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Abstract

This paper analyzes the optimal timing of taxes on capital income. We show that the celebrated result
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this case, involving depreciation rates that increase over the lifespan of the investment, implies that optimal
taxes should oscillate. Furthermore, the optimality of fluctuating tax rates hinges on the government being
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under accelerating depreciation. In a calibrated example, we find that optimal taxes are oscillating under
commitment and smooth without commitment.

JEL Classification Codes: D90, E61, E62, H21, H30.

Keywords: Optimal taxation, Tax dynamics, Time-consistency, Capital depreciation.

∗John Hassler: IIES and CEPR; e-mail: John.Hassler@iies.su.se.
†Per Krusell: Princeton University, IIES, CAERP, CEPR, and NBER; e-mail: pkrusell@princeton.edu.
‡Kjetil Storesletten: University of Oslo, IIES, Frisch Centre and CEPR; e-mail: kjetil.storesletten@econ.uio.no.
§Fabrizio Zilibotti: IIES, IFS and CEPR; e-mail: Fabrizio.Zilibotti@iies.su.se.



1 Introduction
What is the optimal path of taxes for a benevolent government that needs to finance some essential public
expenditures? Regarding this classical question, we make two new points in this paper. The first is that,
in very natural settings, the policy maximizing consumers’ welfare in a non-stochastic economy involves
fluctuations in taxes and expenditures. The second point is that the size of the fluctuations depends on
the extent to which the government can commit to how to set future taxes: less commitment leads to a
dampening of the fluctuations. What we mean by a “natural setting” is, primarily, that installed capital
loses productivity at a rate that increases as capital ages, and, in addition, that the government has limited
ability to differentiate taxes across different types (vintages) of capital.
A standard principle in public finance is that taxation should be designed so as to keep distortions smooth

over time. This principle applies whenever the social cost of raising tax revenue is convex, a circumstance
that is met in most settings. In models where taxes only distort static decisions (e.g., to labor supply), and
where the relevant elasticities are constant over time, this implies that taxes should be as close to constant
as possible and that shocks to expenditures should be absorbed by time-varying debt (e.g., Barro, 1979).
However, if taxes distort accumulation decisions, new issues arise. One important such issue is how much
tax revenue should be raised from income arising from static decisions (say, labor income) and how much
should be raised from taxing income from accumulated production factors (such as physical capital). The
seminal papers by Chamley (1986) and Judd (1985) in this area show, in particular, that optimal taxation
in general involves taxing both labor and capital but at very particular, time-varying rates: over time, the
tax rate on the accumulated factor should go to zero. More precisely, consider a model where a benevolent
“Ramsey planner” chooses how and when to finance a given stream of government expenditures (or a public
good) using proportional taxes at different points in time. Under standard assumptions on preferences and
technology, the optimal tax sequence then prescribes high taxes on capital income for a finite number of
periods. I.e., capital taxes should be “front-loaded” and zero in the long run (see Atkeson et al., 1999).
In this paper, we consider a version of the standard neoclassical growth model. We generalize this

model by allowing empirically supported deviations from geometric depreciation and convex costs of capital
accumulation. To be able to fully characterize optimal tax-dynamics, we then assume preferences and
technology to be linear and separable in capital and labor. When depreciation is geometric, our model
reproduces the standard result that taxes on capital should be front-loaded. Suppose, for simplicity, that it
takes one period for the government to implement a taxation decision, so that a decision to tax capital initial
income will distort the investment in the first period. Then the result is that the planner taxes initial capital
income at a very high rate so as to extract revenue from the part of the initial tax base that is inelastic (i.e.,
from those assets that were accumulated before the start of the planning horizon). Thereafter, the optimal
tax rate “jumps down” to its steady-state level. Though standard, an interesting aspect of this result is that
the distortions on asset accumulation generated by this tax sequence are far from smooth: the tax burden is
borne entirely by the investments in the first period. This may seem surprising: shouldn’t the planner shift
some burden to future investments, so as to smooth distortions? In addition, after the first period (with high
taxation), since capital depreciates geometrically, there is still inelastic capital left. Both these factors speak
for a large tax rate in the second period. However, the fact that the initial investment is heavily distorted by
the first-period tax, makes it very costly to distort it further by a high second-period tax rate. This speaks
for lower taxes in period two, and it turns out that the opposing forces cancel exactly so that taxes go to
their steady-state level immediately.5

The first main finding in our paper is that the optimality of constant taxes after the first period is a knife-
edge result, hinging on the specific (albeit commonly used) assumption about the depreciation of assets in
the economy: geometric depreciation. If assets depreciate at a non-constant rate over time (i.e., depreciation
deviates from a geometric pattern), the planner can and will use the timing of taxation to smooth distortions.
To establish the result in a transparent way, we focus on a simple deviation from geometric depreciation that
we label “quasi-geometric”: the depreciation rate in the first period is allowed to be different from that in
subsequent periods. The presence of a distribution of capital vintages turns the timing of taxation into an

5 Intuitively, if the PDV tax revenue extracted from inelastic capital were held constant, then shifting capital taxation to later
dates would be detrimental: it would not reduce the burden on time-zero investments, and it would distort future investment
decisions unnecessarily.
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additional instrument for enabling distortion smoothing.
We stress the case in which the depreciation rate increases with the age of the asset, since this seems

empirically relevant for most types of capital (see below for more discussion). In this case, the Ramsey
allocation implies oscillatory tax dynamics. A simple example can be used to illustrate the intuition. Suppose
that the asset is accumulated in period t and is fully productive in periods t+1 and t+2 but not thereafter.
This is a particular case of quasi-geometric depreciation, where the depreciation increases with the asset age
(depreciation is zero initially, and then 100%). To attach words to the assumption in this example, we can
think of agents who live for three periods and in the first period make an educational choice whose benefits
remain with the worker in the two following periods, i.e., until he exits the labor market. At time t, a surprise
occurs, which increases the need for the government to raise funds.6 To fix ideas, let this be a surge in an
external security threat (e.g., “terrorism”), causing an increase in the social value of defense. In this case,
the planner wants to seize the opportunity to extract a large tax revenue from the generation who made
its investment before the surge of the threat. This generation sunk its investment under the expectation of
lower taxes, and this investment is, at t, an inelastic tax base. So a high tax rate is called for at t. This
high tax rate can be counteracted by a lower tax rate in t + 1 so that investments in period t are not too
distorted. Then, since the t+1 tax rate is low, the government can afford a higher t+2 rate, and so on. This
oscillating plan features a smoother path of distortions than full front-loading would. At the same time, it
allows the planner to exploit the lower elasticity of the tax base at t. This example is simple and intuitive
because the asset (human capital) is only productive for two periods. However, we show that this intuition
is robust to the case where assets are infinitely lived and depreciate smoothly but at rate that increasing
with its age.
Throughout the paper, we maintain the assumption that the government cannot tax assets at rates

that vary with the age of the capital. If this were possible (or if the government could offset distortions by
investment subsidies), the taxation problem would become trivial: the planner could expropriate pre-installed
capital and attain perfect distortion smoothing on new investments. Such a conclusion follows independently
of the depreciation structure. In particular, taxation in the standard Chamley-Judd framework would not
feature any dynamics either. The motivation for simply ruling out vintage-specific taxation by assumption
is that we believe that it is difficult in practice to distinguish when existing capital was built. For human
capital, the timing of education is observable, but the timing of later investments in human capital (on and
off the job), and their importance relative to educational investments, are for the most part not observed. For
physical capital, though initial investment amounts might be measured by tax authorities, later adjustments
in the form of maintenance and upgrades are difficult to assess. Moreover, a feature of many forms of
investments is that they have a consumption component. This is obvious for the case of education, but it is
arguably the case also for many other investment activities. Thus, with substantial investment subsidies, the
difficulty for fiscal authorities of sorting out the consumption component from true productive investments
arguably make such subsidies quite imperfect tools. Formally, one could therefore defend the assumption
that vintage-specific taxation is not allowed with a framework based on explicit information asymmetries
between firms and the fiscal authorities. In order to make the analysis as focused as possible, we simply
rule out vintage dependence. A more realistic framework would allow some vintage specificity and possibly
derive the extent of such specificity from a microeconomic structure based on information asymmetries.
Having established that tax oscillations are a property of the Ramsey solution, we consider the effect

of commitment on tax dynamics. Time-inconsistency is a standard feature of the optimal capital taxation
literature which is also present in our model: the tax rate at a point in time t influences investment decisions
prior to period t, and these effects should be taken into account when a plan for the time t tax rate is made;
when period t arrives, however, these investment decisions are already made, thus causing the government
to revise its tax plan, if it can. While the Ramsey planner in ideal model worlds are often assumed to have
the ability to commit to a tax sequence, real-world institutions do not automatically have the power to
commit. In particular, democratic rules naturally limit the government’s ability to commit to future policy
choices: commitment, were it possible to arrange, would be a way of disenfranchising future voters. But
more generally it is not at all clear how commitment to policy could be implemented in practice, a point

6The assumption in this example–that the change is a “surprise”–is made for simplicity. It can be thought of as allowing
the planner to make a commitment but then re-optimize after a zero-probability shock realization. We show in section 6 that
the argument is robust to assuming that the shock is the realization of a stochastic process of which agents know the probability
distribution, and the government commits, ex ante, to a state-contingent plan.
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first made by Kydland and Prescott (1977). A number of “mechanisms” for solving commitment problems
have been proposed in the literature. Some appeal to reputation equilibria, along the lines of Abreu, Pearce,
and Stacchetti (1990) and Chari and Kehoe (1990); we rule out reputation mechanisms by focusing on
finite-horizon equilibria and their limits–formally, we look at Markov-perfect equilibria.7 Others, such as
Rogoff (1985), appeal to specific institutional structures involving delegation; we do not allow committing
to delegation here. Finally, Lucas and Stokey (1983) point to sophisticated government portfolio design as a
way of overcoming some forms of commitment problems; such instruments are not available in our setup. In
our view, it is therefore important to explore what optimal taxation would look like if it took into account
the restrictions implicit in not being able to commit.
We show that the lack of commitment implies a natural tendency for taxes not to fluctuate or, at least,

to fluctuate less. When there is no commitment, the government’s trade-off between costs and benefits
changes. As a general principle for both the case with and that without commitment, the excess value of
government funds times the marginal revenue of taxes at period t is set equal to the marginal distortionary
cost of taxes in period t. Under commitment, the marginal distortionary cost depends on a weighted sum of
the wedges between first-best and actual investments levels prior to t, where the weights are determined by
the depreciation structure. In contrast, if, due to a lack of commitment, the government sets the tax for t
no earlier than in period t− 1, the marginal cost of taxes in period t depends only on the investment wedge
in period t− 1, since all previous investments are then sunk. Specifically, when capital is productive for two
periods, the marginal distortionary cost of a tax in period t > 1 depends on the sum of investment wedges
in periods t− 1 and t− 2. This sum should be proportional to the marginal revenue of the tax in period t,
leaving open for the individual investment wedges to fluctuate. Under no commitment, the optimal solution
instead requires each investment wedge to be proportional to the marginal revenue of the tax. This allows
some movements in tax rates because of the initial sunk capital stock, but the fluctuations are minor.
Our main argument rests on the notion that depreciation rates are increasing in age, as opposed to

constant. Clearly, some extent of accelerating depreciation seems justified just based on the plausible idea
that there is a finite upper bound on the lifetime of any asset. More importantly, however, there is systematic
empirical support for our assumption. A number of studies suggest that the productive capacities of many
assets do not fall at a constant rate but, rather, decrease with age, which is the case we emphasize here. A
seminal study by Coen (1975) estimates capacity depreciation for equipment and structures in 21 industries
and finds a predominant pattern of depreciation increasing with age. In many cases, capital depreciation is
found to be of the “one-hoss-shay” variety, i.e., capital maintains its full capacity until when it is scrapped.
Similar results are obtained by Penson et al. (1977 and 1981) using engineering data to estimate capacity
depreciation for farm tractors. Pakes and Griliches (1982) find that the productive value of investments
is actually increasing over the first three years and remains constant for the following four to five years.
This could be explained by learning-by-doing: capital is not used at its full potential until some time from
its installation. In contrast, a number of studies based on cross-sectional studies of second-hand asset
prices, most notably Hulten and Wykoff (1981), conclude that geometric decay is a good approximation for
economic depreciation, and show that in some cases depreciation rates are actually higher for young than for
old capital. In our view, however, the methodology used by Hulten and Wykoff to estimate depreciation is
unlikely to capture the right notion of loss of productive capacity for our analysis. The price of second-hand
capital is a poor proxy for the internal productive capacity of installed capital (which is the relevant notion
for our analysis), and it is affected by private information and adverse-selection issues, as well as capital
specificity (see, e.g., Ramey and Shapiro, 1998) and learning-by-doing. In addition, some recent studies
using this methodology in fact find different results; e.g., Oliner (1996) finds that economic depreciation for
machine tools is significantly increasing with age.8 The evidence that depreciation rates increase with age
is particularly sharp in the case of IT technologies. Geske, Ramey, and Shapiro (2003) find that a large

7For a recent study of a class of reputation equilibria, see Fernandez-Villaverde and Tsyvinski (2004).
8This study is based on data on non-numerically controlled machines collected from a survey off dealers belonging to the

Machinery Dealers National Association. The price-age profile is estimated by taking a weighted average of the observed price
of a machine and the unobserved zero price, with the weights reflecting the probability of remaining in service at a given age.
Allowing depreciation rates to change over time, as in Hulten and Wycoff (1981), Oliner (1996) finds that the yearly depreciation
rate is 2.9% after ten year, 6.1% after 20 years, 11.1% after 30 years and 18.1% after 40 years. Imposing geometric depreciation
would yield yearly depreciation rate equal to 9.5%, but the hypothesis that the depreciation rate is constant is strongly rejected
in the data.
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part of the loss of value of computers is due to technological obsolescence, while there is very little effect
of loss of productive capacity due to age. In a recent study on the age-price profile of personal computers,
Dunn et al. (2004) estimate the depreciation rates of personal computers to be close to zero in the first year,
and then to increase to 17%, 25%, and 30%, respectively, in the three subsequent years.9 Whelan (2002)
estimates a structural model where computer maintenance is costly and scrapping endogenous and finds
even more compelling results: before scrapping, the productivity decay is insignificant, as in the “one-hoss
shay” pattern, for most computer equipment, with the exception of printers for which geometric decay is not
rejected. In summary, the assumption that depreciation rates increase with age seems to be in accordance
with the bulk of the empirical evidence.
We are not aware of systematic studies on the depreciation of human capital. However, it seems clear

that to the extent to which human capital accumulation is important, our case is significantly strengthened:
acquired knowledge and skills embodied in live, working people is hard to think of as geometrically decaying,
since they effectively vanish as the worker exits the labor market.
Our analysis relates to Barro’s (1979) result that tax smoothing is optimal. Barro looked at debt- versus

tax-finance of a given stream of expenditures. Our model differs from Barro’s in one main respect: in Barro,
the distortionary effects of taxation have a static (e.g., labor supply) rather than a dynamic nature. Our
result that fluctuations in taxation can be optimal emphasizes an unexplored aspect of the general principle
that the smoothing should occur for distortions, not for taxes. In particular, in our model, the distortions to
an agent’s effort choice can be summarized by the present value of extra taxes incurred by the effort choice:
whether to become educated (a higher-earning career, presumably) or not depends on what one thinks will
happen with the taxes over the entire course of one’s working life. So a fluctuating tax rate on income is
not bad per se and, as we show, is desirable in order to implement a higher taxation of already installed
(more inelastic) sources of income. Another difference between our setup and Barro’s is that in our model,
the structure of optimal taxation depends on whether or not there is commitment, whereas in Barro’s setup,
because the effort decision is static and because interest rates are exogenous, the commitment outcome is
time-consistent.10

