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Abstract

In this paper we provide a new methodology to analyze the (Gaussian) profile quasi likelihood

function for panel regression models with with interactive fixed effects, also called factor models.

The number of factors is assumed to be known. Employing the perturbation theory of linear op-

erators, we derive a power series expansion of the likelihood function in the regression parameters.

Using this expansion we work out the first order asymptotic theory of the quasi maximum likeli-

hood estimator (QMLE) in the limit where both the cross sectional dimension and the number of

time periods become large. We find that there are two sources of asymptotic bias of the QMLE:

bias due to correlation or heteroscedasticity of the idiosyncratic error term, and bias due to weak

(as opposed to strict) exogeneity of the regressors. For idiosyncratic errors that are independent

across time and cross section we provide an estimator for the bias and a bias corrected QMLE.

We also discuss estimation in cases where the true parameter is on the boundary of the parameter

set, and we provide bias corrected versions of the three classical test statistics (Wald, LR and LM

test) and show that their asymptotic distribution is a chi-square distribution.

1 Introduction

This paper studies a panel regression model where the individual fixed effects λi, also called factor

loadings, interact with common time specific effects ft, also called factors. Interactive models have

been widely used in various economic applications. In analyzing the relationship between wages

and hours worked, interactive fixed effect models are considered to account for non-stationary in

individual effects (e.g., Holtz-Eakin, Newey, and Rosen (1988)). There λi can describe the unobserved

earnings abilities of individuals, while ft can correspond to changes in e.g. local working conditions, or

macroeconomic states of the economy. In some asset pricing theories, the asset returns are described

by an interactive factor model (e.g., Ross (1976) and Chamberlain and Rothschild (1983)). In these

theories λi measures the sensitivity of the asset to the common factors ft. Also, the interactive models

have been proposed for modeling cross sectional dependence (e.g., Phillips and Sul (2003), Bai and Ng

(2004), Moon and Perron (2004), and Pesaran (2006)). For example, in international cross country

data analysis, the country specific effect λi measures how much a particular country is affected by

global shocks of ft. Here the common shocks of ft cause correlation in the cross country data.

In the present paper we study the (Gaussian) quasi likelihood function of the interactive fixed

effect model which is minimized over the parameters λi, ft, and the regression coefficients. The profile

quasi likelihood function of the model, in which λi and ft are already integrated out, becomes the

∗Previous versions of this paper were circulated under the title “Asymptotic Analysis of the Quasi-MLE of Panel

Regression Models with Interactive Fixed Effects”.
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sum of the N − R smallest eigenvalues of the sample covariance matrix of the panel, where N is the

cross-sectional size of the panel, and R is the number of factors (assumed to be known).

The main contribution of the paper is to provide a general methodology to expand the profile quasi

likelihood function as a power series expansion in the regression parameters. In particular, we derive

the quadratic approximation which is necessary to establish the so-called first order asymptotic theory

of the QMLE and to work out the limits of the classical test statistics (Wald, LR and LM test).

The conventional likelihood expansion is done by a Taylor approximation in the regression coef-

ficients. In our case this expansion is difficult to perform due to the implicit eigenvalue problem in

the profile quasi likelihood function. The analytic properties of this objective function are not known

in the literature so far. The approach we choose is to perform a joint expansion in the regression

parameters and in the idiosyncratic error terms. Using the perturbation theory of linear operators

we show that the profile quasi likelihood function is analytic in a neighborhood of the true parameter

and we obtain a formula of the expansion coefficients for all orders.

Our likelihood expansion is valid with a general type of regressors, in particular we allow for weakly

exogenous regressors and so called “low-rank” regressors, e.g. time-invariant and common regressors,

or interacted dummy variables. We also allow for time-serial and cross-sectional correlation and

heteroscedasticity of the idiosyncratic error terms. Our analysis uses the alternative asymptotic where

both the number of cross-sectional units N and the number of time periods T becomes large, which

was shown to be a convenient tool to characterize the asymptotic bias due to incidental parameter

problems, see e.g. Hahn and Kuersteiner (2002; 2004), Hahn and Newey (2004), and Hahn and Moon

(2006).

Using the likelihood expansion we understand the nature of the potential asymptotic bias in

the QMLE caused by the incidental parameters, λi and ft. This is possible because we know the

approximate score in a closed form. What we find is that there are two main sources that may cause

asymptotic bias. The first one is due to the presence of weakly exogenous regressors in either time or

cross-sectional direction. The second one is due to heteroscedasticity or correlation of the idiosyncratic

errors, again either in time or cross-sectional direction. These biases corresponds to the well-know

incidental parameter problem in the panel data literature (Neyman and Scott, 1948).

