitability exist

as a consequence of different realizations of product quality histories.

3Although the cost of entry is linear in the paper cited while the cost is convex here, the principal argument holds
in this case as well.
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In this section, we demonstrate that firm specific differences in profitability are required to

explain Danish interfirm relationships between value added, employment, and wages paid. In the

process of fitting the model to the data, we also obtain estimates of the investment cost of innovation

function that all firms face as well as the sampling distribution of firm productivity at entry.

4.1 Danish Firm Data

If more productive firm’s grow faster in the sense that γ0(π) > 0, then (17) implies that more

productive firms also supply more products and sell more on average. However, because production

employment per product decreases with productivity, total expected employment, nEk where n =

(1 − π)/w + c(γ(π)), need not increase with π in general and decreases with π when growth is

independent of a firm’s past product quality realizations. These implications of the theory can be

tested directly.

The model is estimated on an unbalanced panel of 4,872 firms drawn from the Danish firm

panel described in Section 2. The panel is constructed by selecting all existing firms in 1992 with

more than 20 workers and following them through time, while all firms that enter the sample

in the subsequent years are excluded. In the estimation, the observed 1992 cross-section will be

interpreted to reflect steady state whereas the following years generally do not reflect steady state

since survival probabilities vary across firm types. Specifically, due to selection the observed cross-

sections from 1993 to 1997 will have an increasing over-representation of high creation rate firm

types relative to steady state. The sampling choice is partly driven by data limitations but is also

useful in identifying dynamic features of the model. Table 2 presents a number of data moments

with standard deviations in parenthesis. The standard deviations are obtained by bootstrapping.

Nominal amounts are in 1,000 DKK.

4.2 Model Estimator

An observation in the panel is given by ψit = (Yit,Wit, N
∗
it), where Yit is real value added, Wit the

real wage sum, and N∗
it quality adjusted labor force size of firm i in year t. Let ψi be defined by,

ψi =
¡
ψi1,...,ψiT

¢
and finally, ψ = (ψ1, . . . , ψI)

Simulated minimum distance estimators, as described in for example Gourieroux, Monfort,
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Table 2: Data Moments (std dev in parenthesis)

1992 1997 1992 1997
4,872.00 3,628.00 364.36 410.61

Survivors
- (32.14)

E
£
Y
N∗
¤

(2.74) (4.85)

26,277.26 31,860.85 193.40 290.11
E [Y ]

(747.32) (1,031.62)
Std

£
Y
N∗
¤

(18.13) (40.86)

13,471.00 16,432.10 0.48 0.55
Med [Y ]

(211.68) (330.11)
Cor

h
Y
N∗ ,

Y+1
N∗+1

i
(0.09) (0.09)

13,294.48 15,705.09 -0.23 -0.19
E [W ]

(457.68) (609.63)
Cor

£
Y
N∗ ,∆

Y
N∗
¤

(0.10) (0.06)

7,229.70 8,670.28 0.85 0.86
Med [W ]

(92.75) (155.84)
Cor [Y,W ]

(0.04) (0.05)

52,798.52 64,129.07 0.20 0.14
Std [Y ]

(5,679.64) (7,757.99)
Cor

£
Y
N∗ , Y

¤
(0.04) (0.04)

30,616.94 35,560.60 -0.02 -0.03
Std [W ]

(6,778.09) (8,157.15)
Cor

£
Y
N∗ , N

∗¤
(0.01) (0.01)

and Renault (1993), Hall and Rust (2003), and Alvarez, Browning, and Ejrnæs (2001), are com-

puted as follows: First, define a vector of auxiliary data parameters, Γ (ψ). The vector consists

of all the items in Table 2 except the number of survivors in 1992. Thus, Γ (ψ) has length 27.

Second, ψs (ω) is simulated from the model for a given set of model parameters ω. The model

simulation is initialized by assuming that the economy is in steady state in the first year and conse-

quently that firm observations are distributed according to the ω-implied steady state distribution.

Alternatively, one can initialize the simulation according to the observed data in the first year,

(ψ11, . . . , ψ1I). The assumption that the economy is initially in steady state provides additional

identification in that (ψ11, . . . , ψ1I) can be compared to the model-implied steady state distribution

(ψs
11 (ω) , . . . , ψ

s
1I (ω)). The simulated auxiliary parameters are then given by,

Γs (ω) =
1

S

SX
s=1

Γ (ψs (ω)) ,

where S is the number of simulation repetitions.

The estimator is then the choice of parameters that minimizes the weighted distance between
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the data and simulated auxiliary parameters,

ω̂ = argmin
ω∈Ω

¡
Γs (ω)− Γ (ψ)¢0A−1¡Γs (ω)− Γ (ψ)¢, (19)

where A is some positive definite matrix. If A is the identity matrix, ω̂ is the equally weighted

minimum distance estimator (EWMD). If A is the covariance matrix of the data moments Γ (ψ),

ω̂ is the optimal minimum distance estimator (OMD). The OMD estimator is asymptotically more

efficient than the EWMD estimator. However, Altonji and Segal (1996) show that the estimate of

A as the second moment matrix of Γ (·) may suffer from serious small sample bias. Horowitz (1998)
suggests a bootstrap estimator of A. The estimation in this paper adopts Horowitz’s bootstrap

estimator of the covariance matrix A.

In addition to the ω̂ estimator, the analysis also presents a bootstrap estimator as in Horowitz

(1998). In each bootstrap repetition, a new set of data auxiliary parameters Γ
¡
ψb
¢
is produced,

where ψb is the bootstrap data in the b’th bootstrap repetition. ψb is found by randomly selecting

observations ψi from the original data with replacement. Thus, the sampling is random across

firms but is done by block over the time dimension (if a particular firm i is selected, the entire time

series for this firm is included in the sample). For the b’th repetition, an estimator ωb, is found

by minimizing the weighted distance between the re-centered bootstrap data auxiliary parameters£
Γ
¡
ψb
¢− Γ (ψ)¤ and the re-centered simulated auxiliary parameters £Γs ¡ωb¢− Γs (ω̂)¤,

ωb = argmin
ω∈Ω

³£
Γs (ω)− Γs (ω̂)¤− £Γ(ψb)− Γ (ψ)¤´0A−1³£Γs (ω)− Γs (ω̂)¤− £Γ(ψb)− Γ (ψ)¤´.