Our paper has implications for political economy. In a related paper (Hassler et al., 2004), we build on
the insights here to show that the time-consistent Ramsey solution can be given politico-economic micro-
foundations: if agents vote over redistribution (or, like in part of this paper, on public good provision) with
altruism towards future generations, and the political mechanism is represented by a probabilistic voting
model a la Lindbeck and Weibull (1987), then the time-consistent Ramsey solution is indeed a political
equilibrium. If we attach a politico-economic interpretation to the time-consistent solution of the model in
this paper, we can state that, to the extent cycles are present, they are not “politically driven”, but rather
counteracted by politics.
Our paper is also related to the recent study of public expenditure choice in Klein, Krusell, and Ríos-

Rull (2003). Their model is a neoclassical growth setup where the government has no access to debt and
has no commitment; like in this paper, they focus on Markov-perfect equilibria. The focus there is on
(i) deriving and interpreting first-order conditions for the government and (ii) numerical methods and a
quantitative evaluation. The present paper is different not mainly because it derives closed-form solutions
but because it emphasizes conditions under which non-monotonic dynamics arise (and which are plausible).
The neoclassical framework in Klein et al.’s work uses only physical capital, with geometric depreciation,
thus ruling out the possibility of oscillations in the solution with commitment.
In Section 2, we describe the setup from the perspective of standard Ramsey problems where the issue is

that of how and when to finance an exogenous stream of government expenditures when the government can
borrow and lend. Then in Sections 2.5 and 3 we describe and analyze a problem which is formally equivalent
to the former one under the specific assumption of our model: that of choosing public expenditures subject
to a balanced budget. We compare the commitment and no-commitment solutions in Section 4. In Section
5 we then interpret our findings on the basis of the idea of “distortion smoothing”. The issue of whether

9Our calculation is based on Table 7a in their paper. These figures do not include what the authors refer to as the “revaluation
effect”, i.e., the fact that technical progress makes better computers available, causing a fall over time of the constant-quality
price of a PC. Since we are interested in the productivity of the asset, this effect should not be included. Including revaluation
continues to give an increasing depreciation rate, although the differences are less pronounced.
10A closely related setup to Barro’s, namely, that in Lucas and Stokey (1983) features time inconsistency since it features

endogenous interest rates.
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the fluctuations in our examples are all memories of the initial period is then dealt with in Section 6 in
a very simple extension of the basic setup to uncertainty in the second period. There we show that, if
government debt is not state-contingent, “new” fluctuations occur as a result of the shock whereas if it is
state-contingent, no new fluctuations occur: those that are present are indeed a memory of the initial period.
Section 7 concludes.

2 The model
In order to relate our results to the literature on optimal taxation (see, e.g., Chamley (1986), Judd (1985), or
Atkeson, Chari, and Kehoe (1999)), we initially describe a very standard setup. We then both specialize and
generalize this setup. The generalizations are the focus of our analysis; the key generalization involves a non-
constant depreciation rate. We also consider “adjustment costs” to capital formation, but this specification
is made mainly for reasons of tractability. The specializations are made only in order to make the analysis
as tractable as possible. First, we consider linear utility in private consumption–in order to avoid issues of
government manipulation of the interest rates in pursuing optimal taxation.11 Second, our formulation is
made in terms of an abstract capital good, which could be either physical or human capital; however, we
do not model static labor supply (we assume that production is linear in capital). The reason for this is
that our main focus is on the timing of taxes on accumulable factors, and the presence of a tax on purely
statically provided input has no direct impact on this analysis.
An additional motivation for our modelling choices is that, under our assumptions, the model is obser-

vationally equivalent to one where the government chooses public expenditures over time. More precisely,
the typical problem of choosing taxes under an exogenous stream of public expenditures and an intertem-
poral government budget without restrictions on borrowing is identical to one where public expenditures
are endogenous and the government’s budget must balance in every period. The analysis in the subsequent
sections is conducted under this latter interpretation, since this makes it easier to extend the analysis to the
case when the government cannot commit to future policy, as we discuss further in the end of this section
and in section 4.
In the following, we present our model, beginning with the standard formulation, which we then generalize

and specialize as discussed above.

2.1 Choosing how to finance an exogenous expenditure stream

Time is discrete and infinite, and there is an infinitely lived household endowed with standard time-additive
preferences:

∞X
t=0

βtu (ct, 1− nt) .

Production is of the standard, neoclassical variety:

ct + it = F (kt, nt) , (1)

where F has constant returns to scale. The stock of capital accumulates according to

kt+1 = it + (1− δ)kt. (2)

In a decentralized environment where the consumer accumulates capital and rents capital and labor
services to firms and where income is taxed at proportional rates, the budget constraint reads

ct + kt+1 + bt+1 = (1− δ)kt + rtkt(1− τkt) + btRt + wtnt(1− τnt),

with obvious notation; bt+1 represents lending to the government in period t and Rt denotes the gross interest
rate, which has to satisfy

Rt = 1− δ + rt(1− τkt) (3)

11See Lucas and Stokey (1983) and Krusell, Martin, and Ríos-Rull (2004).
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in equilibrium since there are no arbitrage opportunities then.
Firms maximize profits taking input prices as given, yielding standard marginal-product-pricing formulae:

wt = F2(kt, nt) and rt = F1(kt, nt). (4)

The government has to finance a given sequence {gt}∞t=0 of government expenditures. Its period budget
constraint reads

gt + bt+1 = Rtbt + τktrtkt + τntwtnt

or, with a no-Ponzi-game restriction imposed,

b0 +
∞X
t=0

1

R0R1 · · · · ·Rt
(gt − τktrtkt − τntwtnt) = 0. (5)

The Ramsey problem, where a planner chooses tax sequences in order to maximize representative-agent
utility subject to its budget constraint and subject to the restriction that the allocation be a competitive
equilibrium allocation, can be stated as follows.

max
∞X
t=0

βtu (ct, 1− nt) subject to (1), (2), (3), (4), (5),

ul,t = uc,t · wt(1− τnt),

uc,t = βuc,t+1 · (rt(1− τkt) + 1− δ), (6)

and an assumption that τk0 is bounded above by some low enough number that the taxation problem is
still nontrivial. This is an entirely standard problem whose solution has been discussed extensively in the
literature; it implies, among other things, that taxes on capital income converge to zero over time. With
more specific assumptions on utility–constant relative risk aversion–it also is easy to see that these taxes
reach zero in finite time: monotone, quick convergence. We will make a partial statement of these results in
the next subsection. We will now successively generalize and specialize this setup.

2.2 Generalizing the setup

The key new element we consider is variable depreciation of capital. For clarity, we will make a marginal
generalization to the standard setup; later we will discuss some substantive applications. Suppose that a unit
of investment at time t leads to one unit of productive capital in period t+1, 1−ρδ units in period t+2, and
(1− ρδ)(1− δ)k units in period t+ 2+ k; we label this depreciation structure quasi-geometric.12 Obviously,
ρ = 1 refers to the standard, geometric depreciation case, whereas ρ < (>)1 captures lower (higher) initial
depreciation than in the geometric case. Figure 1 represents a case of “accelerating” depreciation (ρ ∈ (0, 1)),
showing the fraction of investments made in period t− 1 that survives at t, t+ 1, ..., etc..
Because of the non-geometric depreciation structure, it is now necessary to distinguish two kinds of

capital at time t: “old” capital, for which we use the notation kot , which was built at t − 2 or earlier, and
“new” capital, knt , which was built at t − 1, and which therefore equals it−1. The difference between these
kinds of capital is not in their productivities–the total input of capital into production at t, which we still
call kt, equals kot +knt–but in their depreciation rates from t to t+1. Thus, our assumptions are summarized
by the following laws of motion for the two types of capital:

kot+1 = (1− δ)kot + (1− ρδ)knt ,

knt+1 = it.

12One could alternatively assume that investments at t become productive already at t, a specification that was adopted in
an earlier version of this paper. No result changes in this alternative setup. We choose the current specification for consistency
with the standard capital taxation literature.
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time

productivity

t t+1 t+2 t+3 t+4 t+5

1

Figure 1: Remaining stock (“productivity”) of capital installed in period t-1 with quasi-geometric “acceler-
ating” depreciation (ρ ∈ (0, 1)).

Put in terms of standard notation–capital in use, kt = kot + knt–these equations can be rewritten as a
version of the standard capital accumulation equation:

kt+1 = it + (1− δ)kt + δ(1− ρ)it−1. (7)

In this formulation, total capital in use next period equals (i) the investment made this period plus (ii) total
capital in use this period depreciated at rate δ, with (iii) an adjustment upward by δ(1− ρ)it−1 due to the
fact that not all capital in use today actually depreciates at a constant rate δ: part of it, it−1, depreciates
at the lower rate ρδ.13 Notice, in particular, that when ρ = 1 equation (7) reduces to the standard case of
geometric depreciation. Much of the analysis below will be conducted in terms of old capital, ko, since it is
a natural state variable, whereas kt is not.
A one-hoss-shay depreciation structure–where investment at t stays intact until t+2 but then depreciates

fully–is a particular case of the quasi-geometric setup: set δ = 1 and ρ = 0 (in terms of figure 1, the segment
between t and t+1 is perfectly flat, and, then, the curve falls vertically to zero).14 We will stress this special
case, because it has an alternative, and important, interpretation: that of human capital. An investment
in human capital has the basic feature that (at least a large part of) what is learned disappears when the
person dies/leaves the labor force.15 So when δ = 1 and ρ = 0 our model can be interpreted as one of
overlapping generations of agents, each of whom invests in human capital and then works for two periods.
Labor productivity is proportional to the amount invested and given this amount, labor supply is inelastic.
One can also consider more general values for ρ: ρ > 0 corresponds to a downward-sloping age-earnings profile
(the worker’s knowledge depreciates with age) and ρ < 0 corresponds to an upward-sloping one (workers
learn without cost in the first period of working life). Our assumptions on utility are then interpreted from
the perspective of perfect altruism across generations: the representative agent is a “dynasty planner” who
internalizes the effects of current choices on all future generations. The version of our model with a human
capital interpretation is useful in several ways. It depicts a form of capital for which perpetual, constant
depreciation is an especially unnatural assumption. Moreover, it allows us to highlight the intuition behind
13With kt − it−1 depreciating at rate δ and it−1 at rate ρδ, the new total capital in use becomes it + (kt − it−1)(1 − δ) +

it−1(1− ρδ), which delivers the right-hand side of equation (7).
14A one-hoss-shay structure where capital lasts for n > 2 periods of life can be described as well, but not as a special case

of the present setup. The quasi-geometric setup, however, can be generalized to allow for n distinct, initial depreciation rates
followed by a final rate δ that applies for the rest of time.
15Of course, there can be transmission of human capital across workers or within families, in which case one can think of

human capital as potentially living forever even though workers do not. Nevertheless, it seems plausible that a significant part
of human capital is lost when a person departs.
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the main result. Finally, it is a case of independent interest, particularly for political-economy applications
where there is conflict of interest between generations: the assumption of perfect altruism is straightforward
to relax (see Hassler et al., 2004).
Our second generalization is to consider a form of “adjustment cost”: we assume that consumption and

investment are not perfect substitutes. In particular, we assume that the resource requirement in terms of
consumption goods of producing it units of investment goods at time t is G(it). So the resource constraint
is now

ct +G(it) = F (kt, nt) , (8)

where G is increasing and convex. The reason for this assumption is mainly technical, and we we will return
to it later. We assume, in our decentralization, that the adjustment cost is borne on the level of the consumer
accumulating the capital. Moreover, we maintain the assumption that consumption and investment cannot
be taxed at separate rates. This can be justified by informational constraints: only income is verifiable and
can be taxed at the rate τ t.
It is useful for what follows to state a preliminary set of results as a background. They pertain to the

case with standard geometric depreciation but with no adjustment costs.

Proposition 1 Assume that ρ = 1 and that G(i) is linear. Then if the Ramsey problem above has a
solution where the tax rates converge to a limit, it has to have τkt → 0. Moreover, in the special case where
u(c, n) = c1−σ−1

1−σ + v(n), the Ramsey solution has τkt = 0 for all t ≥ 2.
The proof can be found in Atkeson, Chari, and Kehoe (1999). The idea that taxes on capital converge

to zero is well known and goes back to Chamley (1986) and Judd (1985). That taxes reach steady state in
finite time is a less-discussed feature, and it sets a useful benchmark for the analysis in Section 3.1 below. In
particular, we show there that the transitional dynamics are richer and qualitatively different when capital
depreciates at a non-geometric rate (ρ 6= 1) .
Next, we state a result concerning the effect of adjustment costs on long-run taxation.

Proposition 2 Assume that ρ = 1 and that G(i) is strictly convex. Then the Ramsey problem above with
equation (1) replaced by equation (8) does not have a solution in which τkt → 0.

Even though the long-run properties of capital taxation are not the main focus of our analysis, this result
is useful. The Ramsey allocation in our model features positive taxation in the long-run, and Proposition 2
simply clarifies that this is due to the presence of adjustment costs. The proof of Proposition 2 is straight-
forward and is available upon request. Its closest relative in the literature is Correia (1996), who shows that
the presence of non-taxed factor leads to nonzero limit taxation of capital income. Correia’s main insight
is that untaxed input factors provide one channel through which capital taxation can be used beneficially,
even in the long run. In the framework we study here, the production of investment goods is not, unlike
in the standard neoclassical model, just a linear function of output. We model the choice of investment
as a household choice–say, through “home production”–and there are therefore untaxed “profits” in this
operation. These profits are the equivalent of the untaxed factor income in Correia’s analysis.

2.3 Specializing the setup

We make two key simplifying assumptions. First, we assume that utility is linear in private consumption:
u(c, n) is quasi-linear. This is helpful because it pins down the interest rate. The interest rate would otherwise
be subject to government “manipulation”, as in Lucas and Stokey’s 1983 paper: it is in the government’s
interest to influence it so as to make the distortions associated with servicing government debt as small
as possible. Moreover, a recent paper (Krusell, Martin, and Ríos-Rull, 2004) has shown that interest-rate
manipulation in the case of no commitment, a case we have particular interest in studying in this paper
(see Section 4), is substantially more complex than in the commitment case. Thus, linear utility of private
consumption simplifies our analysis considerably and allows a sharper focus.
Second, we assume that the production function is linear in capital, with labor being completely unpro-

ductive: we assume “AK” production. In particular, we shall assume that production at t is simply kt: it
equals total (old plus new) capital. Thus, the issue here is now purely one of when capital income should
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be taxed; there is no choice between taxing capital and taxing labor. The incorporation of labor into the
analysis would be possible, but it would not deliver additional insights into the main issue studied here.
We can now clarify the role of the adjustment costs in our economy. Given the lack of curvature in

utility and technology, the equilibrium allocation would have bang-bang properties. Convex adjustment
costs prevent this unattractive feature. Incidentally, the strict convexity of G rules out long-run growth
in spite of the AK technology (for this reason we can assume with no loss of generality that A = 1). We
also make a specific assumption on G, which makes closed-form solutions possible, namely that G(i) = i2.
It is, of course, possible to relax this assumption and provide a characterization of the dynamics around a
steady state which is qualitatively identical to the global solution we obtain. However, the solution of the
case where there is no commitment is substantially less mathematically demanding in the case when G is
quadratic than in the general case; see Klein, Krusell, and Ríos-Rull (2003).