As applications of the likelihood expansion we investigate three problems: (i) deriving the asymp-

totic distribution of the QMLE with weakly exogenous regressors using the alternative asymptotic

N,T → ∞, (ii) exploring the case where the true parameter is on the boundary of the parameter set,

and (iii) studying the characteristics of the three classical test statistics for testing a general linear

restriction on the regression parameters, again under the alternative asymptotic. The analysis of these

three applications is new in the literature on panel regression models with interactive fixed effects.

To obtain the limiting distribution of the QMLE we need to derive the asymptotic properties of

the approximated Hessian and of the approximated score, both known in explicit form from the profile

quasi likelihood expansion. Under the assumption of independent error terms (but allowing for het-

eroscedasticity) we show that the score (and thus the QMLE) converges to a normal distribution, and

we provide estimators for its asymptotic bias and covariance matrix, as well as for the probability limit

of the approximated Hessian. These estimators do not require knowledge on whether the regressors

are strictly or weakly exogenous. Using these estimators we construct a bias corrected QMLE. To

prove consistency of the estimators it is convenient to use the expansions of the regression residuals

and of the projectors of the estimated factors and factor loadings in the regression parameters. These

expansions are a byproduct of the perturbation theory that is used to derive the likelihood expansion,

and they can be used whenever the factors and factor loadings are estimated by principal components

even if the regression parameters are not estimated by maximum likelihood.

The analysis of the QMLE as described so far is performed under the assumption that the true

parameter is an interior point of the parameter set. Combining our likelihood expansion with the

results in Andrews (1999) we derive the asymptotic QMLE distribution for situations where the true

parameter is on the boundary, given that the parameter set is locally approximated by a convex cone.
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Under these assumptions we also define a “bias corrected” QMLE and show that its distribution is

the one that the QMLE would have for unbiased score function.

For testing a general linear hypothesis we consider the Wald, LR and LM tests. We show that

these tests are still asymptotically equivalent, but have a non-central chi-square distribution due to

the bias of the QMLE and of the score. Using our estimators for the asymptotic Hessian and score bias

we provide bias corrected versions of the three test statistics and show that their limiting distribution

is a chi-square distribution. We also provide a convenient estimator for the score function at the

restricted parameter which features in the LM test and which otherwise would need to be calculated

numerically – since no explicit formula for the derivative of the likelihood function is known. Using

this score estimator we obtain a modified bias corrected LM test statistics that is easy to compute.

For estimation, this paper considers the QMLE. In the literature, various other estimation tech-

niques for interactive factor models are studied. Holtz-Eakin, Newey, and Rosen (1988) study a panel

regression model with factors and lagged dependent variables, i.e. they also allow for weakly exoge-

nous regressors. In their asymptotic T is fixed, i.e. the factors ft cause no incidental parameter bias.

To solve the incidental parameter problem for λi they estimate a quasi-differenced version of the model

using appropriated lagged variables as instruments. They also investigate various testing problems.

For small T their parameter estimates are easy to obtain and are unbiased. However, implementing

their method for large T is difficult since one has to minimize a non-linear objective function (e.g.

for GMM) over many parameters – since the ft (or their quotients) are estimated jointly with the

regression parameters. Thus, with respect to the size of T the Holtz-Eakin, Newey, and Rosen (1988)

method is complementary to our our approach, since our asymptotic is accurate only for large T . The

same is true for Ahn, Lee and Schmidt (2001), who study the QMLE and a GMM estimator in fixed

T asymptotic. To achieve consistency in this asymptotic they have to assume that the regressors are

iid distributed across individuals. Pesaran (2006) discusses common correlated effect estimators for

multi-factor models.

Another closely related to paper is the work of Bai (2009). He studies the QMLE for panel

regression models with interactive fixed effects, but assuming strictly exogenous regressors, and using

a different methodology to derive the asymptotic distribution. Bai starts from the first order condition

of the quasi likelihood maximization problem to derive the first order asymptotic theory of the QMLE.

He finds that under the alternative asymptotic and for strictly exogenous regressors the QMLE is

biased due to correlation and heteroscedasticity of the error terms. He gives consistent estimators for

these bias terms and for the QMLE covariance matrix, and thus provides a bias corrected estimator.