In each bootstrap repetition, a different seed is used to generate random numbers for the determina-

tion of Γs (ω). Hence, the bootstrap estimator of V (ω̂) captures both data variation and variation

from the model simulation.

The bootstrap estimator of the structural parameters is then the simple average of all the ωb

estimators,

ω̂bs =
1

B

BX
b=1

ωb, (20)

where B is the total number of bootstrap repetitions. In the estimation below, B = 500 and S = 10.
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4.3 Model Simulation

To fit the data, the model simulation produces time paths for value added (Y ), the wage sum (W ),

and labor force size (N) for I firms. The estimation introduces a stochastic demand realization for

each of a firm’s products, Z̃. Thus, the demand for product j is given by xj = Z̃/pj . The random

variable, Z̃, is iid across products and time and is assumed to follow a log-normal distribution,

Z̃ = exp
³
ξ̃σz + µz

´
where ξ̃ ∼ N (0, 1) . (21)

Denote the expected value of eZ as E{Z̃} = Z.

To properly capture the labor share in the data, a capital cost κ ≡ K/Z is added to the model

where K is the capital associated with the production of a given product and κ is the capital cost

relative to average product expenditure. This modifies the pricing of the intermediary goods. Now,

providing an intermediary good at price p yields expected operational profits, Z (1−w/p− κ).

Thus, the price of intermediary good j is, p = qw/ (1− κ) since consumers are exactly indifferent

between buying from the quality leader at this price and the from the immediate follower at price

p = w/ (1− κ) , which is as low as the follower is willing to go. The inclusion of a non-labor cost

then modifies the definition of production profits, π, as defined in (7). The more general definition

that allows for non-labor cost is given by,

π = (1− κ) (1− q−1), (22)

which is identical to (7) if κ = 0.

The quality of each new innovation (and thereby the profit associated with it) is a stochastic

realization drawn from a distribution which is contingent on the firm’s type. Specifically, the profit

of any particular innovation is assumed to satisfy

eπ = (1− κ) (1− eq−1), where eq = 1 + exp (ξσeπ + µeπ(π)) and ξ ∼ N (0, 1) . (23)

where the mean E{eπ|π} = π represents the firm’s profitability type, the determinant of its creation

rate. Each firm’s type is itself a random variable realized after entry. We assume that the steady

state distribution profit distribution, denoted as p(π), is characterized by

π = (1− κ) (1− q−1), where q = 1 + exp (zσπ + µπ) and z ∼ N (0, 1) (24)
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where in both (23) and (24) N(0, 1) represents the standard normal distribution. For future refer-

ence,

p(π) ≡ M(π)R
πM(π)dπ

(25)

where M(π), the steady state mass of firms of type, is given by equation (14).

Denote by Πk = (π1, . . . , πk) the quality realizations of a firm’s k products. The value added

of a type π firm with k products characterized by Πk is given by,

Yk

³
Πk, π

´
=

kX
i=1

Zi, (26)

where each product demand realization Zi is drawn according to (21). The wage bill is given by,

Wk

³
Πk, π

´
=

kX
i=1

Zi

¡
1− κ− πi

¢
+ kZwc̃

¡
γ(π)

¢
, (27)

where bc (γ) = c (γ) /Z.

Lentz and Mortensen (2004) analyze the firm’s creation rate choice in the general case where

product quality is a stochastic process. Because the value of the next product is linear in profit

and the profit realizations across products are iid for each firm, the optimal choice of creation rate

for a firm of type π solves,

γ (π) = argmax
γ

E{eπ}− wbc (γ)
r + δ − γ

= argmax
γ

π − wbc (γ)
r + δ − γ

(28)

as in the deterministic case sketch above. Specify the cost function as bc (γ) = c0γ
1+c1 . Then, the

first order condition for the optimal creation rate choice is,

w (1 + c1) c0γ
c1 (r + δ − γ) = π − wc0γ

1+c1 . (29)

Equations (26) and (27) provide the foundation for the model simulation. It then remains to

simulate product paths for all firms. The simulation is initialized by the assumption of steady state.

By (15), the steady state product size distribution conditional on survival is given by,

Pr (k∗ = k|π) = Mk(π)

M(π)
=

1
k

³
γ(π)
δ

´k
ln
³

δ
δ−γ(π)

´ . (30)

First, a firm’s type, π, is determined according to (24). Then, the initial product size of a firm (k1)

is determined following (30).
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With a given initial product size , simulation of the subsequent time path requires knowledge

of the transition probability function Pr (k2 = k|k1, π). Denote by pπ,n (t) the probability of a type
π firm having product size n at time t. As shown in Klette and Kortum (2004), pπ,n (t) evolves

according to the ordinary differential equation system,

ṗπ,n (t) = (n− 1) γ (π) pπ,n−1 (t) + (n+ 1) δpπ,n+1 (t)− (δ + γ (π)) pπ,n (t) , ∀n ≥ 1
ṗπ,0 (t) = δpπ,1 (t) .

(31)

Hence, with the initial condition,

pπ,n (0) =

½
1 if n = k1
0 otherwise.

(32)

one can determine Pr (k2 = k|k1, π) by solving the differential equation system in (31) for pπ,k (1).

Solving for pπ,k (1) involves setting an upper reflective barrier to bound the differential equation

system. It has been set sufficiently high so as to avoid biasing the transition probabilities. Based on

the transition probabilities Pr (kt+1 = k|kt, π) one can then iteratively simulate product size paths
for each firm. The procedure correctly captures the evolution of kt but it does not identify the

exact evolution of Πkt . The evolution of Πkt is assumed to follow the net change in products.4

Finally, the simulation allows for an exogenous growth factor in both value added and the

wage bill, denoted as bg, that is independent of the endogenous quality improvements produced by
incumbents and entrants.