2.4 The Ramsey problem

Using the simplifying notation τkt = τ t, we arrive at the main object of analysis in this paper: the Ramsey
problem. It corresponds to the following maximization problem:

max
{τt,it,kot+1}∞t=0

∞X
t=0

βt(kot + it−1 − gt − i2t )

subject to the government’s budget,

b0 +
∞X
t=0

βt(gt − τ t(k
o
t + it−1)) = 0,

the law of motion of (old) capital under quasi-geometric depreciation,

kot+1 = (1− δ) kot + (1− δρ) it−1, (9)

where ko0 and i−1 are predetermined, and to

2it = β (1− τ t+1 + βδ(1− ρ)(1− τ t+2) + 2(1− δ)it+1) , (10)

which is the first-order condition for the consumer’s optimal investment choice, namely the analogue of the
Euler equation (6) with adjustment costs and G0(i) = 2i. In addition, taxes are bounded between zero and
one. In Section 3 we characterize the solution of this problem. Section 4 looks at the situation where there is
no commitment. In this case, the outcomes cannot be characterized using control theory alone: the problem
must be viewed as a game between successive dynastic planners each solving a control-theory problem.

2.5 The public-goods interpretation of the Ramsey problem

We will now present an alternative interpretation of the Ramsey problem–the public-goods interpretation–
which is useful in ways that will be explained momentarily. To see how the alternative interpretation is arrived
at, note that the Ramsey problem can be analyzed with standard Lagrange multiplier methods. Thus, define
Ψ as the Lagrangian multiplier associated with the government budget constraint. Given this multiplier, the
Lagrange method then implies that the Ramsey problem can be expressed as follows:

max
{τt,it,kot+1}∞t=0

∞X
t=0

βt((τ t (Ψ− 1) + 1)(kot + it−1)− i2t ), (11)

subject, as before, to (9) and (10). This formulation is arrived at by stating the problem in the usual way
and rearranging terms; there is a remainder, −Ψ(b0 +

P∞
t=0 β

tgt), which contains no choice variables, so it
can be ignored when choosing taxes and investments. The solution to the problem in (11) depends on Ψ; the
value of Ψ, in turn, is determined by minimizing the objective in (11), less −Ψ(b0+

P∞
t=0 β

tgt): it represents
the shadow value of the government’s budget constraint. The shadow value of this constraint depends on the
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present value of government expenditures, initial debt, and installed capital at time zero, which determine
the government’s needs to raise funds and the elasticities of the tax bases in this problem.
The public-goods interpretation follows from observing (11). Suppose, in particular, that the govern-

ment’s expenditure sequence is not exogenous but subject to choice. Suppose, in addition, that private
consumers derive utility from the public good: the period utility flow is u(c, g) = c + Ag, with A > 1.16

Absent uncertainty, access to capital markets is, under this interpretation (in particular, since the marginal
utility of the public good is constant), a redundant policy instrument for the planner: the same utility and
allocation is attained irrespective of whether the government can or cannot save and issue debt. It therefore
entails no loss of generality to assume that public good provision is subject to a balanced-budget condi-
tion: gt = τ t(k

o
t + it−1). All other assumptions are unchanged. After substituting the government budget

constraint in the objective function, the Ramsey problem can now be stated as follows:

max
{τt,it,kot+1}∞t=0

∞X
t=0

βt((τ t(A− 1) + 1)(kot + it−1)− i2t ), (12)

subject, as before, to (9) and (10). Clearly, the tax and investment sequences generated by this problem is
the same as in the case of exogenous government expenditure, (11), as long as Ψ = A. Since, as explained
above, Ψ is determined by exogenous factors, the two models are isomorphic. One can interpret A as either
the marginal utility agents derive from the public good or as the shadow value of government funds when
an intertemporal budget constraint has to be satisfied.
In the rest of the analysis, we stress the public-goods interpretation; this means that we have to ask

the reader to keep in mind that our main result–that the Ramsey tax sequence features oscillations when
ρ ∈ (0, 1)–also applies to the standard optimal-taxation problem with exogenous government expenditures.
We view the public-goods formulation as being of independent interest–the choice of when to consume
public goods is one which has been studied in the literature–and close relatives of this formulation are useful
models of political economy.17 In the political-economy settings, which involve more elaborate population
structures (e.g., overlapping generations, lucky and unlucky workers, etc.), the expenditure can take the
form of transfers between groups or public goods.18 In addition, the balanced-budget assumption is useful
for our study of how the results in the main proposition are changed if the government does not have access
to commitment; in political-economy settings, especially, the role of debt raises separate issues that we wish
to abstract from here.
From the public-goods perspective, two issues are worth noting. First, we assume linearity also in the

utility of public goods. The key, however, is that the marginal utility of public goods is higher than that of
private goods. With access to lump-sum taxes, thus, good policy would be represented by consuming only
public goods, whereas in a more general case there would be a non-degenerate mix of public and private goods
in the unrestricted optimum (characterized by uc = ug). With distortions, there will be a nontrivial trade-off
between the marginal benefits of public goods and the marginal costs of raising the funds to finance these
goods. Linearity simplifies the analysis and is important for establishing equivalence between this framework
and that in the previous section. Second, the flow utility from consuming public goods is stationary: A does
not depend on time. This will mean that the choice between gt and gt+1 is not an interesting one: there will
be indifference, just like there is for private consumption. It will also mean that the second new assumption
that we introduce here, namely the balanced-budget assumption for the government, is not binding. Thus,
the focus here is on the timing of when to finance the public good as opposed to on the timing of when to
consume it.
16For our two-period-life overlapping-generations interpretation, the public good can be thought of as consumed simultane-

ously by all living agents, providing each living individual with a marginal utility equal to A/3, thus delivering a total marginal
utility to the dynasty of A.
17 See, e.g., Klein, Krusell, and Ríos-Rull (2003), which studies the optimal provision of public expenditures in the long run,

with special emphasis on the role of commitment.
18For examples based on models related to the present one, see Hassler, Rodriguez-Mora, Storesletten, and Zilibotti (2003),

Hassler, Storesletten, and Zilibotti (2003a and 2003b), and Hassler, Krusell, Storesletten, and Zilibotti (2004).
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3 Analysis
The Ramsey problem described above admits an analytical solution. To see how, it is convenient to express
the constraints of the Ramsey problem differently. First, note that

kot+1 = ko1 (1− δ)
t
+ (1− ρδ)

t−1X
s=0

(1− δ)
t−1−s

is. (13)

Second, solving forward the Euler condition for investment, (10), assuming that the investment sequence
does not blow up (i.e., limt→∞ βtit+1 = 0), one arrives at

it = i (Tt) =
1

2
(κ− Tt) (14)

for t ≥ 0, where

Tt ≡ βτ t+1 + (1− ρδ)
∞X
s=2

βs (1− δ)
s−2

τ t+s, (15)

denotes the effective discounted sum of taxes (that we label the “total tax”) in period t, and

κ ≡ β + (1− ρδ)
∞X
s=2

βs (1− δ)
s−2

= β
1 + βδ (1− ρ)

1− β (1− δ)

is the effective duration of new investment. Thus, the distortions on investment in period t can be captured
entirely by the total tax Tt. This is a very useful simplification of our setup: present and future tax rates
entering Tt are perfect substitutes for investment decisions. Another useful feature implicit in the investment
demand equation (14) is that the investment in vintage t does not interact with investment in other vintages.
This feature is due to utility being linear in consumption.
The following Lemma is a useful step towards characterizing the Ramsey problem (the proof is simple

algebra and is, therefore, omitted).

Lemma 3 The Ramsey problem (12) subject to (9) and (10) is equivalent to the following program:

max
{τt}∞t=0

(A− 1)
³
τ0 (k

o
0 + i−1) + T̂0k

o
1

´
+
∞X
t=0

βty (Tt) , (16)

where

T̂0 ≡ β
∞X
t=0

βt(1− δ)tτ t+1, (17)

y(Tt) ≡ Aκi (Tt)− i (Tt)
2 (2A− 1) , (18)

and Tt and i (Tt) are defined as in (15) and (14).

The new functions y (Tt) and T̂0 will be particularly useful in the analysis below. The function y (Tt) is
the present value of the contribution to the planner’s utility of the investment vintage installed at t. Each
vintage contributes to the planner’s utility via private consumption, it (κ− Tt), the provision of financing to
the public good, ATtit, and the investment cost, −i2t . Furthermore, T̂0 is the effective discounted sum of taxes
levied on capital installed before the beginning of the planning horizon, and thus inelastic. With analogy to
previous definitions, we label it the “total tax on inelastic capital”. Taxes entering T̂0 are discounted at the
rate β(1− δ), reflecting the interest rate and the rate of depreciation of the pre-installed capital stock.
The objective function (16) is then the sum of the present discounted value (PDV) of the contribution

to the planner’s utility of all investments from time zero onwards,
P∞

t=0 β
ty (Tt), and the PDV of the tax

revenue from pre-installed capital (the expression ignores constant terms representing the PDV of output
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from pre-installed capital). Inspecting the latter term, one sees that the tax τ0 is entirely lump sum: it
enters additively with respect to other tax rates and it multiplies a predetermined term, ko0+ i−1. Therefore,
if τ0 were a choice variable, it would always be set at its maximum feasible level, with no effect on any other
choice. Hence, without loss of generality, we can actually assume that the tax rate at time zero is exogenous.
In particular, following Klein and Ríos-Rull (2003) we set τ0 = 0 as if there were a one-period implementation
lag.19 Ignoring irrelevant constants and predetermined variables, the Ramsey problem simplifies to:

max
{T̂0,Tt}∞t=0

(A− 1)T̂0ko1 +
∞X
t=0

βty (Tt) . (19)

Here, we have defined the choice variables of the problem to be the Tt’s and T̂0 rather the tax sequence {τ t}∞t=1.
This can be regarded as a primal formulation, where the planner chooses an allocation directly, subject to
the constraint that it is a competitive equilibrium (recall that it = (κ− Tt) /2 and, hence, choosing the Tts
is equivalent to choosing investments). In addition, it has to be verified that there a one-to-one mapping
between sequences of individual tax rates and sequences of present-value taxes all satisfying (15) and (17).
Because we require tax rates to be bounded between zero and one, the present-value taxes are bounded as
well, since β(1 − δ) < 1. Given a choice of present-value taxes, {Tt}∞t=0, one can then back out a unique
sequence of tax rates {τ t}∞t=1 which satisfies the boundedness condition.20 Recall, finally, that ko1 is a key
predetermined variable; its size will influence the dynamics of taxes.

3.1 The case of geometric depreciation

We first look at the case of geometric depreciation, i.e., ρ = 1. The key feature to note is that in this case
all the present-value tax expressions are geometric (as opposed to quasi-geometric) sums of future tax rates.
In particular, T̂0 = T0: the total tax on inelastic capital is identical to the total tax on investment in period
zero, which is distortionary. Thus, rewriting equation (19), the Ramsey planner faces the following problem:

max
{Tt}∞t=1

(A− 1)T0ko1 +
∞X
t=0

βty (Tt) .

The solution to this Ramsey problem is simple and striking: the problem is separable in the Tt’s so these
variables can be chosen independently–one by one. Moreover, the choice problem for Tt looks identical for
all t except for t = 0. This observation, together with the fact that each such problems is, by definition,
strictly concave (since y is strictly concave), immediately implies that the total taxes will be constant–say,
Tt = T ∗–from t = 1 and onwards. That is, we reach a steady state after one period. It is given by

y0(T ∗) = 0

Backing out tax rates, this implies that tax rates are also constant after one period: τ t = τ∗ from t = 2 and
onwards.
In period zero, the choice problem is different: here the choice of T0, which distorts i0, also raises revenue

and generates surplus from the taxation of the inelastic capital, ko1. Thus, the optimal T0, which we label
T ∗0 , will satisfy

(A− 1)ko1 + y0(T ∗0 ) = 0,

and thus it will exceed T ∗. In turn, this implies that τ1 > τ∗. The extent of the initial tax hike depends on
ko1: τ1 turns out to be linearly increasing in this variable. However, k

o
1 has no effect on any variable after

period one.

19While the assumption of a one-period implementation lag is immaterial in the case of commitment, it becomes important in
the case when the government has no commitment technology. In such case, it rules out a trivial solution where the government
in every period would set the current tax to its maximum.
20Forward iterating on equation (15) leads to Tt+1 = β−1(1− δ)−1 (Tt − βτ t+1). This difference equation can be solved for

a unique feasible sequence of tax rates. See the details of the proof of Proposition 4 in the appendix for a formal argument.
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3.2 Quasi-geometric depreciation

In the general case with quasi-geometric depreciation, T̂0 is no longer equal to T0: as indicated above, and as
we will explain in more detail below, because the inelastic capital, ko1, depreciates at a different rate from new
investments, the timing of taxes can be used to exploit these differences. Formally, one can use equations
(15) and (17) to obtain, after repeated substitutions (proof in the appendix):

T̂0 =
∞X
t=0

(−δβ (1− ρ))
t
Tt. (20)

The connection between T̂0 and the sequence of Tts is key for understanding the oscillatory tax dynamics.
Note that, if ρ < 1 (i.e., if capital depreciates less in the earlier part of its productive life), the weights on
the future total taxes Tt are oscillatory. Thus, every Tt will influence the taxation of inelastic capital, and
whether it increases or decreases the total tax on inelastic capital depends on whether t is odd or even.
Rewriting (19), the Ramsey problem now reads

max
{Tt}∞t=1

(A− 1)
Ã ∞X
t=0

(−δβ (1− ρ))
t
Tt

!
ko1 +

∞X
t=0

βty (Tt) ,

and the first-order condition for the Tt’s is

(A− 1)ko1 (−δ (1− ρ))
t
+ y0 (Tt) = 0, (21)

which uniquely pins down the Tt’s, in turn pinning down the unique feasible sequence of tax rates (see, again,
the details of the proof of Proposition 4). The first-order condition for T0 is the same as in the geometric
case. However, now the inelastic capital, ko1, affects the entire sequence of investments and taxes.
The solution can be summarized as follows:

Proposition 4 Assume that kδ (1− ρ)k ≤ 1 and that (A− 1) ko1 is not too large. Then, the unique tax
sequence that implements the Ramsey allocation is given by

τ t+1 = τ∗ − δ (1− ρ) (τ t − τ∗) for t ≥ 1, (22)

τ1 = τ∗

⎛⎝1 + 2ko1 1 + βδ (1− δ) (1− ρ)

β
³
1− βδ2 (1− ρ)2

´
⎞⎠ , (23)

where τ∗ ≡ (A− 1) / (2A− 1) < 1
2 . If δ (1− ρ) = 0, then the tax sequence is constant after the first period.

If δ (1− ρ) ∈ (0, 1), then the tax sequence converges in an oscillatory fashion to τ∗. If δ (1− ρ) = 1, then
the optimal tax sequence is a two-cycle. If δ (1− ρ) < 0, the tax sequence converges monotonically to τ∗.