He also studies time-invariant and common regressors. Compared to our paper, Bai focuses on the

properties of the QMLE, while we first study the characteristics of the likelihood function by using

our expansion results from perturbation theory. This allows us to investigate situations where the

true parameter is on the boundary, and to study the limiting distribution of the LR and LM test. As

opposed to Bai, we allow for weakly exogenous regressors, e.g. lagged dependent variables, and we

show that they cause additional bias terms and how to correct for them. Our treatment of “low-rank

regressors” is also more general than Bai’s discussion since we allow not only for time-invariant and

common regressors, but for all kinds of “low-rank regressors”, e.g. also for interacted dummy variables

that appear in “difference in difference” estimation and that are ruled out by Bai’s assumptions.

The paper is organized as follows. In the next section we introduce the interactive fixed effect

model and the QMLE of the regression parameters, and we provide a set of assumptions that are

sufficient to show consistency of the QMLE. In section 3 we present the expansion of the profile

quasi likelihood function in the regression parameters, give a general discussion of the asymptotic

bias of the QMLE, and also provide useful expansions of the regression residuals and of the principal

component projectors in the regression parameters. In section 4 we apply the likelihood expansion

to work out the asymptotic distribution of the QMLE. Under independent idiosyncratic error terms,

but allowing for heteroscedasticity and weakly exogenous regressors, we present estimators for the

different components of the asymptotic bias and thus provide a bias corrected QMLE. We also discuss
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the limiting distribution of the QMLE when the true parameter is on the boundary of the parameter

set, and we work out the asymptotic distribution of the (bias corrected) classical test statistics.

Afterwards we conclude. Some technical details have been moved to the appendix, and most of the

proofs have been transfered to the supplementary material.

A few words on notation. For a column vectors v its Euclidean norm is defined by ‖v‖ =
√
v′v .

For the n-th largest eigenvalues (counting multiple eigenvalues multiple times) of a symmetric matrix

B we write Eigvaln(B). For an m × n matrix A the Frobenius norm is ‖A‖F =
√

Tr(AA′), and the

operator norm is ‖A‖ = max0 6=v∈Rn
‖Av‖
‖v‖ , or equivalently ‖A‖ =

√

Eigval1(A
′A). Furthermore, we

use PA = A(A′A)−1A′ and MA = I − A(A′A)−1A′, where (A′A)−1 denotes some generalized inverse

if A is not of full column rank. For square matrices B, C, we use B > C (or B ≥ C) to indicate

that B − C is positive (semi) definite. For a positive definite symmetric matrix A we write A1/2 and

A−1/2 for the unique symmetric matrices that satisfy A1/2A1/2 = A and A−1/2A−1/2 = A−1. We use

∇ for the gradient of a function, i.e. ∇f(x) is the row vector of partial derivatives of f with respect

to each component of x. The Kronecker-delta symbol is defined by δii = 1 and δij = 0 for i 6= j. We

use “wpa1” for “with probability approaching one”, and 1(.) for the indicator function.

2 Model, QMLE and Consistency

In this paper we study the following panel regression model with cross-sectional size N and T time

periods

Yit = β0′Xit + λ0′
i f

0
t + eit , i = 1 . . . N, t = 1 . . . T , (2.1)

where Xit is a K × 1 vector of observable regressors, β0 is a K × 1 vector of regression coefficients, λ0
i

is an R× 1 vector of unobserved factor loadings, f0
t is an R× 1 vector of unobserved common factors,

and eit are unobserved errors. The superscript zero indicates the true parameters. Throughout this

paper we assume that the true number of factors R is known.

Model (2.1) can be written in matrix notation as

Y =

K
∑

k=1

β0
k Xk + λ0f0′ + e , (2.2)

where Y , Xk and e are N × T matrices, λ0 is a N ×R matrix, and f0 is a T ×R matrix. Our goal is

to estimate the parameter β0 =
(

β0
1, ..., β

0
K

)′
and to find its limiting distribution when both N and T

are large. The estimator we consider in this paper is the QMLE that is defined by

β̂ = argmin
β∈B

LNT (β) , (2.3)

where B ⊂ R
K is a compact parameter set that contains the true parameter, i.e. β0 ∈ B. If there are

multiple global minima in B we want β̂ to be one of them. The objective function is given by

LNT (β) = inf
λ,f

1

NT
Tr





(

Y −
K
∑

k=1

βkXk − λf ′
)′(

Y −
K
∑

k=1

βkXk − λf ′
)