4.4 Identification

The set of model parameters to be identified (ω) is given by,

ω =
©
c0, c1, δ, κ, Z, σ

2
z, σ

2eπ, σ2π, µπ, bgª ∈ Ω,
where Ω is the feasible set of model parameters choices. The interest rate will be set at r = .05. The

wage w is immediately identified as the average worker wage in the sample w = 181.77. Experi-

mentation with non-parametric identification of the firm type distribution has been performed with

4Suppose firm i is simulated to loose 1 product in a given year. In this case, Πkit is updated by randomly
eliminating one element from it. This assumes that the net loss of 1 product took place by the gross destruction of
1 product and zero gross creation. This is the most likely event by which the firm loses 1 product. However, the net
loss could also come about by the gross destruction of 2 products and gross creation of 1 product during the year.
In this case, Πkit should be updated by randomly eliminating 2 elements and adding 1. There are in principle an
infinite number of ways that the firm can loose 1 product over the year. The estimation consequently over-estimates
the persistency of Πkit . The bias will go to zero as the period length is reduced, though.
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Table 3: Model Parameter Estimates

Point Estimate Bootstrap Estimator Std Deviation
c0 419.58680 420.33387 26.47864
c1 4.47939 4.48851 0.07442
κ 0.37164 0.37335 0.00822
Z 13,976.21665 14,020.99627 140.78974
δ 0.09276 0.09310 0.00294
σ2z 0.91209 0.90259 0.03692
σ2eπ 1.98144 1.94233 0.23931
µπ -2.09279 -2.13167 0.15866
σ2π 1.93636 2.07466 0.25789bg 0.01484 0.01459 0.00115

Inferred Estimates
η 0.03657 0.03669 0.00134
m 0.65647 0.65791 0.03229
M 0.58575 0.58415 0.01187
L 39.46866 39.35433 0.50466
γ̄ 0.05619 0.05641 0.00245

Entry q-distribution
10th percentile 1.01753 1.01634 0.00443

Median 1.09904 1.09556 0.01656
90th percentile 1.55167 1.55599 0.05927

Steady state q-distribution
10th percentile 1.02073 1.01942 0.00503

Median 1.12334 1.12012 0.01899
90th percentile 1.73383 1.75231 0.07492

a distribution with 4 support points. Because the results showed little sensitivity in the remaining

model parameters to this alternative specification, we report only those parameters obtained given

the assumed parametric distribution of types.

4.5 Estimation Results

The model parameter estimates are given in table 3. Table 4 produces a comparison of the data

moments and the simulated moments associated with the model parameter estimates.

The estimated model does well in fitting the labor productivity distribution and the correlations

between productivity and firm size. These relationships are also shown in Figure 3. Notice that

the model has not been fitted to the higher order moments of these relationships but fits them

remarkably well nonetheless.

The model over-estimates the persistence in labor productivity and the mean reversion over
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Table 4: Data Moments (top row) and Simulated Moments (bottom row)
1992 1997 1992 1997
4,872.00 3,628.00 364.36 410.61

Survivors
4,872.00 3,631.11

E
£
Y
N∗
¤

368.46 400.28

26,277.26 31,860.85 193.40 290.11
E [Y ]

24,352.57 29,424.92
Std

£
Y
N∗
¤

213.71 232.99

13,471.00 16,432.10 0.48 0.55
Med [Y ]

13,462.73 16,488.22
Cor

h
Y
N∗ ,

Y+1
N∗+1

i
0.69 0.69

13,294.48 15,705.09 -0.23 -0.19
E [W ]

12,216.06 14,485.07
Cor

£
Y
N∗ ,∆

Y
N∗
¤

-0.37 -0.36

7,229.70 8,670.28 0.85 0.86
Med [W ]

7,163.16 8,675.06
Cor [Y,W ]

0.90 0.89

52,798.52 64,129.07 0.20 0.14
Std [Y ]

35,572.63 42,219.59
Cor

£
Y
N∗ , Y

¤
0.19 0.20

30,616.94 35,560.60 -0.02 -0.03
Std [W ]

15,192.27 17,519.39
Cor

£
Y
N∗ , N

∗¤
-0.02 -0.02

time in labor productivity. The model faces a trade-off on this dimension. It can reduce the labor

productivity persistence but in doing so, the mean reversion is increased even further. The estimated

model does not quite replicate the thickness of the very right tail of the firm size distribution and

consequently it under-estimates the variance in value added and the wage bill and to a lesser extend

the mean of the Y and W distributions.

The estimation implies a significant level of firm type heterogeneity. In Table 3, it is expressed

via the distribution of the firm’s expected quality improvement of an innovation. The type dis-

tribution at entry is such that the median firm expects to produce a 9.6% quality improvement

upon discovering an innovation. The 90th percentile firm expects a 55.6% improvement. The het-

erogeneity in creation rates across types is reflected in the steady state distribution where the high

type firms are over-represented relative to the entry distribution. We have experimented with more

flexible choices of type distributions and have found the current choice to be non-restrictive.5

Type heterogeneity and supply side shocks, σ2π and σ2π̃ respectively, play an important role in

5Estimations were run using a non-parametric identification of a 4-point discrete type distribution. Also, we tried
a mixing distribution of two continuous log-normal distributions. In both cases, the estimation returns the same
basic shape as in the current estimation with no improvement in model fit or change in any of the remaining model
parameter estimates.
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Figure 3: Firm Productivity and Size, 1992 (Data and Simulation).

explaining the productivity — size correlations. Type heterogeneity provides the foundation for a

positive correlation between productivity and output size through a greater product creation rate

for higher productivity type firms. The overall heterogeneity in product quality realizations both

through type heterogeneity and random quality realizations within types explains the difference

between the productivity — input size correlation and the productivity — output size correlation.

Together σ2π and σ2π̃ are chosen to get the exact levels of the correlations right.

Notice that the model successfully captures the right shift of the Y and W distributions of

survivors from 1992 to 1997. There are three effects that contribute to the right shift: Generally,

since the sampling eliminates the flow in of entrants, the model predicts a general decrease in mass

of firms of all product sizes and types,Mk (π) , since all firms face an overall negative product growth

rate. However, since entrants are assumed to flow in from the lower end of the size distribution,

the reduction in mass is relatively stronger at the lower end and consequently the size distribution

of survivors will begin to place relatively more weight on the upper end as time passes. Thus, the

model predicts that the use of an unbalanced panel that excludes entry will itself produce a right

shift of the distributions since entrants are assumed to enter as small firms. Second, the positive
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exogenous growth estimate directly predicts a right shift of the Y and W distributions. The third

effect comes from type heterogeneity. In steady state, larger firms will over-represent high type

firms with high creation rates and small firms will over-represent low type firms with low creation

rates. Thus, smaller firms face greater net product destruction than large firms. In the absence

of entry, the negative correlation between size and net product destruction rate will in isolation

produce a right shift of the Y andW distributions over time. Hence, this effect is also a consequence

of the use of an unbalanced panel that excludes entry, but is separate from the first explanation

which is not a result of destruction rate heterogeneity.