Proof. The first-order condition (21), together with the definition of y(Tt) as given in (18), yield the
following sequence:

Tt =

µ
A− 1
2A− 1

¶³
κ+ 2ko1 (−δ (1− ρ))t

´
. (24)

The proof amounts to showing that the tax sequence (22)-(23) is the unique sequence satisfying (24) and the
boundary condition τ t ∈ [0, 1] , given the definition of the Tt’s as in (15). The details are in the appendix.
Figure 2 shows the dynamics of total taxes (Tt), investments and private output, defined as kot + it−1− i2t ,

in a case of accelerated depreciation. Note that investments fluctuate less than taxes, an illustration of the
fact that although taxes may fluctuate a lot over time, investments and distortions are smoother. Private
output fluctuates around a geometric trend toward the steady state.21

21However, private output, excluding adjustment costs, i.e., kot +it−1, displays monotone convergence and is, in fact, constant
in the human capital case (δ = 1). The proof is available upon request.
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Figure 2: Ramsey dynamics–an example with “accelerated" quasi-geometric depreciation (δ = 0.9 and
ρ = 0.1).

3.3 Interpretation

3.3.1 A second-best benchmark: vintage-specific taxation

In order to understand the results of the previous section, it is useful to compare them with the case in
which the planner has access to vintage-specific taxation. Suppose that the planner can tax the income
produced by different investment cohorts at different rates. The Ramsey sequence, then, is very simple:
the planner taxes the returns to the inelastic capital, ko1, at the highest possible rate every period, since
these taxes are non-distortionary. All vintages after period zero are taxed at the constant rate τ∗ such that
y0 (Ts) = 0 for all s > 0, where Ts = T ∗ ≡ β (1− β(1− δ))

−1
τ∗. We will refer to this benchmark allocation

as second-best. The fact that taxes and investments are constant is a manifestation of the planner’s desire to
smooth distortions. When vintage-specific tax instruments are available, there is no reason to deviate from
perfectly smooth (i.e., constant) taxes and investments.
In contrast, in the economy analyzed in the previous sections, vintage-specific taxes are ruled out, and

the only way the planner can extract tax revenue from inelastic capital is by distorting new investments
away from the second-best.22 In this economy, as we will see, there is a trade-off between the objective of
smoothing distortions and that of taxing inelastic capital. Note, in particular, that the Ramsey tax sequence
of Proposition 4 features perfect tax and investment smoothing when ko1 = 0: when there is no inelastic
capital from which the planner can extract revenue, she chooses taxes that are constant and second-best.

3.3.2 Geometric depreciation (ρ = 1)

In the case of geometric depreciation, there are no oscillations, and taxes are smooth after one period. It
is important to note, however, that investments are far from smooth. In particular, since τ1 > τ∗, while
τ t = τ∗ for all t > 1, all distortions generated to extract income from the inelastic capital are borne by the
first vintage of investments (T0 > Tt = T ∗, for all t > 0).23 This implies very low investments in period zero.
Why does the planner not attempt to smooth distortions by taxing capital at later dates, thus reducing τ1
so as to increase i0?
22Hassler et al. (2004) analyzes the properties of the Ramsey allocation in a two-period version of this model when age-

dependent taxation is allowed.
23The absence of vintage-specific instruments reduces public good provision. In the second-best allocation, the revenue from

inelastic capital is completely confiscated, whereas here it is taxed at rate τ∗ after one period.
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First, we note that given the tax burden on the inelastic tax base, T̂0, it is impossible for the planner to
use the timing of taxes to alleviate distortions on period-zero investments. This follows immediately from the
fact that T̂0 = T0. For instance, if the planner tried to reduce τ1 and increase τ2 so as to keep T̂0 constant,
investment in period zero would also remain unaffected. In addition, such tax reallocation would increase
T1 and distort it away from the second best level, T ∗. The same argument applies to any other potential
changes in the timing of taxation (e.g., the same experiment using τ3 instead of τ2 would increase both T1
and T2). In sum, it is optimal for the planner to “front-load" taxes in order not to distort investments after
the first period.
Our results imply that taxes for periods t > 1 are independent of the amount of initial inelastic capital. To

understand this result, we begin by noting that along the optimal path of taxes, the marginal distortionary
cost associated with each tax τs must be constant relative to the marginal revenue generated by that tax.24

If ko1 is increased, the marginal revenue raised by τ1 increases, so τ1 should then be increased, increasing
the distortion on period zero investments i0. What are the implications for the optimal choice of τ2? The
trade-off between distortions and revenue generation for τ2 is affected in two ways. First, as for τ1, the
higher ko1 affects the marginal revenue of τ2 positively. Second, however, the higher distortion on period zero
investments increases the marginal distortionary cost of τ2 since this tax affects i0 (in addition to affecting
i1). Under geometric depreciation, these two effects exactly balance each other out and the increase in τ1
caused by a higher ko1 should not lead to any changes in τ2 or, more generally, in any subsequent tax rates.

25

In the more traditional case when the government has to finance an exogenous stream of expenditures, the
argument is identical, with one qualification. While the marginal excess value of public funds is exogenous at
A− 1 under the public good interpretation, an increase in ko1 reduces the Lagrange multiplier on the budget
constraint Ψ in the expenditure financing case. This implies that while τ1 increases, all other tax rates must
fall: for all s > 1, τ s = τ∗ = Ψ

1+2Ψ .

3.3.3 Quasi-geometric depreciation

We now move to the general case, where ρ 6= 1. According to Proposition 4, the Ramsey tax sequence is
oscillating when ρ ∈ [0, 1). We refer to this case as “accelerating” depreciation, since capital depreciates less
in the first period than afterwards. In order to understand why oscillations arise, it is useful to start from a
particular case: the human capital model discussed in Section 2.2.

A particular case: human capital (δ = 1). The human capital case has a feature that makes the analysis
particularly intuitive: τ1 is the only instrument the planner has available to tax the inelastic capital. Taxes
at later dates do not extract revenue from ko1, since this will have depreciated fully. Why, then, not set
τ t = τ∗ for t > 1, instead of producing an oscillating sequence after the initial tax hike? The reason is that,
unlike in the case of geometric depreciation, the planner can now use the timing of taxes to smooth future
distortions. Recall that, while an initial tax hike is attractive since it generates revenue from an inelastic base
(as in the case of geometric depreciation, the magnitude of such hike is increasing in the inelastic capital), it
also distorts investments in period zero, i0. These distortions can be mitigated, because investment decisions
depend on both τ1 and τ2 (recall that, when δ = 1, we have Tt = τ t+1 + β (1− ρ) τ t+2). Thus, the planner
can alleviate the distortion on period zero investments by promising a low tax rate in period two. In turn,
the low taxes in period two stimulate investments in period one, and since it is optimal to keep distortions
smooth, it is therefore useful to compensate the tax break in period two by another tax hike in period three,
and so on.
In contrast to the case of geometric depreciation, taxes at dates t > 1 are now affected by the size of

the stock of inelastic capital, ko1. To understand this we note that as in the geometric case, τ1 is optimally
increased when ko1 is higher causing the the marginal distortionary cost of tax τ2 to increase. However, this
marginal cost increase is not balanced by higher marginal revenues of τ2 since the higher stock of ko1 is fully
depreciated in period 2. Thus, τ2 should be reduced.
The parameter ρ is key for the strength of the oscillations. Consider for instance the extreme case where

ρ = 0: the one-hoss shay case. As Proposition 4 shows, in this case oscillations are particularly potent and

24We will return to the issue of distortion smoothing below.
25The formal analysis behind these arguments is available in the Appendix.
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do not die out: the economy ends up in a two-period cycle. The reason is that in this case, the increase in the
distortionary cost of τ2 due to the reduction in period zero investments is particularly large. Equivalently,
the effectiveness of counteracting a current tax hike by a next-period tax break is high. When ρ > 0, more
of the capital’s income is accrued in the first period of life than in the second and the effectiveness of using
a reduction in τ2 to counteract distortions in period zero is lower. Oscillations are therefore weaker and die
out in the long run.

The general case with accelerating depreciation. We now turn to the general case of accelerating
quasi-geometric depreciation: ρ ∈ [0, 1) and δ ∈ (0, 1). As under geometric depreciation, and in contrast to
the human capital case, capital lives forever, and the total tax on inelastic capital, T̂0, depends on the entire
tax sequence. However, unlike in the case of geometric depreciation, the Ramsey tax sequence follows an
oscillatory pattern. The key difference now is that T̂0 6= T0: it is possible to use the timing of taxes to alter
T0 while leaving T̂0 unchanged. For instance, if we decrease τ2 and increase τ1 so as to keep T̂0 constant, T0
will decrease, since taxes from period two and onwards have a larger impact on T0 than on T̂0.26 Unlike in
the geometric depreciation case, the planner can now use the timing of tax rates as an imperfect substitute
for the missing vintage-specific tax instrument to achieve better distortion smoothing. Recall, in particular,
that the tax hike in the first period causes investment to be particularly low. Thus, distortion smoothing
makes it desirable for the planner to reduce T0 and increase initial investments. In close parallel to the
human capital case, the planner achieves that goal by setting τ2 < τ∗. However, having done this, it is not
optimal to set τ t = τ∗ for t > 2. Such a sequence would imply a deviation from the second-best benchmark
in the direction of too large investments in period one (T1 < T ∗), while all future investment levels would
be set at the second-best level. Again, distortion smoothing suggests an increase in τ3 so as to reduce i1. In
turn, this creates a motive to smooth the distortion on capital invested in period two, which is best done by
reducing τ4 below τ∗, and so on.
Again in contrast to the geometric case, taxes at period t > 1 are affected by the amount of initial inelastic

capital ko1. Whenever δ < 1, some of ko1 remains in period 2, implying that an increase in ko1 increases the
marginal revenue of τ2. The marginal distortionary cost of τ2 also increases. However, the distortion induced
by τ2 increases more than the marginal revenue since when ρ < 1, period zero investments depreciate less
than ko1 between periods 1 and 2. This implies that τ2 should be reduced relative to τ

∗, which reduces the
distortion from τ3 relative to the marginal revenue it generates, implying that τ3 should be increased, and
so on.

The case with decelerating depreciation. When ρ > 1 the tax sequence converges monotonically to τ∗.
The intuition for the different dynamics is the mirror image of the previous argument. If capital depreciates
faster during its first period of life, the planner can still exploit the different depreciation rates to reduce T0
while keeping T̂0 constant. Here, this is achieved by reducing τ1 and increasing τ2. An increase in ko1 leads
to an increase in τ1 as in all previous cases. However, the increased marginal distortionary cost from τ2 now
increases less than the increase in marginal revenues from τ2 since the inelastic tax base depreciates more
slowly than do new investments. As a consequence, τ3 should also be increased relative to τ∗, and so on. As
long as δ (1− ρ) > 1, the dynamics converge monotonically to a steady state.

4 Lack of commitment
So far, we have allowed the planner to determine taxes for all future dates under full commitment. The
purpose of this section is to characterize the optimal time-consistent allocation, namely, the allocation that
is chosen by a benevolent planner without access to a commitment technology. Complete lack of commitment
would lead to a trivial outcome: if the planner sets the tax rate τ t at time t, the optimal tax rate would
be 100% in every period. Instead, as discussed in section 3, we assume that the planner has access to
commitment for one period: there is a short implementation lag. Investments at t are made after period

26The particular case of human capital provides an extreme example: by keeping τ1 constant and reducing τ2, one can
decrease T0 while keeping T̂0 constant.
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t + 1 taxes are set, and this means that there is no “free lunch”: any taxation is distortionary at the time
the tax rate is chosen.

4.1 Formalizing the lack of commitment

When there is no commitment, one needs to study a dynamic game between successive governments, with the
private sector “moving second” in each period. More precisely, in the beginning of period t, the government
sets the tax rate to be applied in period t+1. Based on this knowledge, the private sector decides on current
investment, it. Both the government and the private sector make decisions given expectations of how future
tax rates, {τ t+2, τ t+3, . . . }, will be set, period by period, by future governments. We will look at limits of
finite-horizon equilibria. These equilibria are the most natural contrasts to equilibria under commitment:
they do not allow reputation mechanisms to partly or fully replicate the commitment allocation.27 Moreover,
finite-horizon equilibria exist and are unique in our model. This means that the equilibria we focus on are
the only equilibria which are robust in the sense that they exist under very long time horizons, whether
finite or infinite. In practice, because finite-horizon equilibria are first-order Markov with linear decision
rules, we operationalize the equilibrium concept for the infinite-horizon economy by restricting attention to
linear, first-order Markov-perfect equilibria.28 In conclusion, the Markov equilibrium that we focus on in the
following will (linearly) map the state variable as of the beginning of a period into a policy choice and an
implied investment choice.
What is the relevant state variable here? Three variables of significance are predetermined at time t: the

tax rate to be implemented this period, τ t, the amount of old capital, kot , and the amount of new capital
(i.e., investment last period), it−1. These variables all matter for utility. However, only a one-dimensional
summary of these variables will matter for the choices of the current government, namely, kot+1, which equals
(1− δ)kot + (1− ρδ)it−1: this is next period’s tax base, to which τ t+1 applies directly. The current tax rate
will not matter because it is a lump-sum tax that does not interact with future taxes; this follows because
from the additive separability due to our preference and technology specifications. Similarly, new and old
current capital also only matter separately for current utility flows but since they are additively separable
in future tax rates, they do not matter for the choice of τ t+1. Thus, the key equilibrium objects sought here
are (i) a tax function, T , delivering the current government choice, τ t+1 = T (kot+1), and (ii) an investment
function, I, delivering current investment, it = I(kot+1). These functions are time-invariant, because we
study a model with an infinite horizon.
We will now state the government’s problem as a dynamic programming problem. We will study the

problem at time t − 1, when the government jointly selects τ t and it−1 subject to an implementability
constraint, namely, that the first-order condition for investment holds. First, define the period t− 1 felicity
of the planner by

F (it−1, k
o
t , τ t) ≡ β (1 + (A− 1) τ t) (kot + it−1)− i2t−1.

When the planner announces the tax rate τ t, kot is predetermined. The tax τ t instead affects investment at
t− 1 (since it−1 = i (Tt−1)).
Expectations about future taxes and investment decisions are rational: they are set according to the time-

invariant functions τ t+s−1 = T
¡
kot+s−1

¢
and it+s−2 = I

¡
kot+s−1

¢
, respectively, where the future capital levels

are given recursively from

kot+s = H
¡
kot+s−1

¢
≡ (1− δ) kot+s−1 + (1− ρδ)I(kot+s−1), s > 1

and kot+1 = (1− δ) kot + (1− ρδ) it−1. The Ramsey-Markov problem without commitment thus leads to the
following equilibrium definition:

Definition 5 A time-consistent (Markov) allocation without commitment is defined as a set of functions
hW, T , Ii, whereW is a bounded planner value function, T : [0,∞)→ [0, 1] is a public policy rule τ t = T (kot ),
and I : [0,∞)→ [0,∞) is a private investment rule it−1 = I (kot ) such that:
27 It is well known that in economies with a literally infinite time horizon and no commitment, under certain conditions on

primitives, it may be possible to use reputation mechanisms to support the commitment allocation as an equilibrium.
28We believe that there are other first-order Markov-perfect equilibria as well in this model, as for example found in Krusell

and Smith (2003), but these other equilibria are not limits of finite-horizon equilibria.
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1. W solves the following recursive problem

W (kot ) = max
τt,it−1

©
F (it−1, k

o
t , τ t) + βW

¡
kot+1

¢ª
(25)

subject to

kot+1 = (1− δ) kot + (1− ρδ) it−1 (26)

it−1 − β (1− δ) I
¡
kot+1

¢
=

κ

2
(1− β (1− δ))− β

2
τ t −

β2

2
δ (1− ρ)T

¡
kot+1

¢
(27)

and

2. the tax and investment rules are optimal, i.e.,

{T (kot ) , I (kot )} = arg max
τt,it−1

©
F (it−1, k

o
t , τ t) + βW

¡
kot+1

¢ª
(28)

subject to (26)-(27)

Notice that this is a fixed-point problem in the decision rules T and I: based on these rules determining
the expectations of how τ t+1 and it will be set, respectively, these same rules have to be the maximizing
choices of τ t and it−1 for all values of the argument of these rules, kot .