= inf
f

1

NT
Tr





(

Y −
K
∑

k=1

βkXk

)

Mf

(

Y −
K
∑

k=1

βkXk

)′



=
1

NT

T
∑

t=R+1

Eigvalt





(

Y −
K
∑

k=1

βkXk

)′(

Y −
K
∑

k=1

βkXk

)



 . (2.4)

Here we give three expressions for LNT (β), which are shown to be equivalent in the supplementary

material. !
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The first expression for LNT (β) is the sum of the squares of the residuals êit = Yit −β′Xit −λ0′
i f

0
t

minimized over the parameters λ and f . We have
∑

i

∑

t ê
2
it = Tr(ê′ê), and this trace notation will

be used extensively throughout the paper. Note that LNT (β) is minus the logarithm of the Gaussian

profile likelihood function of model (2.2), and in the following we therefore refer to LNT (β) as profile

quasi likelihood function. Note also that the minimizing value LNT (β) is uniquely defined, although

the minimizing parameters λ̂ and f̂ are not uniquely determined, since the objective function is

invariant under transformations λ→ λA and f → fA−1, where A is a non-singular R×R matrix.

The second expression for LNT (β) is obtained form the first one by integrating out λ, i.e. by

eliminating it from the objective function by use of its own first order condition. Analogously one

can integrate out f to obtain a formulation where only the parameter λ remains. In the appendix

we show that the optimal f is obtained by combining the R eigenvectors that correspond to the R

largest eigenvalues of the T ×T matrix
(

Y −∑K
k=1 βkXk

)′ (
Y −∑K

k=1 βkXk

)

. Using this result one

obtains the third way to write the profile quasi likelihood function, namely as the sum over the T −R
smallest eigenvalues of this T ×T matrix. This last expression for LNT (β) is our starting point when

expanding LNT (β) around β0. This expression is also most convenient for numerical computations of

the QMLE – at each step of the numerical optimization over β one needs to calculate the eigenvalues

of a T ×T matrix, which is much faster than minimizing over the high dimensional parameters λ and

f .1

To show consistency of the QMLE β̂ of the interactive fixed effect model, and also later for our first

order asymptotic theory, we consider the limitN,T → ∞, i.e. more precisely we want min(N,T ) → ∞,

but we allow for max(N,T ) to grow at a faster rate. In the following we present assumptions on Xk,

e, λ and f that guarantee consistency.2

Assumption 1. The probability limits of λ0′λ0/N and f0′f0/T exist and have full rank, i.e.

(i) plimN,T→∞
(

λ0′λ0/N
)

> 0, (ii) plimN,T→∞
(

f0′f0/T
)

> 0.

Assumption 2. (i) plimN,T→∞
[

(NT )−1Tr(Xk e
′)
]

= 0, (ii) plimN,T→∞
[

(NT )−1Tr(λ0 f0′e′)
]

= 0.

Assumption 3. The operator norm of the error matrix e grows at a rate smaller than
√
NT , i.e.

plimN,T→∞

(

‖e‖/
√
NT

)

= 0.

Assumption 1 guarantees that the matrices f0 and λ0 have full rank, i.e. that there are R distinct

factors and factor loadings asymptotically, and that the norm of each factor f0
,̇r and factor loading λ0

,̇r

grows at a rate of
√
T and

√
N , respectively. Assumption 2 demands that the regressors are weakly

exogenous and that the combination of factors and factor loadings is “weakly exogenous” in the same

sense. Assumption 3 will be discussed in more detail in the next section. It is a regularity condition

on the the error term eit, and we give examples of error distributions that satisfy this condition in

appendix A. The final assumption needed for consistency is an assumption on the regressors Xk.

Assumption 4. We assume that the probability limit of the K × K matrix (NT )−1
∑

i,tXitX
′
it

exists and is positive definite, i.e. plimN,T→∞

[

(NT )−1
∑N

i=1

∑T
t=1 XitX

′
it

]

> 0. In addition, we

assume that the K regressors can be decomposed into K1 low-rank regressors Xl, l = 1, . . . ,K1, and

K2 = K −K1 high-rank regressors Xm, m = K1 + 1, . . . ,K. The two types of regressors satisfy:

(i) Consider linear combinations Xhigh,α =
∑K

m=K1+1 αmXm of the high-rank regressors Xm for

1For numerical purposes one should use the last expression in (2.4) if T is smaller than N . If T is larger than N one

should use the symmetry of the problem (N ↔ T , λ ↔ f , Y ↔ Y ′, Xk ↔ X′

k) and calculate LNT (β) as the sum over

the N − R smallest eigenvalues of the N × N matrix
“

Y − PK
k=1 βkXk

” “

Y − PK
k=1 βkXk

”

′

.