The distribution of firm labor productivity Y/N is explained primarily through type heterogene-

ity, κ, and the structural noise processes. The mean level of value added per worker is closely linked

to the estimate of κ. The dispersion in Y/N across firms is explained primarily and in roughly

equal parts through type heterogeneity and the positive estimate of σ2π̃ - supply side shocks. To a

lesser extend dispersion in Y/N is also affected by the positive estimate of σ2Z , that is, demand side

shocks because the size of the R&D department is unaffected by particular demand realizations for

a firm’s products. In the absence of the R&D department, demand side shocks cannot affect labor

productivity because an increase in Z realizations will increase value added and manufacturing

labor demand by the same fraction. However, since the demand for R&D labor is unaffected by

an increase in overall demand, a positive demand shock will result in an increase in the overall

labor productivity measure, Y/N . Demand side shocks turn out to be a secondary source of labor

productivity dispersion, though.

The persistence in firm labor productivity cor
³
Y
N , Y+1N+1

´
is explained directly through σ2π, σ

2
Z ,

and the magnitudes of the creation and destruction rates γ (π) and δ. While demand side shocks

cannot produce large, persistent productivity differences across firms, they can produce enough

inter-temporal fluctuation to significantly reduce the correlation in the productivity measure over

time. Increases in σ2Z thus reduce cor
³
Y
N , Y+1N+1

´
while at the same time producing mean reversion

in Y/N . An increase in supply side shocks σ2π̃ has a similar effect on both persistence and mean

reversion, but in this case the magnitude of the effect depends on the arrival rate of the shocks

which is tied to the creation and destruction rates, γ (π) and δ. If the magnitudes of γ (π) and
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δ are large, there will be more replacement of products in the firm’s collection of products and

therefore an increased impact of σ2π̃. At the estimated creation and destruction rates, supply side

shocks through σ2π̃ have only a secondary effect on the persistence and mean reversion of Y/N . If

the estimated model is re-simulated imposing σ2Z = 0 keeping all other estimates the same, one

finds cor
³
Y
N , Y+1N+1

´
≈ .97 and cor

¡
Y
N ,∆ Y

N

¢ ≈ −.04. However, the dispersion in Y/N across firms

is largely unaffected.

Demand shocks have an obvious potential for explaining dispersion in Y and W across firms

and could potentially be used to better capture the variance in Y and W . However, in light of the

discussion in the previous paragraph, it is clear that in doing so, the model would introduce too

little persistence in Y/N and too much mean reversion. An attempt to increase variance in Y and

W through increased type heterogeneity or supply side shocks σ2π results in too much productivity

dispersion. It is possible that the introduction of a more permanent demand shock in the model

could provide the observed dispersion in the Y and W distributions while at the same time not

having the strong reduction of productivity persistence and increased mean reversion that the

current transitory demand shock does.

At a theoretical level, the model satisfies Gibrat’s law; for identical type firms, the creation

rate is size independent. However, due to selection, larger firms will tend to over-represent higher

creation rate types and this effect will imply a positive relationship between size and growth rate.

The mean reversion in demand and to a smaller extend in supply shocks introduces an opposite

effect, though; the group of small firms today will tend to over-represent firms with adverse demand

shocks. Chances are that the demand realizations in the next period will reverse the fortunes of

these firms and they will experience relatively large growth rates. Large firms have many products

and experience less overall demand variance. The latter effect turns out to dominate in the esti-

mated model. The estimated correlation between firm size and growth rate is roughly −0.2. The
corresponding correlation in the data is −0.1.

Given the steady state equilibrium definition, one can infer the overall entry rate, η, and the

measure of potential entrant, m.6 The implied values of these parameters are also reported in

6The formulas used to make the calculations are presened in the appendix.
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Figure 4: Creation Rate Choice and Firm Type Distributions.

Table 3. The average incumbent creation rate, γ̄, is simply the difference between the entry rate

and the destruction rate. It is seen that the estimates imply that roughly one third of all innovation

comes from entrants. Given the estimated steady state distribution of firms, p(π), and the other

parameters of the model, one can also infer the ex ante type distribution, φ (π). The cdf’s of the

two distributions are shown in Figure 4 along with the incumbent creation rate choice conditional

on firm type. It is clear from the figure that the higher quality type firms choose higher creation

rates and consequently grow faster. Therefore, those with better products will make up a larger

fraction of firms in steady state relative to their shares at entry. The consequences of this fact for

aggregate growth are explored more fully below.

The estimation is performed given the assumption that the true firm population of interest

coincides with the size censoring in the data. That is, the estimation does not correct for size

censoring bias. While this is obviously a strong assumption, it reasonable assumption that the

large number of very small firms in the economy are qualitatively different from those in this

analysis and are not just firms with fewer products.

As is generally the case, the estimation is sensitive to the choice of data moments. Currently,

the estimation has focused on capturing the cross-section moments primarily. Future work will
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Table 5: Data Moments by Industry

Manufacturing Wholesale and retail Construction
1992 1997 1992 1997 1992 1997

Survivors 2,051.000 1,536.000 1,584.000 1,189.000 651.000 480.000
E [Y ] 30,149.460 35,803.473 22,952.920 28,386.719 15,191.354 16,869.550
Med [Y ] 15,117.552 18,855.682 12,740.250 15,288.949 8,688.501 10,691.434
E [W ] 15,047.636 17,318.195 10,696.683 12,712.899 9,973.166 10,594.737
Med [W ] 8,031.273 9,530.273 6,417.403 7,650.565 5,785.053 6,832.554
Std [Y ] 56,095.672 69,597.651 33,410.862 41,426.484 31,311.623 22,478.083
Std [W ] 24,673.900 27,168.284 15,365.073 16,809.785 24,545.298 14,195.942
E
£
Y
N∗
¤

359.376 401.438 388.904 443.380 289.156 325.274
Std

£
Y
N∗
¤

154.476 215.420 162.755 264.730 126.522 165.465

Cor
h
Y
N∗ ,

Y+1
N∗+1

i
0.650 0.728 0.325 0.674 0.430 0.345

Cor
£
Y
N∗ ,∆

Y
N∗
¤

-0.024 -0.195 -0.195 -0.258 -0.326 -0.559
Cor [Y,W ] 0.889 0.855 0.922 0.914 0.967 0.922
Cor

£
Y
N∗ , Y

¤
0.236 0.200 0.251 0.188 0.128 0.174

Cor
£
Y
N∗ , N

∗¤ 0.011 -0.003 -0.029 -0.039 -0.042 -0.093

include a larger set of dynamic moments. It should be noted though that since the estimation is

performed on cross-section moments not just in 1992 but also in 1997 and because of the specific

sampling procedure in the data, the estimation does implicitly address dynamic features of the

model. The trends in the moments over time are interpreted as a result of systematic selection bias

due to creation rate heterogeneity across types.