4.2 Finding the Markov equilibrium

Finding the linear Markov equilibrium is not difficult, given the linear-quadratic nature of the objective and
constraints. More precisely, one proceeds by conjecturing that the functions T and I are both linear:

T (kot ) = α01 + α11k
o
t (29)

and
I (kot ) = α02 + α12k

o
t . (30)

Then, using these guesses one can solve the dynamic programming problem of the government, which is now
a linear-quadratic problem whose solution will depend on the four parameters {α01, α11, α02, α12} ≡ α. The
solutions for the implied decision rules are linear; we can express them as a vector of two intercept-slope
pairs, {α̂01(α), α̂11(α), α̂02(α), α̂12(α)} ≡ α̂(α), with obvious notation: these decision-rule coefficients depend
on α. The function α̂(α) is nonlinear. The fixed-point problem is thus the nonlinear four-equation system
α = α̂(α) in the four unknown parameters.
In order for a Markov equilibrium to exist, the dynamics of τ t must be non-explosive (else, the boundaries

on taxes are reached in finite time, and the solution cannot be linear). Observe that

kot+1 = (1− δ) kot + (1− ρδ) it−1

= (1− δ + (1− ρδ)α12) k
o
t + (1− ρδ)α02

so that capital converges to a steady-state as long as |1− δ + (1− ρδ)α12| < 1. Due to the linear dynamics,
the same condition guarantees the convergence of the Markov tax sequence: τ t = α01+α11k

o
t . In particular,

this implies that

kot − k∗∗ = (1− δ + (1− ρδ)α01)
¡
kot−1 − k∗∗

¢
τ t − τ∗∗ = (1− δ + (1− ρδ)α01) (τ t−1 − τ∗∗)

where k∗∗ and τ∗∗ are the steady-state levels of ko and τ , respectively. In general, the steady state without
commitment is different from the steady state with commitment.
We proceed as above in order to characterize the solution without commitment. We start with the

special case of human capital, which is especially convenient since it allows a closed-form characterization
and, hence, an analytical comparison with the problem with commitment. Thereafter, we study the general
framework, for which we have not found a closed-form solution for α. We calibrate the general setup and
thereby obtain insights into both the qualitative and quantitative comparisons between the optimal solutions
with and without commitment.
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4.2.1 The case of human capital

We proceed directly to the solution.

Proposition 6 Assume that δ = 1, ρ ∈ [0, 1) and that (A− 1) ko1 is not too large. Then, there exists a
Markov equilibrium such that

τ t+1 = τ∗∗ − λ (τ t − τ∗∗) for t > 1,

τ1 = α01 + α11k
o
1

where τ∗∗ > τ∗, λ ∈ (0, 1− ρ), α01 > 0, and α11 > 0.

The proof as well as the exact expressions of τ∗∗, λ, α01 and α11 are provided in the appendix. The main
findings embodied in this result are:

1. The allocation without commitment implies higher steady-state taxation (τ∗∗ > τ∗), along with lower
long-run output and investment levels, than does the allocation under commitment.

2. The steady-state Markov tax rate, τ∗∗, can exceed 1/2, i.e., it can be larger than the constant value of
taxes that maximizes tax revenues and public good provision.29

3. The allocation without commitment implies oscillations, but these oscillations are more dampened (i.e.,
the tax sequence is smoother) than in the allocation with commitment: 0 < λ < (1− ρ) .30

The first finding, thus, is that the lack of commitment induces the planner to systematically “over-tax”
capital ex post. Agents anticipate that and respond by decreasing their investment. As a result, output
is lower. The second finding means that it is possible in this model that a benevolent planner chooses a
long-run tax rate that is on the “wrong” side of the Laffer curve. This is an extreme manifestation of the lack
of commitment; if τ∗∗ > 1/2, the planner would clearly like to reduce the steady-state tax rate. However,
the planner can only control next period’s tax rate and a one-period reduction of τ t+1 would lead to even
higher taxes in the following period, resulting in an overall reduction of the current welfare.
The third finding concerns the dynamics, which is our main focus here. It states that, again due to a lack

of commitment, the Markov planner chooses, along a transition, an inefficiently smooth tax sequence. The
intuition runs as follows. As discussed above, when the Ramsey planner can commit, she compensates high
taxation in period one by promising low taxation in period two in order to smooth distortions. The Markov
planner cannot credibly promise as low future taxes as those committed upon by the Ramsey planner. At
time zero, agents thus expect that period two taxes will be relatively high, so that for any τ1, the distortions
are large. The optimal behavior of a Markov planner in period zero is therefore to set τ1 lower than the
Ramsey planner would, because such a choice counteracts to some extent the unavoidable fact that the
next government will choose too high a tax: it keeps initial investment from being too low. The same logic
applies to later periods. So the tax sequence tends to be smoother. For completeness, in Section 5 we will
supplement this analysis with a formal treatment of the idea of “distortion smoothing”, which allows an
alternative way of comparing the cases with and without commitment.
The upper panel of Figure 3 clearly illustrates these features for a simulated economy. The Markov tax

sequence (the dashed line) starts below the Ramsey tax sequence (the continuous line), is smoother, and
converges to a steady-state with higher taxation.

4.2.2 The general case: calibration

Here, we simply solve the four-equations-four-unknowns nonlinear equation system that characterizes the
Markov solution numerically for parameter values that are an attempt to provide a rough calibration of our
economy. The period length is set to four years, which is the length of a U.S. electoral cycle. We assume
that the U.S. data is generated by a Ramsey planner without commitment who plays the Markov game

29Specifically, this occurs whenever A > (2− ρ) (3− ρ) (1− ρ)−1 (3− ρ+ β (1− ρ))−1.
30 Interestingly, λ is increasing in A and decreasing in ρ. Namely, oscillations are more pronounced when A is larger and less

pronounced when investment have less persistent effects. Details of these comparative statics are available upon request.
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Figure 3: Comparison between Ramsey (the continuous line) and Markov (the dashed line) tax sequences in
two simulated economies. Upper panel: human capital case with δ = 1, and ρ = 0.1. Lower panel: calibrated
economy with δ = 0.33, and ρ = 0.5.
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analyzed above. Long-run capital taxation is given by τ∗∗ = 51%, as in Klein and Ríos-Rull (2003). We
take average depreciation rate to be 10% per year. However, capital depreciates at a lower rate in the first
period: we assume ρ = 0.5. This implies δ = 0.33. Annual interest rates are set to 5%. Our assumption
on τ∗∗ implies that A = 1.3 (so that the distortionary cost of taxation under commitment equals 30%), and
that the investment-to-output ratio is around 0.4, which is about one third larger than it is in the data.
The findings (see the lower panel of Figure 3 for a geometric illustration) are as follows.

1. In the economy with commitment, the steady-state tax rate is τ∗ = 22%, i.e., significantly below the
50% rate under lack of commitment.

2. In the economy without commitment, the persistence of taxes is −λ = 0.4 (on a 4-year basis): taxes
are highly persistent!

3. In the economy with commitment, the persistence of taxes is −δ (1− ρ) = −0.165 (again, on a 4-year
basis): taxes oscillate.

These results are rather striking. First, the lack of commitment implies significantly higher long-run
tax rates than if commitment were available. Second, though taxes are highly persistent under lack of
commitment, the situation would be very different if commitment tools were available: tax rates would
oscillate. Thus, both in terms of long-run levels and the dynamics towards the long-run level, there are
important differences between the cases of commitment and no commitment. The dynamics are qualitatively
different and the magnitudes of the differences are quite large.
Of course, the quantitative (and qualitative) results in this section depend both on the specific parameter

values we used and on some of the functional-form assumptions in our analysis, such as the quasi-linearity
of consumption and a production function which is linear in the accumulated input. Future work will
determine how sensitive our calibration results are to these assumptions. If the sharp differences between
the commitment and no-commitment outcomes are robust, however, it should prove fruitful to use our
findings in order to assess, using estimation of the model based on time series and cross-section data, whether
governments seem to have fiscal commitment.

5 Distortion smoothing with and without commitment
In this section we compare the determinants of the allocations with and without commitment. A common
ground well suited for this builds on the idea, referred to above but not made formally explicit, of “distortion
smoothing”. We explain how and why governments with and without the ability to commit optimize by
smoothing distortions. This analysis is based on first-order conditions of the government’s problem that set
marginal benefits of raising more revenue equal to marginal costs, and these first-order conditions have a
different nature depending on whether or not there is commitment.
Our analysis of distortion smoothing also allows us to make comparisons with the principle of tax smooth-

ing proposed in Barro (1979). Barro’s recipe built on a framework that can be thought of as one with
quasi-linear utility (linear in consumption, nonlinear in effort) and a constant interest rate–features we
have adopted as well–but with effort giving only a static payoff; here, effort gives a long-lived payoff, and
the rate at which the payoff goes to zero is increasing (the quasi-geometric part). Thus, present values of tax
liabilities due to building capital are what matter here, whereas in Barro’s model, each investment decision
was only influenced by one tax rate.
We adopt the human capital version of our model here because it makes illustrations simpler. In it, the

period utility function reads
(1− ρ)it−2 + it−1 − gt +Agt − i2t .

Ignoring any constraints, the derivative of this utility function with respect to gt+1 from the perspective
of time t (recall the one period implementation lag) is β(A − 1); this amount is strictly positive–on the
margin, public consumption is worth more than private consumption–and it represents the marginal benefit
of raising revenue. We define this “gap” as γg,t+1. Similarly, the marginal value of increasing investment at
t is defined as γi,t = −2it + β + β2(1− ρ): this is the difference between the marginal social value and cost
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of investment, which is also positive in equilibrium since taxes distort investment downward. Whether the
government has commitment or not, its optimal behavior dictates trading these gaps off against each other:
raising revenue in order to gain γg,t+1 on the margin involves raising taxes, which distort investment and
the marginal effect of this involves the γi’s. We will now see how this works in more detail.
It is useful to express policy as a function of government expenditure and private investment levels

instead of using the tax rate as the choice variable. From the government’s budget, the tax rate satisfies
τ t = gt/ ((1− ρ)it−2 + it−1), i.e., the tax at t is a function of the expenditure at t and the investment levels
at t − 2 and at t − 1, because the latter are the income base. We can now express the agent’s first-order
condition for investment at t by the following general condition

η(it−1, it, it+1, gt+1, gt+2) = 0. (31)

This equation comes from the intertemporal condition (10)–where the choice variable investment in period
t, it, is related to it+1 and to the two tax rates τ t+1 and τ t+2–replacing the tax rates as functions of
government expenditures and investment levels, respectively. The constraint in (31) makes explicit the
“budget externalities” in this model: private agents ignore the fact that increased investment, via the
balanced government budget, indirectly raises the level of public expenditures. This is a positive externality
since public goods are under-provided relative to the first best.
Thus, the Ramsey problem can be expressed as the maximization of

P∞
t=0 β

t((1 − ρ)it−2 + it−1 − gt +
Agt − i2t ) subject to the sequence of constraints η(it−1, it, it+1, gt+1, gt+2) = 0 for t ≥ 0, with i−2, i−1, and
g0 given. It is possible to think of the government maximization problem under lack of commitment in a
parallel way: the objective is the same but at time t, when choosing it and gt+1, the constraint is different:
it is η(it−1, it, (it), gt+1, (it)) = 0, where (i) and (i) are the mappings from the state variable–last period’s
investment in the human capital model–to the equilibrium choices for investment and public expenditures.
This difference highlights the key role played by commitment: without it, the government is forced to view the
future choices of i and g as beyond their current choice and instead determined by the “reaction functions”
of future governments. Thus, when there is no commitment the current government can only influence future
choices indirectly, by influencing the future state variable determining them.
Looking first at the problem under commitment, one can derive the following first-order condition for

the choice at t > 0 of gt+1:

γg,t+1 =
∂ηt
∂gt+1

· dit
dηt

· dWt

dit
+

∂ηt−1
∂gt+1

· dit−1
dηt−1

· 1
β
· dWt

dit−1
. (32)

The left-hand side is the marginal benefit of raising revenue at t.31 The right-hand side measures the cost of
increasing gt+1 on the margin, and this cost has several components. Here, dit/dηt denotes the amount by
which a marginal tightening of the constraint at time t forces investment in that period to fall, and dWt/dit
is the total effect on utility as of t of increasing it. Since an increase in gt+1 tightens the constraints both at
t and at t− 1, there are two terms on the right-hand side.
A first, basic observation is that the left-hand side of this equation is constant in this model: it equals

β(A− 1), since the net marginal benefit of transforming private into public consumption is constant. Thus,
because the marginal benefits have to be constant over time, the marginal costs have to be constant: distortion
smoothing . In the equivalent setup where the goal is to finance an exogenous expenditure stream by taxation
at different points in time, the marginal benefit of raising revenue is also constant if interest rates are not
affected by the policy, which by assumption they are not here (and they were not in Barro’s setup).
Second, to see how the different gaps are traded off against each other, note that the effect on utility

involves direct as well as indirect effects: it satisfies

dWt

dit
≡ γi,t − dgt+1

dit

¯̄̄̄
ηt−1=0

· βγg,t+1 − dgt+2
dit

¯̄̄̄
ηt+1=0

· β2γg,t+2.

In words, there is a direct cost of decreasing it–it lowers utility by γi,t–but there are also indirect costs
due to the budget externalities: a decrease in it lowers the tax base and thus government expenditures at
the adjacent dates t− 1 and t+ 1, an effect which is ignored by the private agents.
31The derivations of the first-order conditions displayed in this section are contained in the Appendix.
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At period 0, the first-order condition is simpler: it just has one cost term, so it reads

γg,1 =
∂η0
∂g1

· di0
dη0

· dW0

di0
, (33)

where dW0/di0 is now simpler as well: it equals γi,0 − dg2
di0

¯̄̄
η1=0

· β2γg,2. Of course, these simplifications all
capture how decisions made at time -1 cannot be affected by the policy choice in period 0.
The discrepancies between the first-order conditions at time 0 and at any time t > 0 also capture the

time-inconsistency of the commitment solution. Turning to the first-order condition for gt+1 in an arbitrary
period of the model without commitment, we obtain something very similar to equation (33):

γg,t+1 =
∂ηt
∂gt+1

·
µ
dit
dηt

¶∗
·
µ
dWt

dit

¶∗
. (34)

The asterisks here represent the expressions being different under lack of commitment. Thus, under lack of
commitment, there is only one cost term–that of lowering investment at t. And as in the first period of the
commitment problem, the effect on utility, (dWt/dit)

∗, does not involve past budget externalities: it equals

γi,t −
dgt+2
dit

¯̄̄
ηt+1=0

· β2γg,t+2.32 Finally, the expression (dit/dηt)
∗ is also different. This expression takes

into account that a relaxation of the constraint at time t allows a direct increase in it but also has indirect
effects on the other variables appearing in this constraint, and how these indirect effects play out depends
on whether there is commitment or not, since the effects of future variables on the current constraint work
differently in the two setups; for details, see the Appendix.
Comparing the first-order conditions with and without commitment–equations (32) and (34)–there is

one key difference: there are two cost terms in the former case (for it and it−1) and one in the latter (for
it). Thus, first of all, since distortion smoothing in the case with commitment takes more distortions into
account, it leads to lower overall levels of distortions. Second, it does not make the marginal cost of raising
revenues on each investment decision smooth, since a high distortion on it from gt+1 can be counteracted
by a low one from gt+2. In particular, a high initial distortion on i0 does not imply a high distortion on
i1, i2, and so on, since the investment gap γi,t appears in two consecutive first-order conditions. Without
commitment, the situation is different. Now optimal distortion smoothing imposes a high marginal cost
period by period: each of the investment gaps appears only in one first-order condition leading to higher,
and more persistent, distortions.
Finally, it may be useful to observe that in the special version of our model that collapses into Barro’s

framework–the case where δ = 1 and ρ = 1 where effort gives only static returns–the solutions with and
without commitment coincide.33 Thus, in a framework where (i) effort gives static returns and (ii) the
interest rate is exogenous, whether or not the government can commit is immaterial.