2In principle we should write X
(N,T )
k , e(N,T ), λ(N,T ) and f (N,T ), because all these matrices, and even their dimen-

sions, are functions on N and T , but we suppress this dependence throughout the paper.
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K2-vectors
3 α with ‖α‖ = 1. We assume

min
{α∈RK2 ,‖α‖=1}

N
∑

i=2R+K1+1

Eigvali

(

Xhigh,αX
′
high,α

NT

)

> 0 wpa1.

(ii) For the low-rank regressors we assume rank(Xl) = 1, l = 1, . . . ,K1, i.e. the they can be written

as Xl = wlv
′
l for N × 1 vectors wl and T × 1 vectors vl, and we define the N × K1 matrix

w = (w1, . . . , wK1
) and the T ×K1 matrix v = (v1, . . . , vK1

). We assume that there exists B > 0

(independent of N,T ) such that (a) N−1 λ0′Mv λ
0 > B IR wpa1, and (b) T−1 f0′Mw f

0 > B IR

wpa1.

The distinction between low-rank and high-rank regressors introduced in assumption 4 is essential

for showing consistency of the QMLE. The two most prominent examples of low-rank regressors are

time-invariant regressors, which satisfy Xl,it = Xl,iτ for all i, t, τ , and common (or cross-sectionally

invariant) regressors, which satisfy Xl,it = Xl,jt for all i, j, t. To give another example of a low-

rank regressor, let Di = 1(i ∈ A) and D̃t = 1(t ∈ B) be dummy variables that indicate whether

individual i is in A ⊂ {1, . . . , N} (group dummy), and whether t is in B ⊂ {1, . . . , T} (e.g. monthly

dummy). The interacted dummy variable Xl,it = DiD̃t then is a low-rank regressor, but is neither

time-invariant nor common. Interacted dummy variables of this sort appear frequently in “difference

in difference” estimation. In these examples, and probably for the vast majority of applications, the

low-rank regressors all satisfy rank(Xl,it) = 1, as demanded in assumption 4. However, none of our

conclusions and proofs would be different if we allowed for low-rank regressors with rank larger than

one as long as their rank remains constant as N,T → ∞.4

The appearance of the factors and factor loadings in the assumption on the low-rank regressors

is inevitable in order to guarantee consistency. For example, consider a low-rank regressor that is

cross-sectionally independent and proportional to the r’th unobserved factor, e.g. Xl,it = ftr. The

corresponding regression coefficient βl is then not identified, because the model is invariant under a

shift βl 7→ βl +a, λir 7→ λir−a, for an arbitrary a ∈ R. This phenomenon is well known from ordinary

fixed effect models, where the coefficients of time-invariant regressors are not identified. Assumption

4 (ii) therefore guarantees for Xl = wlv
′
l that wl is sufficiently different from λ0, and vl is sufficiently

different from f0. To get an intuition for this assumption, consider the smallest principal angles

θw,λ0 and θv,f0 between the N -dimensional subspaces spanned by w and λ0, and the T -dimensional

subspaces spanned by v and f0, respectively.5 It turns out that assumption 4(ii) is equivalent to

demanding that both θw,λ0 > c and θv,f0 > c hold wpa1, for some constant c > 0, i.e. the smallest

angle between the subspaces spanned by w and λ0 is not allowed to converge to zero, and equivalently

for v and f0.6

A typical example of a high-rank regressor is one, where its distribution guarantees that it has full

rank asymptotically, e.g. Xm,it = 1 + Zit, where Zit ∼ iidN (0, 1). However, a high-rank regressors

may still have a significant “low-rank component”, e.g. Xm,it = 1 + Zit + λ0
irf

0
tr, where Zit as above

and λ0
ir and f0

tr are the r’th factor loading and factor.