4.6 Estimation by Industry

It is of course possible that the correlations and other data moments in Table 2 are a result of

firm heterogeneity across industries and does not reflect the true picture within more homogenous

subgroups of firms. This turns out not to be the case. Data moments by industry reveal the

same qualitative picture as in Table 2 for each industry. Table 5 presents data moments for the

3 largest industries (by firm count). All industries show evidence of significant firm productivity

dispersion, a roughly zero correlation between productivity and firm input size and a positive

correlation between productivity and firm output size (roughly 0.2). All industries also display a

fair amount of productivity persistence and mean reversion. Finally, both the value added and

wage bill distributions are characterized by a strong right shift over time across industries.

The estimates by industry are reported in Table 6. It is not surprising that the estimates are
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Table 6: Bootstrap Estimator by Industry

Manu-
facturing

Wholesale
and retail

Construction Private
Sector

c0 325.5841 375.8166 363.7565 420.3339
c1 4.1915 3.9749 4.0071 4.4885
κ 0.3708 0.4122 0.2483 0.3734
Z 14,976.8318 14,446.7687 11,788.0791 14,020.9963
δ 0.0858 0.0821 0.0884 0.0931
σ2z 0.7962 0.7884 0.9031 0.9026
σ2eπ 0.9825 0.1044 0.0187 1.9423
µπ -1.9553 -2.1335 -4.3769 -2.1317
σ2π 1.8453 3.0820 11.7718 2.0747bg 0.0159 0.0195 0.0183 0.0146

Inferred Estimates
η 0.0349 0.0425 0.0554 0.0367
m 0.6913 1.0269 1.4134 0.6579
M 0.5980 0.6930 0.7606 0.5842
L 42.1232 38.4823 41.1661 39.3543
γ̄ 0.0510 0.0397 0.0330 0.0564

Entry q-distribution
10th percentile 1.0248 1.0104 1.0001 1.0163

Median 1.1415 1.0929 1.0075 1.0956
90th percentile 1.8070 1.8372 1.4574 1.5560

Steady state q-distribution
10th percentile 1.0211 1.0125 1.0002 1.0194

Median 1.1146 1.1184 1.0126 1.1201
90th percentile 1.6159 2.1234 2.0203 1.7523

robust across industries given that the underlying data moments do not vary much by industry. It

is worth noting that the construction sector has a significantly larger labor share relative to the

overall private sector. Furthermore, the firm type distribution is at entry more compressed, but the

industry has more selection and the steady state type distribution is consequently characterized by

a longer tail of higher quality type firms.

5 Reallocation and Growth

If more profitable firms grow faster, then workers move from less to more profitable surviving firms

as well as from exiting to entering firms. This selection effect can be demonstrated by noting that

more profitable firms are over represented (relative to their fraction at entry) among those that

produce more than one product and that this "selection bias" increases with the number of products
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produced. Namely, by equation (13), the difference between the relative fraction of a given firm

type in the surviving population with k products and relative the fraction in its entry cohort,

Mk(π
0)

Mk(π)
− φ(π0)

φ(π)
=

φ(π0)
φ(π)

"µ
γ(π0)
γ(π)

¶k−1
− 1
#
, (33)

is positive and increasing in k when π0 > π.

From equation (5), the equilibrium rate of growth in consumption is

Ċ

C
= g = δE ln q

= δ

µZ
π
ln (q(π))

ηφ(π)dπ

δ
+

Z
π
ln (q(π))

γ(π)
P∞

k=1 kMk(π)dπ

δ

¶
= η

Z
π
ln q(π)φ(π)dπ +

Z
π
γ(π) ln q(π)

∞X
k=1

kMk(π)dπ

where q(π) = 1/(1− π) is the quality of the products of a type π firm and δ is the aggregate rate

of creative destruction as defined in equation (18). The decomposition of the rate of productivity

growth,

g = η

Z
π
ln q(π)φ(π)dπ +

Z
π
γ(π) ln q(π)φ(π)dπ (34)

+

Z
π
γ(π) ln q(π)

·
η

δ − γ(π)
− 1
¸
φ(π)dπ

where ηφ(π)
δ−γ(π) =

P∞
k=1 kMk(π) from equation (13), highlights the role of worker reallocation from

exiting to entering firms as well as from less to more productive firms as sources of productivity

growth. The first term η
R
π ln q(π)φ(π)dπ is the net effect of entry and exit on productivity growth.

The second term
R
π γ(π) ln q(π)φ(π)dπ is the average contribution of continuing firms to growth

were there no selection. Finally, the last term
R
π γ(π) ln q(π)

£P∞
k=1 kMk(π) − φ(π)

¤
dπ represents

the contribution of worker reallocation from firms with products of lesser quality to firms that

produce higher quality products.

Since the total measure of products is unity
¡R

π

P∞
k=1 kMk(π)dπ = 1

¢
and φ(π)dπ is the fraction

of entrants of type π,
¡R

π φ(π)dπ = 1
¢
, it follows that

0 =

Z
π

" ∞X
k=1

kMk(π)− φ(π)

#
dπ =

Z
π

µ
η

δ − γ(π)
− 1
¶
φ(π)dπ.

Hence, the fact that γ(π) is strictly increasing in π implies that the contribution to growth of the

reallocation of workers among continuing firms, the last term in (34), is positive. Equivalently,
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Table 7: Labor Productivity Growth Rate Estimates.