6 Stochastic government expenditure
Proposition 4 establishes conditions under which fluctuations in taxes and output are efficient. However, if
there is no capital inheritance from the past (i.e., if ko1 = 0), the optimal tax sequence is smooth; that is, the
optimal tax oscillations that are produced in the model can all be traced back to an initial condition. This
section discusses an extension where the result that the transitional dynamics of the optimal tax sequence
have an oscillatory nature applies to economies where there is zero inelastic capital.
For simplicity, we restrict the analysis to overlapping generations economies (δ = 1), and to make the

point sharp we assume that i−1 = 0. We do not deal with lack of commitment here; the planner is assumed
to have full commitment power over future policy choices, which in this case includes choosing a state-
contingent tax plan. We introduce time variation and uncertainty in the marginal value of public goods; this
choice is made for convenience only.

32The expression
dgt+2
dit

¯̄̄
ηt+1=0

equals η3,t+1/η5,t+1 here as well as in the commitment case: the budget effect is the same

in the two cases.
33This is easy to verify as η no longer depends on the first and fifth arguments it−1 and gt+2, essentially making the second

term in (32) cancel.
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The uncertainty that we consider is limited to a one-time event only. More precisely, suppose that in
periods zero and one, the value of the public good is A = Al. In the beginning of period two, with probability
p, A jumps to Ah > Al and stays there forever; with probability 1 − p, A remains at Al forever. To fix
ideas, we interpret the shock as the start of a (permanent) war that makes public expenditures more socially
valuable. This elementary stochastic process allows us to focus on the endogenous dynamics of taxes, as
opposed to on dynamics that are driven by an exogenous stochastic process. The role of uncertainty is
limited to triggering the transitional dynamics: we study, in a sense, the impulse-response function of taxes
and government expenditure following a unique shock.

6.1 State-contingent taxes with balanced budget

At period zero, the planner sets τ1 and a state-contingent tax plan, {τh,t, τ l,t}∞t=2 . The sequence {τh,t}
∞
t=2

is implemented if A = Ah, whereas the sequence {τ l,t}∞t=2 is implemented if A = Al. The Ramsey problem
can be formulated as follows.34

max
T e0 ,τh,2,{Th,t,Tl,t}t>0

yl (T
e
0 ) + β2 (1− ρ) p (Ah −Al) τh,2i (T

e
0 )

+
∞X
t=1

βt+1 (p · yh (Th,t) + (1− p) · yl (Tl,t)) , (35)

where

T e
0 = βτ1 + β2 (1− ρ) (pτh,2 + (1− p) τ l,2) , (36)

Tj,t = βτ j,t+1 + β2 (1− ρ) τ j,t+2 for t > 0, (37)

yj (T ) = Ajβ (1 + β (1− ρ)) i (T )− i (T )2 (2Aj − 1) (38)

The term β2 (1− ρ) p (Ah −Al) τh,2i (T
e
0 ) in the objective function is key for understanding the oscilla-

tions. If this term were zero (e.g., if either ρ = 1, or p = 0, or Ah = Al), the Ramsey tax sequence would
be smooth in each state of nature. This term captures the planner’s incentive to over-tax (via τh,2) the
period-zero investment, i (T e

0 ), to which we will return later. It is convenient to replace τh,2 by an expression
in terms of the total tax sequence. Iterating forward on equation (36) yields

βτh,2 =
∞X
t=1

[−β (1− ρ)]
t−1

Th,t.

Substituting away τh,2, finally, yields the following primal formulation of the Ramsey problem:

max
T e0 ,{Th,t,Tl,t}t>0

yl (T
e
0 ) + β (1− ρ) p (Ah −Al)

∞X
t=1

[−β (1− ρ)]t−1 Th,t · i (T e
0 )

+
∞X
t=1

βt+1 (p · yh (Th,t) + (1− p) · yl (Tl,t)) . (39)

Differentiating (39) with respect to Tl,t and Th,t yields

y0l (Tl,t) = 0, (40)

y0h (Th,t) = [−1]t−1 (1− ρ)t (Ah −Al) i (T
e
0 ) , (41)

34To understand the first term, note that the contribution to the planner’s utility of the generation born at zero is given by

βi (T e0 )
¡
(1 + (Al − 1) τ1) + β (1− ρ)

¡
p
¡
1 (Ah − 1) τh,2

¢
+ (1− p)

¡
1 + (Al − 1) τ l,2

¢¢¢
− (i (T e0 ))2 .

Rearranging terms and using the definitions of the function yl
¡
T e0
¢
and T e0 given in equations (36) and (38) yields the first line

of expression (35).
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implying that Tl,t, as well the implied tax sequence, is constant and identical to the case in which there is no
risk of war.35 In case of war, instead, the sequence Th,t converges in an oscillatory fashion to a steady state
such that y0l (T

∗
h ) = 0. Notably, Th,2 > T ∗h , implying that τh,2 > τ∗h ≡ (Ah − 1) / (2Ah − 1). Thus, condition-

ally on war, there is a tax hike in period two, followed by dampened oscillations. The implied tax sequence
after period two follows the tax dynamics of Proposition 4, i.e., τh,t+1 = τ∗h− (1− ρ) (τh,t − τ∗h) . Of course,
a higher value of public expenditures also leads to higher long-run tax rates: τ∗h > τ∗l ≡ (Al − 1) / (2Al − 1).
Why oscillations can arise in case of war, even in the absence of inelastic capital, can be explained as

follows. Conditionally on war, the generation born at time zero had invested more than future generations,
since (i) taxation had been set lower in period one because public good provision was less valuable back then
and (ii) agents had invested while attaching some probability to peace and low taxes being realized in future.
Specifically, i0 = il + β (1− ρ) Ah−Al2Al−1

p
2τh,2, where il is investment in case of peace. Thus, the marginal cost

of raising tax revenue for the Ramsey planner is lower in period two than in steady state. Even if she cannot
“surprise” agents (as she is committed to a state-contingent tax plan), the planner promises high taxes in
period two conditionally on war. Oscillations occur thereafter from the same mechanism as described in the
benchmark model.
Two particular cases are worth emphasizing. First, if ρ = 1, i.e., agents only work in the first period and

taxes distort their static labor supply, there is no scope for inducing oscillations after the war starts. In this
case τh,2 = τ∗h and the Ramsey tax sequence is perfectly smooth after the first-period upward jump. Second,
suppose that p = 1, i.e., that war is perfectly anticipated. In this case, there are still fluctuations, even
though there is no uncertainty. The reason is that even if agents anticipate the increase in future taxation,
the government has an incentive to spend less in period one, since the marginal utility of the public good is
low then and the government cannot save. Thus, in period two, a large inelastic tax base is inherited, and
the planner has an incentive to initiate the oscillations.
Finally, τ1 is also affected by the probability of a war. The comparative statics here are somewhat

involved. However, numerical analysis suggests that increasing the probability of a war decreases τ1. As
the war becomes more likely, the planner becomes more eager to induce large investments in period zero to
increase the future tax base. Since she cannot accumulate assets, she attains this goal by reducing taxation
in period one: a form of public savings.
To illustrate the effects, we display a numerical example. We set β = p = 0.5, ρ = 0, Al = 1.6, and

Ah = 2. Since ρ = 0, fluctuations do not dampen over time. In this case (see Figure 4), the Ramsey sequence
implies τ1 = 0.154, τh,2 = 0.632, and τ l,2 = 0.273. If there is war, taxes fluctuate between 0.63 and 0.04. If
there is no war, the tax rate is constant at 0.27.

6.2 Allowing government borrowing and lending

The constraint that the government cannot borrow or lend becomes important when the value of government
spending changes over time. In the previous section, the planner would have liked not to spend its budget in
period zero, but rather save for the event of a war. The equivalence between the standard capital taxation
problem with exogenous government expenditure discussed in section 2 and the public good provision problem
under a balanced budget ceases to hold: access to capital markets gives the government a useful policy
instrument for smoothing distortions. In this section we allow this additional instrument. The main finding
is that while this affects the Ramsey solution, it does not eliminate the oscillations.
We rule out Ponzi schemes by assuming that from period two onwards, i.e., after uncertainty is resolved,

an intertemporal budget constraint must hold. We continue to assume that the government cannot tax at
time zero and that β = (1 + r)−1. The expected future marginal value of the public good, pAh+ (1− p)Al,
exceeds Al, the marginal value of the public good in period one. Because of risk neutrality, the government
will therefore spend no revenue on public goods in the first period and instead accumulate a budget surplus.
Hence, assuming that the government starts off with zero assets, we have b2 = − 1

β τ1i0.

The main results are as follows. In the case of certain war (p = 1), the solution features τ1 = τh,2 = τ∗h,
implying no dynamics: a perfectly anticipated war does not, alone, induce any fluctuations, as long as the
35Closed-form expressions for τh,2 and τ l,2 can be backed out from (40)-(41) using the definitions (36)-(38). It is also possible

to back out τ1. The resulting expressions are provided in the appendix. The result that the no-war outcome is entirely smooth
depends on the particular specification chosen where one of the two realization of the stochastic process coincides with the
productivity of the public good at time zero.
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Figure 4: Taxes under war and peace, no government debt, β = p = 0.5, ρ = 0, Al = 1.6, and Ah = 2

government can save or borrow. In the general case where p ∈ (0, 1) , however, τh,2 > τ∗h and uncertainty
triggers dynamics. Interestingly, oscillations arise in this case even if the war does not materialize. The
tax sequence follows the dynamics of Proposition 4 under both war and peace, although, naturally, both
the initial conditions (τh,2, τ l,2) and the steady states (τ∗h, τ

∗
l ) are different. The details of the analysis are

available upon request.
Consider the same numerical example as before. The Ramsey sequence now implies τ1 = 0.32, τh,2 = 0.47,

and τ l,2 = 0.08. Conditionally on war, the tax rate fluctuates between τh,t = 0.47 and τh,t = 0.19.
Conditionally on peace, the tax rate fluctuates between τ l,t = 0.08 and τ l,t = 0.46. Government savings in
the first period amount to −b2 = 0.33.
Moreover, taxation in period one is higher than in the case where the government had no access to capital

markets: the government self-insures against the event of a war. This is in contrast with the case without
government asset accumulation, when the only (less efficient) way the planner could prepare for a war was by
encouraging human capital accumulation through initially low taxes. Taxes are now smoother conditionally
on war and more volatile conditionally on peace.
Note that when p ∈ (0, 1), a market for safe lending and borrowing does not span all states of the world–

financial markets are still incomplete. As we will see in the next subsection, this incompleteness if crucial
for the existence of tax fluctuations.

6.3 Allowing state-contingent government debt

Suppose, finally, that in the first period there are two state-contingent assets paying one unit of the con-
sumption good in the state of war (peace) and zero in the state of peace (war). Let period-one consumption
be the numéraire and define qj,t as the Arrow-Debreu price of the consumption good in period t and state
j. We continue to assume a one-period implementation lag. Thus, both taxes and government assets with
time indices equal to zero can be ignored. The government budget constraints can now be consolidated into
one constraint:

g1 +
∞X
t=2

X
j∈{h,l}

qj,tgj,t = τ1i0 +
∞X
t=2

X
j∈{h,l}

qj,tτ j,t ((1− ρ) ij,t−2 + ij,t−1) . (42)

Since individual utility is linear in consumption, it follows that the Arrow-Debreu prices must be given by
the discounted probabilities, i.e., that qh,t = βtp and ql,t = βt(1 − p). Since, in addition, preferences over
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Figure 5: Taxes under war and peace, with government debt, β = p = 0.5, ρ = 0, Al = 1.6, and Ah = 2.

public-good provision are linear, the planner will choose zero public good provision in the case of peace, and
concentrate all spending in the state of war. Hence, g1 = gl,t = 0, for all t ≥ 2.
Using the obvious notation ph = p = 1− pl, the planner’s time-zero objective function reads

β (1− τ1) i0 − i20 + βAlg1 + (43)
∞X
t=2

X
j∈{h,l}

βtpj
¡
(1− τ j,t) ((1− ρ) ij,t−2 + ij,t−1) +Ajgj,t − β−1i2j,t−1

¢
.

Using the budget constraint, (42), and the facts, established above, that qj,t = βtpj and g1 = gl,t = 0 for all
t, we can eliminate terms involving g’s and rewrite the planner’s objective function, (43), as

β (1 + (Ah − 1) τ1) i0 − i20 + (44)
∞X
t=2

X
j∈{h,l}

βtpj
¡
(1 + (Ah − 1) τ j,t) ((1− ρ) ij,t−2 + ij,t−1)− β−1i2j,t−1

¢
.

As expression (44) shows, the marginal value of tax revenue is Ah in all states of nature. Hence, the optimal
tax sequence is identical to the case in which war occurs with probability one discussed in section 6.2. Namely,
when the government has access to state-contingent asset markets, then, τ j,t = τ∗h for all j and t: no tax
fluctuations arise as long as i−1 = 0. Taxes in all periods and all states are used to finance high provision in
the state of war, while in the state of peace the government expenditure is zero. Specifically, if the public
good provision is gh in the case of a sure war, then the government will provide gh/p in the stochastic case.
Clearly this stark result hinges on the assumption that the marginal value of public expenditure is constant,
leading to a corner solution (all revenue is spent in one state of nature). If the marginal value of public
expenditure were decreasing, the government would spend some revenue in both states of nature, although
public good provision would still be higher in the case of war than in that of peace. The main insights would
generalize to this case. In particular, tax distortions would still be equalized across states.

7 Conclusions
This paper analyzes the optimal timing of taxes on capital. Our point of departure from a standard Chamley-
Judd setup is to relax a common and seemingly innocent assumption in the standard optimal taxation litera-
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ture, namely, that capital depreciation is geometric. Our specification is motivated by empirically estimated
depreciation schedules, which feature accelerating depreciation rates as capital ages. Under this specification,
the optimal path of capital taxes involves oscillating tax rates. We also show that the standard celebrated
front-loading result is a knife-edge case, hinging on the rate of depreciation being constant over time. Fur-
thermore, the optimality of fluctuating tax rates relies on the government being able to commit to the path
of future tax rates. We contrast this case with a Markov equilibrium where the planner cannot commit. We
find that without commitment the equilibrium tax sequence is smoother than under commitment, i.e., that
tax dynamics are more persistent.
Though our model has typical neoclassical features, the analysis is simplified by assuming linear utility

and quadratic investment costs. The implied time additivity and constant interest rates allow an especially
illuminating analysis of the effects of taxation: investment decisions depend on present values of tax rates,
independently of the consumption path followed. It should be important to extend our results quantitatively
to the more standard neoclassical setup with endogenous interest rates.
If vintage-specific taxation were allowed in standard models like those in Chamley (1986) and Judd (1985),

the taxation problem would become trivial: all revenue generated by pre-installed capital could always be
fully captured by the government. Thus, in every period the government would have a separate tax rate
for that income which originates in investment prior to period 0. This rate could be bounded at any point
in time, but taxation of the initial base for capital income would then continue until it is exhausted. A
special case of interest is that where the depreciation rate is zero, because in this case, the tax rate specific
to time-zero capital would remain positive even in the long run. Thus, in general the front-loading result
in the standard literature is to a large extent driven by assuming that different vintages cannot be taxed at
different rates.
The assumption that the government has no access to age-dependent taxes, upon which our results

depend, has been adopted elsewhere in the literature; see, for instance, Erosa and Gervais (2002). They
show that when age-dependent taxation is not allowed and life-cycle motives are considered, the optimal
capital taxation is not zero in the long run. Similarly, and perhaps more closely related to our findings,
Correia (1996) shows that long-run taxes on capital income are not necessarily zero if there is another factor
input which cannot be taxed. In this case, it would generally be optimal to tax this other factor, and taxes
on capital income can be useful as an imperfect replacement for such a tax.
In our analysis, we interpret the Markov equilibrium as a lower bound on public commitment. The

degree of commitment actual governments have could, in principle, be anything from full commitment to
no commitment. Some commitment could be due to the existence of some explicit commitment technology.
Alternatively, it could be sustained with reputation within the context of dynamic game between consecutive
governments (as in e.g., Abreu et al., 1990). Empirically, it is an open issue to what extent governments
actually have the ability to commit. The fact that our benchmarks with and without commitment yield
such starkly different predictions, both qualitatively and quantitatively, provides us with a potential test for
the degree of commitment of actual governments. To make this test sharper, more elaborate models with
concave utility and more general production functions should be constructed and solved numerically. The
degree to which governments can use investment credits to partly substitute for cohort specific taxes should
also be estimated. We leave these tasks for future research.
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9 Appendix

9.1 Derivation of (20)

From the definition

Tt ≡ βτ t+1 + (1− ρδ)
∞X
s=2

βs (1− δ)s−2 τ t+s

it follows immediately that

Tt−1 − βτ t + (Tt − βτ t+1)βδ (1− ρ) = β (1− ρδ)Tt. (45)

Forward substitution implies

Tt−1 − βτ t = β (1− ρδ)
∞X
s=0

(−βδ (1− ρ))s Tt+s +

lim
T→∞

(−βδ (1− ρ))T (Tt+T − βτ t+T )

= β (1− ρδ)
∞X
s=0

(−βδ (1− ρ))s Tt+s,

where limT→∞ (−βδ (1− ρ))T (Tt+T − βτ t+T ) = 0, since taxes are bounded between zero and one, implying
that their PDVs (in particular the Tts) are also bounded. In particular, the expression above implies that

T0 = βτ1 + β (1− ρδ)
∞X
s=0

(−βδ (1− ρ))s Ts+1. (46)

Recall that, by definition, T0 ≡ βτ1 + (1− ρδ)
P∞

s=2 β
s (1− δ)

s−2
τs. This, together with equation (46),

implies that
∞X
s=2

βs (1− δ)
s−2

τ s = β
∞X
s=0

(−βδ (1− ρ))
s
Ts+1. (47)

Finally, rearranging the expressions for T̂0 and T̂0 =
P∞

s=1 β
s(1− δ)s−1τs leads to

T̂0 = βτ1 + (1− ρδ)
∞X
s=2

βs(1− δ)s−2τ s − δ (1− ρ)
∞X
s=2

βs(1− δ)s−2τ s,

which, in turn, can be rewritten, using (46)-(47), as

T̂0 = T0 +
∞X
s=1

(−βδ (1− ρ))
s
Ts,

which is expression (20) in the paper.

9.2 Details of the proof of Proposition 4

Solving (45) for τ t+1 yields

τ t+1 =
Tt−1 − βτ t − Ttβ (1− δ)

β2δ (1− ρ)
.
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Using (24) and the expression for τ∗ given in the text to replace Tt−1 and Tt yields (for t ≥ 1)

τ t+1 = τ
1 + βδ (1− ρ)

βδ (1− ρ)
− τ

1 + β (1− δ) δ (1− ρ)

δ2 (1− ρ)
2
β2

2k1 (−δ (1− ρ))
t − τ t

βδ (1− ρ)
.

The complete solution to this difference equation can be written

τ t = τ∗ +
1 + βδ (1− δ) (1− ρ)

β
³
1− βδ2 (1− ρ)

2
´ 2k1τ (−δ (1− ρ))t−1 + c

µ
− 1

βδ (1− ρ)

¶t
,

where c is an arbitrary integration constant. The interpretation of the arbitrary c is that there is an infinite
number of tax sequences that implement the optimal allocation. However, since the root of the homogeneous
part, −1/ (βδ (1− ρ)), is outside the unit circle, the constraint τ t ∈ [0, 1] is not satisfied for c 6= 0. Thus,
the only feasible solution to (24) is determined by setting c = 0. Writing this solution recursively yields the
solution in Proposition (4).
The non-diverging dynamics implies that it is sufficient that τ1 < 1 and τ2 > 0 to ensure that the bound

τ t in [0, 1] never binds. It is immediate to verify that this is the case for a positive range of (A− 1) ko1
sufficiently close to zero.

9.3 Details of the proof of Proposition 6

First, we provide the expressions of τ∗∗, λ, α01, and α11:

τ∗∗ = τ∗ + (48)
2A(1− ρ) (1− β (1− ρ)φ) τ∗

2 (A− 1) (1− ρ) + 2A− 1 +
µq

(2A− 1)2 − 4A (A− 1)β (1− ρ)2
¶

λ = − (1− ρ)φ (49)

α01 =
Aβφ (1− ρ)2 +A− 1

2A− 1 +A
³
βφ (1− ρ)2

´ > 0, (50)

α11 =
2φ

β
³
1 + βφ (1− ρ)

2
´ > 0, (51)

where

φ ≡ −
2A− 1−

q
(2A− 1)2 − 4A (A− 1)β (1− ρ)

2

2Aβ (1− ρ)2
∈ (−1, 0) . (52)

That φ ∈ (−1, 0) and, hence, that α01 > 0 and α11 > 0 can be established by straightforward algebraic
manipulations. From φ ∈ (−1, 0), it follows immediately from (48) that τ∗∗ > τ∗.
Next, we prove the proposition. Consider equation (27) in Definition 5. Using the linear guesses (29)

and (30), we can rewrite (27) as

it−1 =
κ

2
− β

2
τ t −

β2

2
(1− ρ)

¡
α01 + α11k

o
t+1

¢
. (53)

Now using the second guess to eliminate kot+1 from the law of motion of capital, (26), and solving (53) for
βτ t yields

βτ t = Q0 +Q1it−1, (54)

where

Q0 = β (1 + β (1− ρ) (1− α01)) ,

Q1 = −
¡
(1− ρ)β2 (1− ρ)α11 + 2

¢
.
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Next, we use (54) to eliminate τ t in the planner’s recursive objective function, (28), obtaining

W (kot ) = max
it−1

©
(β + (A− 1) (Q0 +Q1it−1)) (k

o
t + it−1)− i2t−1 + βW

¡
kot+1

¢ª
.

The first-order and envelope conditions for this problem are

β + (A− 1) ((Q0 +Q1 (2it−1 + kot )))− 2it−1 + β (1− ρ)W 0 ¡kot+1¢ = 0 (55)

and
W 0 (kot ) = β + (A− 1) (Q0 +Q1it−1) , (56)

respectively.36 Leading (56) by one period and using it to eliminateW 0 ¡kot+1¢ from (55) allows us to establish
W0 +W1it−1 +W2k

o
t = Z1it, (57)

where

W0 = − (1 + β (1− ρ)) (β + (A− 1)Q0) ,
W1 = −2 ((A− 1)Q1 − 1) ,
W2 = − (A− 1)Q1,
Z1 = β (1− ρ) (A− 1)Q1.

Next, we use (30) to eliminate it from (57), and rearrange terms to obtain

it−1 =
− (Z1α02 −W0) +W2k

o
t

Z1α12 (1− ρ)−W1
,

which is a linear (affine) function of kot , in line with our guess (30). We can now equate coefficients to obtain

α02 =
W0 − Z1α02

Z1α12 (1− ρ)−W1
, (58)

α12 =
W2

Z1α12 (1− ρ)−W1
. (59)

To verify our other guess, (29), we return to the condition (54). Using the guess (30) to eliminate it−1 yields

βτ t = Q0 +Q1α02 +Q1α12k
o
t ,

which is also linear (affine), consistently with our guess. Equating coefficients leads to

βα11 = Q1α12, (60)

βα01 = Q0 +Q1α02. (61)

Equations (58)-(61) define a system of non-linear equations in the four unknown coefficients α01, α11, α02,
and α12. Its solution is given by (50), (51), and

α02 =
1

2
Aβ
1 + β (1− ρ) (1 + φ (1− ρ) (1 + β (1− ρ)))

2A− 1 +Aβφ (1− ρ)
2

α12 = φ, (62)

where φ is a root of
Aβ (1− ρ)2 φ2 + (2A− 1)φ+A− 1 = 0. (63)

Equation (63) has two roots but one of them can be ruled out since it implies explosive dynamics. The stable
root is given by (52).

36The linear-quadratic nature of the problem implies trivially that second-order conditions are satisfied. The assumption on
(A− 1)ko1 not being too large implies interior optima.
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The state variable has the following equilibrium law of motion:

kot+1 = (1− δ)kot + (1− ρδ)it−1 = (1− ρ) (α02 + α12k
o
t ) .

Hence, the steady-state value for capital is ko = (1− ρ)α02/ (1− α12 (1− ρ)), and the steady-state tax rate
is τ∗∗ = α01 + α11k

o. Inserting the expressions for α01 and α11 delivers the expression in (48).
The decision rules for capital and taxes can be expressed as

kot+1 − ko = (1− ρ)α12 (k
o
t − ko)

τ t+1 − τ∗∗ = (1− ρ)α12 (τ t − τ∗∗) ,

and setting −λ = (1− ρ)α12 using (62) then leads to the expression for λ in (49).

9.4 Details of the analysis of Section 5

Denoting the multiplier for the private first-order constraint at t by βtλt, the government’s Lagrangian can
be written as

∞X
t=0

βt
¡
(1− ρ)it−2 + it−1 − gt +Agt − i2t − λtη(it−1, it, it+1, gt+1, gt+2)

¢
.

Letting ηt,j denote the j th partial of η(it−1, it, it+1, gt+1, gt+2), the first-order conditions for the choices of
it and gt become, for t > 0,

γi,t − β−1λt−1ηt−1,3 − λtηt,2 − βλt+1ηt+1,1 = 0, (64)

and
γg,t − β−1λt−2ηt−2,5 − λt−1ηt−1,4 = 0, (65)

where γg,t and γi,t are defined as in the text. To find the first-order condition stated in terms of these
wedges, it is necessary to eliminate the multipliers in the first-order conditions above. Thus, use equation
(64) for period t and equation (65) for periods t+ 1 and t+ 2, since then we have three equations with the
unknowns λt−1, λt, and λt+1. Thus, λt can be solved for as a function of γi,t, γg,t+1, and γg,t+2. Substitute
the solutions for λt and λt−1 into equation (65) at time t + 1 and we obtain the final expression for the
first-order condition for the government’s policy choice:

γg,t+1 = β−1ηt−1,5Dt−1

µ
γi,t−1 −

ηt−2,3
ηt−2,5

γg,t − β
ηt,1
ηt,4

γg,t+1

¶
+ηt,4Dt

µ
γi,t −

ηt−1,3
ηt−1,5

γg,t+1 − β
ηt+1,1
ηt+1,4

γg,t+2

¶
,

where Dt, the measure of how much a unit increase of the constraint at t is worth in terms of effort it, is
calculated as

Dt ≡
1

ηt,2 − ηt,4
ηt−1,3
ηt−1,5

− ηt,5
ηt+1,1
ηt+1,4

.

This is equation (32) in the text.
Now consider the wedges at the beginning of time. Assuming that g0 (and τ0, indirectly) is set at the

beginning of time, and following similar steps to those above, the first-order condition for g1 can be written

γg,1 = η0,4D0

µ
γi,0 − β

η1,1
η1,4

γg,2

¶
,

where
D0 ≡

1

η0,2 − η0,5
η1,1
η1,4

.
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This is equation (33) in the text.
Consider, finally, the determination of the first-order condition under lack of commitment. To this end,

first state the government’s problem as a dynamic program with the previous investment choice, it−1, as
state variable (recall that since δ = 1 and ρ = 0 we have kot+1 = it−1):

W (it−1) = max
it,gt+1

−i2t + β((1− ρ)it−1 + it − gt+1 +Agt+1) + β2W (it)

subject to
η(it−1, it, I(it), gt+1,G(it)) = 0.

Here, I(it−1) = it is the policy rule for investment and G(it−1) = gt+1 is the policy rule for public expendi-
tures. Taking first-order conditions, we obtain

β − 2it + β2W 0
it = λt(ηt,2 + I 0 (it) ηt,3 + G0 (it) ηt,5)

for the choice of it and γg,t+1 = λtηt,4 for the choice of gt+1. Solving for λt from the first-order condition
for it, we obtain

γg,t+1 = Dtηt,4(β − 2it + β2W 0 (it)),

where
Dt ≡

1

ηt,2 + I 0 (it) ηt,3 + G0 (it) ηt,5
.

Since the envelope theorem gives
W 0 (it) = β(1− ρ)− λtηt,1,

evaluated the following period this expression and the first-order condition for gt+1 deliver the “distortion-
smoothing” condition specifying how trade-offs between wedges occur in the model without commitment. It
reads

γg,t+1 = ηt,4Dt(γi,t − β
ηt+1,1
ηt+1,4

γg,t+2).

This is equation (34) in the text. It differs from the period-0 first-order condition from the commitment
problem, (33), only in how Dt is determined. The expression Dt determines a key component of how the
change in gt+1 influences it, via the implementability constraint. Here, an increase in it changes ηt exactly
by 1/Dt, and this expression includes the total effect on how a change in it would influence the future
government behavior that feeds back to the current constraint (it+1 and gt+2). In D0 of the commitment
problem, in contrast, the current government can control future decisions and the effects of future government
behavior on the current constraint are partial–they are derived keeping future constraints constant. Thus,
whereas we have I0 (it) ηt,3 + G0 (it) ηt,5 in Dt here, in D0 we just have η0,5

η1,1
η1,4

.