Point Estimate Bootstrap Estimate Std Deviation
Growth rate g 0.02991 0.03114 0.00265
Decomposition:
— Entry 0.00655 0.00654 0.00061
— Continuing 0.01164 0.01171 0.00128
— Reallocation 0.01172 0.01289 0.00201

Table 8: Bootstrap Estimate of Labor Productivity Growth by Industry

Manu-
facturing

Wholesale
and retail

Construction Private
Sector

Overall growth (g) 0.0288 0.0297 0.0381 0.0311
Contribution from:
— Entry 23.91% 32.68% 24.48% 21.00%
— Continuing 40.42% 39.83% 27.69% 37.60%
— Reallocation 35.67% 27.48% 47.84% 41.39%

it is positive because γ(π) ln q(π) is strictly increasing in π and the steady state distribution of

types stochastically dominates the distribution of types at entry as a consequence of the firm size

selection process.

Given the parameter estimates reported in the previous section, the implied aggregate growth

rate and its components are those reported in in table 7. These calculations raise several interesting

issues. First, they imply an over all growth rate in productivity larger than the standard measures.

This fact provides indirect support for arguments that the measurement methodologies currently

in use fail to fully separate quality improvements from price increases.7 In addition, the estimates

imply that worker reallocation from both exiting to entering firms and among surviving firms

account for 20% and 40% respectively of the aggregate rate of growth. These numbers suggest a

very important role to both forms of reallocation.

The inferred labor productivity growth estimates associated with the estimation by industry in

Table 6 are shown in Table 8. It is seen that the results are quite robust across industries with the

construction sector having the largest contribution from reallocation.

7 In the U.S., this argument is fully articulated in Boskin et al. (1996).
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6 The Planner’s Problem

The market equilibrium solution need not be socially optimal for at least three reasons. First, the

providers of intermediate inputs have monopoly power and use it to set prices above the marginal

cost of production. Second, by replacing an existing product, an innovation terminates the stream

of quasi rents accruing to its producer. Finally, because each productivity improvement builds on

those of previous products, innovation has a positive "spill over" effect on future productivity. The

net deviation of the equilibrium growth rate from that which is socially optimal is unclear. One of

the contributions of a quantitative equilibrium model is its ability to reflect light on which effect

dominates.

Firm types are characterized by the profitability of their products, π. The mass of firm’s of

type π that produce k products, denotedMk(π), is a state variable as is the aggregate productivity

parameter, A. The problem is to choose times paths for the production rate, {xt(π)}, and the
rate of new product creation, {γt(π)}, for each firm type, the aggregate rate of firm entry ηt, and

the rate of creative destruction δt to maximize the present discounted utility of the representative

household’s consumption subject to the creation-destruction identity, the labor resource constraint,

and the laws of motion for the state variables. Specifically, the planner’s strategy maximizesZ ∞

0
lnCte

−rtdt =
Z ∞

0

"
lnAt +

X
π

lnxt(π)
∞X
k=1

kMks(π)e
−rt
#
dt

subject to the constraints that product creation is equal to destruction,

δ = η +

Z
π
γ(π)

∞X
k=1

kMk(π)dπ,

that employment does not exceed the available supply,Z
π
[x(π) + c(γ(π))]

∞X
k=1

kMk(π)dπ +mc
³ η

m

´
≤ L

and the laws of motion of aggregate productivity

d lnA

dt
= g = η

Z
π
lnπ(q)φ(π)dπ +

Z
π
γ(π) ln q(π)

∞X
k=1

kMk(π)dπ,

and the distribution of products across types and size of firm characterized by

Ṁk(π) = γ(π)(k − 1)Mk−1(π) + δ(k + 1)Mk+1(π)− (γ(π) + δ)kMk(π), k > 1
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and

Ṁ1(π) = φ(π)η + 2δM2(π)− (γ(q) + δ)M1(π)

for every value of π in the support of the type distribution at entry. The last two equations reflect

the fact that only firms with k − 1 products that create another and firms with k + 1 products

that loose one flow into the set of firms with k products in any instant while those with k products

that either acquire another or loose one exit from the set and that new firms enter with a single

product.

It is convenient to let µk(π) = kMk(π) represent the fraction of all firms that are of both type

π and supply k products. From the equations above, it follows that

µ̇k(π) =
£
γ(π)µk−1(π) + δµk+1(π)− (γ(π) + δ)µk(π)

¤
k

µ̇1(π) = φ(π)η + δµ2(π)− (γ(π) + δ)µ1(π).

The present value Hamiltonian for the problem can be written as

H = lnA+

Z
π
lnxt(π)

∞X
k=1

µk(π)dπ (35)

+ω

Ã
L−

Z
π
[x(π) + c(γ(π))]

∞X
k=1

µk(π)dπ −mc
³ η

m

´!

+θ

Ã
δ − η −

Z
π
γ(π)

∞X
k=1

µk(π)dπ

!

+λ

Ã
η

Z
π
ln q(v)φ(π)dπ +

Z
π
γ(π) ln q(π)

∞X
k=1

µk(π)dπ

!

+

Z
π

∞X
k=2

kνk(π)
£
γ(π)µk−1(π)dπ + δµk+1(π)− (γ(π) + δ)µk(π)

¤
dπ

+

Z
π
[ν1(π)φ(π)η + δµ2(π)− (γ(π) + δ)µ1(π)] dπ

where ω and θ are multipliers associated respectively with the labor supply constraint and the

definition of the rate of creative destruction while λ is the shadow price of the state variable lnA

and vk(π) is the shadow price associated with µk(π).
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The first order necessary conditions given postive entry (η > 0) are

∂H

∂x(π)
=

µ
1

x(π)
− ω

¶ ∞X
k=1

µk(π) = 0 ∀π

∂H

∂γ(π)
=

µ
[λ ln q(π)− θ − ωc0(γ(π))]

P∞
k=1 µk(π)

+
P∞

k=1 [νk+1(π)(k + 1)− vk(π)k]µk(π)

¶
≤ 0 (with = if γ(π) > 0) ∀π

∂H

∂η
= λ

X
π

ln q(π)φ(π)− θ − ωc0
³ η

m

´
+
X
π

ν1(π)φ(π) = 0

∂H

∂δ
= θ +

X
π

" ∞X
k=2

kνk(π)
£
(µk+1(π)− µk(π)

¤
+ ν1(π) (µ2(π)− µ1(π))

#

= θ −
X
π

∞X
k=1

[kvk(π)− (k − 1)νk−1(π)]µk(π) = 0

and the co-state (Euler) equations are

∂H

∂ lnA
= 1 = rλ− λ̇.