9.5 Details of the analysis of Section 6

In the case in which the government has no access to capital markets (section 6.1), the state-contingent tax
plan in the first and second period prescribes:

τ1 =
Al − 1
2Al − 1

− p
β (1− ρ)

2Al − 1
((Ah +Al − 1) τh − (Al − 1)) ,

τ l,2 =
Al − 1
2Al − 1

,

τh,2 =
Ah − 1
2Ah − 1

+
(1− ρ) (Ah −Al)

2Ah − 1
·

Al (2Ah − 1) (1 + β (1− ρ) (1− p)) + β (1− ρ) pAh (Ah +Al − 1)
(2Al − 1) (2Ah − 1)

³
1− β (1− ρ)2

´
− β (1− ρ)2 p (Ah −Al)

2
,

where the second term in the expression of τh,2 is positive, implying that τh,2 > τ∗h =
Ah−1
2Ah−1 .

37

37The denominator of the last term on the right-hand side term of the expression can be negative. However, recall that we are
restricting attention to the region of the parameter space where taxes are strictly inside the unit interval at all times and for all
realizations. When this restriction is taken into account, the denominator is unambiguously positive, implying that τh,2 > τ∗h.
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10 Appendix B (not for publication)

10.1 Dynamics of gross output

To characterize private output dynamics, we note that output gross of adjustment costs is

Yt = kot + it−1.

Using it = 1
2 (κ− Tt) and Tt = τ∗

³
κ+ 2ko1 (−δ (1− ρ))

t
´
,implying it = 1

2κ (1− τ∗)− τ∗ko1 (−δ (1− ρ))
t in

(13) we obtain

kot+1 = ko1 (1− δ)
t
+ (1− ρδ)

t−1X
s=0

(1− δ)
t−1−s

is

= ko1 (1− δ)
t
+
1− ρδ

2
κ (1− τ∗)

t−1X
s=0

(1− δ)
t−1−s − (1− ρδ) τ∗ko1

t−1X
s=0

(1− δ)
t−1−s

(−δ (1− ρ))
s

=
1− ρδ

2
κ (1− τ∗)

1− (1− δ)
t

δ
+ ko1 (1− τ∗) (1− δ)t + ko1τ (−δ (1− ρ))t .

Gross private output in period t+ 1 is

kot+1 + it =
1− ρδ

2
κ (1− τ∗)

1− (1− δ)
t

δ
+ ko1 (1− τ∗) (1− δ)t + ko1τ (−δ (1− ρ))t

+
1

2
κ (1− τ∗)− τ∗ko1 (−δ (1− ρ))

t

= (1− τ∗)

µ
κ
(1 + δ (1− ρ))

2δ
+
³
ko1 −

κ

2δ
(1− ρδ)

´
(1− δ)

t

¶
,

implying monotone dynamics and constant output when δ = 1. Adjustment costs are given by

i2t =

µ
1

2
κ (1− τ)

¶2
+ (τk1)

2 (δ (1− ρ))2t

−κ (1− τ) τk1 (−δ (1− ρ))t ,

which oscillate.

10.2 Generalized proof of Proposition 6: a basis for the calibration

Consider equation (27) in Definition 5. Using the linear guesses τ t = T (kot ) = α01+α11k
o
t and it = I (kot ) =

α02 + α12k
o
t , we can rewrite (27) as

it−1 − β (1− δ)
¡
α02 + α12k

o
t+1

¢
=

κ

2
(1− β (1− δ))− β

2
τ t −

β2

2
δ (1− ρ)

¡
α01 + α11k

o
t+1

¢
. (66)

Next, using the law of motion of capital, (26), to eliminate kot+1 and solving (66) for βτ t one arrives at

βτ t = Q0 +Q1it−1 +Q2k
o
t ≡ Q (it−1, k

o
t ) , (67)

where

Q0 = β (1 + βδ (1− ρ) (1− α01) + 2α02 (1− δ)) ,

Q1 = − ((1− δρ)β (βδ (1− ρ)α11 − 2α12 (1− δ)) + 2) ,

Q2 = − (1− δ)β (βδ (1− ρ)α11 − 2α12 (1− δ)) .
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Next, we can use (67) to eliminate τ t in the planner’s recursive objective function, (28) to obtain

W (kot ) = max
it−1

©
(β + (A− 1)Q (it−1, kot )) (kot + it−1)− i2t−1 + βW

¡
kot+1

¢ª
.

The first-order and envelope conditions for this problem are

(β + (A− 1)Q (it−1, kot )) + (A− 1)Q1 (kot + it−1)− 2it−1 + β (1− ρδ)W 0 ¡kot+1¢ = 0 (68)

and
W 0 (kot ) = (β + (A− 1)Q (it−1, kot )) + (A− 1)Q2 (kot + it−1) + β (1− δ)W 0 ¡kot+1¢ ,

respectively. Using the first-order condition to eliminate W 0 ¡kot+1¢ in the envelope condition yields
W 0 (kot ) = (β + (A− 1)Q (it−1, kot )) + (A− 1)Q2 (kot + it−1)

−
µ
1− δ

1− ρδ

¶
((β + (A− 1)Q (it−1, kot )) + (A− 1)Q1 (kot + it−1)− 2it−1) .

Leading this expression by one period allows us to eliminate W 0 ¡kot+1¢ in (68). Then, replacing Q (it−1, kot )
by its expression allows us to rewrite (68) as

W0 +W1it−1 +W2k
o
t = Z1it + Z2k

o
t+1, (69)

where

W0 = (β (1− δ) (β + (A− 1)Q0)− β − (A− 1)Q0 − β (1− ρδ) (β + (A− 1)Q0))
W1 = − (2 (A− 1)Q1 − 2)
W2 = − (A− 1) (Q1 +Q2)

Z1 = (−β (1− δ) (2 (A− 1)Q1 − 2) + β (1− ρδ) (A− 1)Q1 + β (1− ρδ) (A− 1)Q2)
Z2 = (−β (1− δ) ((A− 1)Q1 + (A− 1)Q2) + 2β (1− ρδ) (A− 1)Q2) .

Finally, we use (30) and (26) to eliminate it and kot+1 from (69) and rearrange terms to obtain

it−1 =
W0 − Z1α02 + (W2 − (Z1α12 + Z2) (1− δ)) kot

(Z1α12 + Z2) (1− ρδ)−W1
,

which is a linear (affine) function of kot , consistently with our guess (30). We can now equate coefficients to
obtain

α02 = − Z1α02 −W0

(Z1α12 (1− δρ)−W1 + Z2 (1− δρ))
(70)

α12 = − (Z2 (1− δ) + Z1α12 (1− δ)−W2)

(Z1α12 (1− δρ)−W1 + Z2 (1− δρ))
. (71)

To verify our other guess, (29), we return to the condition (67). Using the guess (30) to eliminate it−1 yields,

βτ t = Q0 +Q1α02 + (Q1α12 +Q2) k
o
t ,

which is also linear (affine), in line with our guess. Equating coefficients leads to

βα11 = Q1α12 +Q2, (72)

βα01 = Q0 +Q1α02. (73)

The equations (70)-(73) defines a system of non-linear equations in the four unknown coefficients α01, α11, α02, α12.
In general, we must resort to numerical analysis to solve such system.
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10.3 Comparative statics of the Markov equilibrium

The comparative statics of λ are established as follows. We note that

dλ

dA
=
1

2

1− 2A
³
1− β (1− ρ)

2
´
+

r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´

β (1− ρ)A2
r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´
with ∙

dλ

dA

¸
A=1

= (1− ρ) > 0.

Furthermore, the derivative of the numerator is given by

2
³
1− β (1− ρ)

2
´ 2 (A− 1)−µr1 + 4A (A− 1)³1− β (1− ρ)2

´
− 1
¶

r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´

> 2
³
1− β (1− ρ)

2
´ 2 (A− 1)− ³p1 + 4A (A− 1)− 1´r

1 + 4A (A− 1)
³
1− β (1− ρ)

2
´

= 0,

so λ is increasing in A everywhere, positive and bounded from above by

lim
A→∞

λ =
1−

q
1− β (1− ρ)2

(1− ρ)β

<
1−

³
1− β (1− ρ)2

´
(1− ρ)β

= (1− ρ) .

Furthermore,

dλ

dρ
= −

⎛⎜⎜⎝(2A− 1)2

(2A− 1)−
r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´
β (1− ρ)

2
A

r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´
⎞⎟⎟⎠

<

⎛⎜⎜⎝(2A− 1)2

(2A− 1)−
p
1 + 4A (A− 1)

β (1− ρ)2A

r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´
⎞⎟⎟⎠ = 0,

with

lim
ρ→1

λ = lim
ρ→1

⎛⎜⎜⎝ 1

β (1− ρ)

⎛⎜⎜⎝A− 1
A
−

r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´
− 1

2A

⎞⎟⎟⎠
⎞⎟⎟⎠

= lim
ρ→1

⎛⎜⎜⎝ 4A (A− 1) (1− ρ)r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´
⎞⎟⎟⎠ = 0,
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where we used l’Hôpital’s rule in the last equation. Furthermore, τ1 is given by

τ1 = α01 + α11k
o
1

=

r
1 + 4A (A− 1)

³
1− β (1− ρ)

2
´
− 1

2A− 1 +
r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´

+

2

µ
2A− 1−

r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´¶
β2 (1− ρ)2

µ
1 +

r
1 + 4A (A− 1)

³
1− β (1− ρ)2

´¶ko1,
where α01, α11 > 0.

10.4 The stochastic case with government debt

In the case in which the government has no access to capital markets (section 6.2), the state-contingent tax
plan in the first and second period prescribes given by the solution of the following linear system:

τ1 = (1 + β (1− ρ))
Al + p (Ah −Al)− 1

2Ae
1 − 1

− β (1− ρ) p
Al +Ah + p (Ah −Al)− 1

2Ae
1 − 1

τh,2

−β (1− ρ) (1− p)
2Al + p (Ah −Al)− 1

2Ae
1 − 1

τ l,2

τ l,2 =
(Al − 1) ρ− (1− ρ) (2Al + p (Ah −Al)− 1) τ1 − β (1− ρ)

2
p (Ah +Al − 1) τh,2³

1− β (1− ρ)
2
p
´
(2Al − 1)

τh,2 =
(Ah − 1) ρ− (1− ρ) (Ah +Al + p (Ah −Al)− 1) τ1 − β (1− ρ)2 (1− p) (Ah +Al − 1) τ l,2³

1− β (1− ρ)2 (1− p)
´
(2Ah − 1)

.

10.5 Marginal distortionary costs and revenues balancing

Our results imply that taxes for periods t > 1 are independent of the amount of initial inelastic capital.
To understand this result, it is helpful to consider the dual of the problem analyzed above, i.e., considering
directly the optimality conditions for the sequence of taxes. To illustrate that it is immaterial for the argu-
ment whether we use the public good interpretation or the exogenous financing requirement interpretation
we now use the latter.
The objective of the planner is to solve

max
{τt}∞0

U ({τ t}∞0 ) +Ψ (R ({τ t}
∞
0 )−G)

where U denotes intertemporal private welfare after substituting the incentive compatibility constraint it =
κ−τt
2 and R and G are the present discounted values of tax revenues and expenditures of the government.

Defining in current terms the marginal revenue of taxes and the marginal utility loss of taxes,

Rs ≡ β−s
∂R

∂τ s
,Ms ≡ β−s

∂U

∂τs
,

the first order condition for τs is given by

Ms +ΨRs = 0. (74)

Let us then define the wedge between the marginal utility loss and marginal revenue of τs as the intertemporal
marginal distortion measured in current terms, denoted Ds ≡ −Ms −Rs, and rewrite (74)

Ds = (Ψ− 1)Rs. (75)
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This is the standard condition that the marginal intertemporal distortion for each tax should be pro-
portional to its marginal revenue and the factor of proportionality is the excess marginal value of public
funds.
Now, we should note that since τ t affects investments at all periods before t, the marginal intertemporal

distortions Dt accumulate over time. In particular, if investments in periods before t are heavily distorted,
the marginal intertemporal distortion of τ t is high and vice versa. More specifically, recalling that κ

2 − it is
the wedge between first best and actual investment levels at t,straightforward calculus yields that

Ds = (1− δ)Ds−1 + δ (1− ρ)
³κ
2
− is−2

´
+

κ

2
− is−1 (76)

D1 =
κ

2
− i0.

Similarly, since the tax base of τs is all the investments done before s that remains at s, also the marginal
revenue Rs accumulates over time. Specifically,

R1 = ko1 + 2i0 −
κ

2
(77)

Rs = (1− δ)Rs−1 + δ (1− ρ)
³
2is−2 −

κ

2

´
+ 2is−1 −

κ

2
∀s > 1.

Substituting from (76) and (77) into (75) yields the first-order condition for τ s for all s ≥ 2, i.e.,

(1− δ)Ds−1 + δ (1− ρ)
³κ
2
− is−2

´
+

κ

2
− is−1 (78)

= (Ψ− 1) (1− δ)Rs−1 + (Ψ− 1) δ (1− ρ)
³
2is−2 −

κ

2

´
+ (Ψ− 1)

³
2is−1 −

κ

2

´
.

Now let us perform comparative statics on ko1. First, we note that the first-order condition for τ1, i.e.,
D1 = (Ψ− 1)Rs yields

κ

2
− i0 = (Ψ− 1)

³
ko1 + 2i0 −

κ

2

´
.

Suppose ko1 goes up (from zero or any number consistent with an interior choice of τ1)). The marginal
revenue of τ1 (RHS) then increases, calling for an increase in the intertemporal distortion (LHS), and thus
i0 must fall and τ1 should be increased.
Next, turn to the first-order condition for τ2, expressed as in (78) for s = 2. First, we note that the

first term of the marginal revenue of τ2, (the RHS of (78) has increased since R1 has gone up. However,
this effect is exactly balanced by an increase in the first term of the intertemporal marginal cost of τ2 (the
RHS of (78) since D1 = (Ψ− 1)R1 by the first-order condition for τ1. Under geometric depreciation, the
second terms on both sides of (78) vanish and what remains is simply to set κ

2 − is−1 = (Ψ− 1)
¡
2is−1 − κ

2

¢
by choosing τ2 =

Ψ−1
2Ψ−1 . The same is true for all s ≥ 2, implying that under geometric depreciation, τ s is

independent of ko1 given Ψ.
When ρ 6= 1, the second terms on both sides of (78) do not vanish. In particular, if ρ < 1, the fact that i0

has decreased increases the intertemporal marginal distortion cost of τ2 more than what is already captured
in the increase in (1− δ)R1 (the second term falls since i0 has decreased). In addition, the marginal revenue
of τ2 increases less than what is captured by the increase in (1− δ)Rs−1, since the second term of the RHS
has decreased. This is straightforward to understand: relative to the geometric case, a relatively smaller part
of ko1 remains in period 2 and the investments i0 are relatively more sensitive to τ2. Thus, the increase in τ1
has increased the marginal cost of τ2 more and the marginal revenue less than under geometric depreciation
(in which case they would have increased by the same amount). Therefore, i1 must increase by a decrease
in τ2, which reduces its intertemporal marginal distortionary cost (LHS) and increase its marginal revenue
(RHS). The first-order condition for τ3 is then also out of balance. The marginal distortionary cost is smaller
than the marginal revenue and τ3 should increase, implying oscillating dynamics in taxes and investments.
Finally, when ρ > 1, and increase in ko1 again increases the marginal revenue of τ1 and calls for it to

increase and i0 to fall. This, however, leads to a smaller increase in the marginal cost of τ2 than what is
captured by (1− δ)D1 and a higher increase in the marginal revenue than under geometric depreciation.
Therefore, also τ2 should increase. Again, the first-order condition for τ3 is then also out of balance. However,
the marginal revenue of τ3 is higher than its marginal distortionary cost, so τ3 should also increase.
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