∂H

∂µk(π)
= lnx(π)− ω [x(π) + c(γ(π))]− θγ(π) + λγ(π) ln q(π)

+γ(π) [(k + 1)νk+1(π)− kvk(π)]− δ [kvk(π)− (k − 1)νk−1(π)]

= r vk(π)− v̇k(π) ∀π.

By substitution it follows that any solution has the property that v(q) = vk(q) for all k. Namely,

v(q), the shadow value of any intermediate good created by a firm of type π, does not depend on

the number of products supplied. Hence, one can rewrite the necessary conditions for a solution as

ωx(π) = 1,∀π.

ωc0(γ(π)) ≤ v(π)− θ + λ ln q(π),∀π (with = if γ(π) > 0)

ωc0
³ η

m

´
=

Z
π
[v(π)− θ + λ ln q(π)]φ(π)dπ.

θ =

Z
π
v(π)

∞X
k=1

µk(π)dπ.

rλ− λ̇ = 1.

rv(π)− v̇(π) = lnx(π)− ω [x(π) + c(γ(π))]− θγ(π)

+λγ(π) ln q(π) + γ(π)v(π)− δv(π), ∀π.
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As efficiency requires that the marginal utility of each good should equal its marginal cost of

production, the first equation implies that the amounts produced should be the same for all prod-

uct types given our specification of the utility and production functions. Equilibrium production

violates this condition. Indeed, because x(π) = 1/wq(π) in equilibrium, higher quality intermediate

inputs are under produced. The second condition requires that the marginal cost of investing in a

new product should equal its expected shadow value after appropriate account is taken of spill overs

and externalities. The negative externality implicit in the innovation process is captured by the

shadow price of the creative-destruction identity, θ, while the positive spill over associated with the

fact that each new product contributes to the productivity of the next is captured by the shadow

value of its contribution to the aggregate productivity parameter, the product λ ln q(π). The third

equation requires that the marginal cost of an innovation by an entrant must equal the expected

shadow price of its product. The fourth reflects the fact that the shadow price of product destruc-

tion is equal to the expected value of the existing set of products. The last two Euler equations

define the shadow prices as the expected present value of the future returns to an unit addition to

the log of the level of productivity and to the stock of products of type π respectively.

It is impossible to characterize the relationship between the optimal growth rate and that

obtained in equilibrium in general qualitative terms. However, given the estimated model and the

equilibrium conditions, one can compute the optimal growth rate and compare it and its components

to the equilibrium values reported in Table 9. Because the steady state solution maximizes the

steady state value of utility, one uses the parameter value estimates and a maximizing routine to

find the corresponding optimal steady state growth rate.

Because the quantities produced by each firm type are the same, the growth rate in productivity

is constant in steady state, and
∞X
k=1

kMk(π) =
ηφ(π)

δ − γ(π)
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from equation (13), the expected utility in steady state is

Ut =

Z ∞

t

"
lnAs +

Z
π
lnxs(π)

∞X
k=1

kMk(π, s)dπ

#
e−r(s−t)ds (36)

=

Z ∞

t
[lnAt + gt+ ln(x)] e−r(s−t)ds

=
1

r2
[g + r(lnAt + lnx)]

where

g = η

Z
π
ln(q(π))φ(π)dπ +

Z
π
γ(π) ln q(π)

∞X
k=1

kMk(π)dπ (37)

= η

Z
π
ln(q(π))φ(π)dπ +

Z
π
γ(π) ln q(π)

ηφ(π)dπ

δ − γ(π)
,

ln(x) =

Z
π
lnxs(π)

∞X
k=1

kMk(π)dπ (38)

= ln

µ
L−

Z
π
c(γ(π))

ηφ(π)dπ

δ − γ(π)
−mc

³ η

m

´¶
,

and Z ∞X
k=1

kMk(π)dπ =

Z
ηφ(π)dπ

δ − γ(π)
= 1. (39)

In other words, the steady state plan maximizes g + r ln(x) as defined by (37) and (38) subject to

the constraint that the total measure of products is unity as expressed in (39) and the requirement

that δ ≥ γ(π) ≥ 0 for all π.
To solve the problem, a discrete approximation to the distribution of product quality at entry

implied by the parameter point estimates was used. The distribution of log quality at entry, the

contribution to the growth rate of an innovation, is reported in the second and third rows of Table

9 for each product type. The equilibrium and planner’s solution for the creation rates are found

in the fourth and fifth rows. Finally, the steady state share of products supplied of each type

associated with the equilibrium and the planner’s solutions are given in the last two rows.

The planner’s strategy is very different from the equilibrium. Indeed, the planner would prohibit

any R&D by firms that product the less than the highest quality products and would dictate an

innovation rate in the highest quality product and an innovation rate in the best products only

slightly larger than that obtained in equilibrim. Apparently, the "spill-over" external economy
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Table 9: Equilibrium and Planner’s Problem Solution
Product Type (i) 1 2 3 4 5 6
Log Quality ln(qi) 0.0870 0.288 0.5390 0.8755 1.3863 2.4849
Entry Share φi 0.6936 0.1888 0.0738 0.0309 0.0112 0.0016
Equilibrium Creation Rate γi 0.0478 0.0628 0.0717 0.0784 0.0841 0.0890
Planner’s Creation Rate γ0i 0.0000 0.0000 0.0000 0.0000 0.000 0.0899
Equilibrium SS Share ηφi

δ−γi 0.5296 0.2163 0.1202 0.0743 0.0445 0.0151

Planner’s SS Share η0φi
δ0−γ0i

0.1702 0.0511 0.0223 0.0106 0.0044 0.7414

Table 10: Equilibrium and Planner’s Growth Rates
Solution Equilibrium Planner’s
Creative-destruction Rate δ 0.0928 0.0900
Entry Rate η 0.0366 0.0128
Growth Rate g 0.0299 0.1944
Decomposition
— Entry 21.90% 2.60%
— Continuing 39.18% 1.33%
— Reallocation 38.92% 95.49%

offsets the monopoly and creative-destruction external diseconomies only in the case of the highest

quality products.

As a comparison of the two implied steady state distributions of products over quality confirms,

firm size selection is much more pronounced in the planner’s solution. Namely, the most productive

firms would supply over 74% of all products given the planner’s solution as compared with only

1.5% in equilibrium while the steady state share of the least productive type falls from 53% in

equilibrium to 17% were the planner’s solution implemented.

Comparisons of the equilibrium rates of creative-destruction, entry and growth with those im-

plied by the planner’s solution are reported in Table 10. Note that the planner’s rate of creative

destruction is slightly smaller than the equilibrium value while the optimal entry rate is substan-

tially smaller than the equilibrium. Even so, because the planner’s innovation rate in the best

product type and the improvement in quality attributable to these products are so large, the opti-

mal growth rate is over six times larger than that obtained in equilibrium. Furthermore, because

of the considerable selection effect that the planner’s innovation strategy induces, almost all of
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the optimal growth rate can be attributed to reallocation, 95% as compared with 39% in for the

equilibrium solution.

7 Concluding Remarks

Large and persistent differences in firm productivity and firm size exist. Evidence suggests that

the reallocation of workers across firms and establishments is an important source of aggregate

economic growth. In an earlier paper, Lentz and Mortensen (2004), we explore a variant of the

equilibrium Schumpeterian model of firm size evolution developed by Klette and Kortum (2004)

that provided insights into these and other empirical regularities. In our version of the model,

firms that can develop products of higher quality grow larger at the expense of less profitable firms

though a process of creative destruction. Worker reallocation from less to more profitable firms

induced by the process contributes to aggregate productivity growth. Furthermore, the model is

consistent with the observation that there is no correlation between employment size and labor

productivity and a positive correlation between value added and labor productivity observed in

Danish firm data.

In this paper, we take the model to the data. Namely, we fit its structure to Danish firm panel

data for the 1992-1997 time period. We find that the parameter estimates are sensible and that the

model provides a reasonable fit to many of the moments of the joint distribution of size as measured

by value added and employment. The model also explains the evolution of size distribution of firms

in the panel over the observation period. Finally, the quantitative model has interesting aggregate

implications for the growth process. First, the implied rate of productivity growth, 3% per year,

is larger than estimates based on standard accounting methods. Second, the quantitative model

implies that the optimal rate of growth, that which a social planner would achieve, is much higher,

almost 20%. The difference is almost entirely explained by the fact that the social planner would

require that firm’s able to make the best products invest much more in R&D than then they do in

the estimated equilibrium while all others would be ordered to invest much less. The considerable

reallocation from less to more profitable continuing firms implied by this policy accounts for 95.6%

of the socially optimal growth rate.
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8 Appendix

In this section, we present the algorithm used to compute the values of model parameters implied

by the estimates and the equilibrium and optimal growth rates, all reported in the text. To do

so, one must account for the two parameters not explicitly used in the initial presentation of the

model, the average demand per product, Z, which was normalized to unity in the model, and the

cost of capital per product line, denoted κZ. Hence, profit per product line can be represented as

πZ for a firm of type π where

π = (1− κ)(1− q−1) (40)

is now profit express as a fraction of value average sales.

Since the parametric form of the steady state distribution of firms over profit, denoted p(π)

in the text, is specified in the model estimated, one needs to derive its relationship to the initial

density of entering firms over profit, φ(π), by inverting the steady state relationship implied by the

model. Specifically,

p (π) =M (π) /M

where M(π) is the steady state mass of firms of type π and M =
R
πM(π)dπ is the total mass of

firms. Since

M (π) =
∞X
k=1

Mk(π) = ln

µ
δ

δ − γ(π)

¶
ηφ(π)

γ(π)

from equation (13), it follows that

ηφ(π) =
γ(π)M (π)

ln
³

δ
δ−γ(π)

´ = γ(π)p (π)M

ln
³

δ
δ−γ(π)

´ ,

At this stage, the aggregate entry rate η and the total mass of firms M have yet to be separately

identified. But by
R
π φ (π) dπ = 1, it follows that,

η = η

Z
π
φ(π)dπ =M

Z
π

γ(π)p (π)

ln
³

δ
δ−γ(π)

´dπ. (41)

Consequently, the profit density at entry is

φ(π) =

γ(π)p(π)

ln
³

δ
δ−γ(π)

´R
x

γ(x)p(x)

ln
³

δ
δ−γ(x)

´dx. (42)
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Equation (15) and the assumption that the measure of products is unity, the steady state measure

of continuing firms in the market solves

1 =

Z
π

∞X
k=1

kMk(π)dπ =

Z
π
M (π)

∞X
k=1

kMk(π)

M (π)
dπ (43)

=

Z
π

γ(π)M (π)

(δ − γ(π)) ln
³

δ
δ−γ(π)

´dπ =M

Z
π

γ(π)p (π)

(δ − γ(π)) ln
³

δ
δ−γ(π)

´dπ.
Hence,

η =

R
π

γ(π)p(π)

ln
³

δ
δ−γ(π)

´dπR
π

γ(π)p(π)

(δ−γ(π)) ln
³

δ
δ−γ(π)

´dπ . (44)

from by equations (41) and (43).

To solve the planner’s problem, one also needs the size of the aggregate labor force, L, and the

measure of potential entrants, m. Because one can show that the limit price charged by the current

supplier of each product solves p(1−κ) = wq when a capital cost exists, the demand for production

workers is Zx(π) = 1/p = Z(1 − κ)/wq = Z(1 − κ − π)/w from (40). Hence, equations (12) and

(13) imply

L = Z

·Z
π

µ
1− κ− π

w
+ bc(γ(π))¶ ηφ(π)dπ

δ − γ(π)
+mbc(η/m)¸ (45)

where, as specified in the text, bc(x) = c0x
1+c1 . Finally, one can obtain the value of m by using

the fact that the marginal cost of entry must equal the expected marginal cost of innovation by

incumbents. Specifically, equations (11) and (10) imply require that m solves

bc0 ³ η

m

´
=

Z
π
bc0 (γ(π))φ(π)dπ (46)

Finally, the parametric specification of heterogeneity in product quality is

q(z) = 1 + eµπ+σπz (47)

where z is the standard normal random variable. Hence, one can use the fact that f(z)dz =

p(π(z))dπ(z), where f(z) is the standard normal pdf and π(z) = (1 − κ)(1 − q(z)−1) by (40), to

compute all the necessary integrals in the equations above and those that define the components

of the growth rate found in the text.
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