Let the K2 ×K2 matrix W̃ be defined by W̃m1m2
= (NT )−1Tr(Xm1

X ′
m2

), i.e. it is a sub-matrix

of (NT )−1
∑

i,tXitX
′
it. The no-collinearity condition plimN,T→∞ W̃ > 0 would be equivalent to

assumption 4 (i) on the high-rank regressors if the sum over the eigenvalues in this assumption would

3The components of the K2-vector α are denoted by αK1+1 to αK .
4We would then have Xl = wlv

′

l, where wl is a N × rank(Xl) matrix, and vl is a T × rank(Xl). The definition of w

and v would remain the same, but they would be N × RX and T × RX matrices, where RX =
PK1

l=1 rank(Xl) is the

sum over the rank of all low-rank regressors. In addition, we would have to make a slight change in assumption 4 (i) on

the high-rank regressors, namely replacing K1 by RX , i.e. we would have
PN

i=2R+Rx+1.
5The concept of the principal angles between subspaces is a well known mathematical concept, see definition B.4

in the appendix. In the simplest case of only one factor (R = 1) and only one low-rank regressor (K1 = 1) we have

θw,λ = arccos[w′λ/(‖w‖‖λ‖)] and θv,f = arccos[v′f/(‖v‖‖f‖)].
6This statement holds conditional on assumption 1 being satisfied. For details see theorem B.5 and the proof of

lemma C.2 in the appendix.
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run from i = 1 to N , because the sum over all eigenvalues of a matrix is just its trace. Assumption 4

(i) is stricter than that since the first 2R+K1 eigenvalues are omitted from the sum. An immediate

consequence is that high-rank regressors have to satisfy rank(Xm) > 2R + K1, which explains their

name.

We can now state our consistency result for the QMLE.

Theorem 2.1. Let the assumptions 1, 2, 3, 4 be satisfied, and let the parameter set B be compact7

In the limit N,T → ∞ we then have

β̂ −→
p

β0 .

Bai (2009) also proves consistency of the QMLE of the interactive fixed effect model, but under

different assumptions on the regressors. He also employs, what we call assumption 1 and 2, and he uses

a low-level version of assumption 3.8 Bai (2009) demands the regressors to be strictly exogenous, but

for his consistency proof this assumption is not used. The real difference between our assumptions

and his is the treatment of high- and low-rank regressors. He gives a condition on the regressors

(his assumption A) that rules out low-rank regressors, i.e. that works for the case of only high-rank

regressors. This condition still involves λ0, which we felt should better be avoided for the high-

rank regressors since λ0 is not observable.9 In a separate section Bai (2009) gives a condition on

the regressors (in his notation D(F 0) > 0) that is applicable in the case of only time-invariant and

common regressors, i.e. that does not guarantee consistency for high-rank regressors and for more

general low-rank regressors.10 In contrast, our assumption 4 allows for a combination of high- and low-

rank regressors, and for low-rank regressors that are more general than time-invariant and common

regressors.

3 Profile Quasi Likelihood Expansion

The last expression in equation (2.4) for the profile quasi likelihood function is on the one hand

very convenient, because it does not involve any minimization over continuous parameters λ or f ,

on the other hand, this does not seem like an expression that can be easily discussed by analytic

means, because in general there is no explicit formula for the n-th largest eigenvalue of a matrix. This

complicates the analysis of the asymptotic distribution of the QMLE, because it is not straightforward

how to compute derivatives in order to expand LNT (β) around β0.

The key idea of this paper is to use the perturbation theory of linear operators to perform the

expansion of LNT (β) around β0. More precisely, we expand simultaneously in β and in the operator

norm of the error term e. Let the K + 1 expansion parameters be defined by ǫ0 = ‖e‖/
√
NT and

ǫk = β0
k −βk, k = 1, . . . ,K (the sign convention here is chosen for convenience), and define the N ×T

matrix X0 = (
√
NT/‖e‖)e. With these definitions we obtain

1√
NT

(

Y −
K
∑

k=1

βkXk

)

=
λ0f0′
√
NT

+

K
∑

κ=0

ǫk
Xκ√
NT

, (3.1)

and according to equation (2.4) the profile quasi likelihood function LNT (β) can be written as the

sum over the T − R smallest eigenvalues of this matrix multiplied with its transposed. We consider

7We assume compactness of B mainly to guarantee existence of β̂. We also use boundedness of B in the consistency

proof, but only for those parameters βl, l = 1 . . . K1, that correspond to low-rank regressors (see assumption 4).

Assuming boundedness of the parameter set simplifies the structure of the proof significantly, but the proof can be done

without this assumption, as long as existence of β̂ is guaranteed.
8We state assumption 3 in a high-level format because the operator norm of e is important for our expansion of

LNT .
9As argued above, for the low-rank regressors appearance of λ0 and f0 in assumption 4 (ii) is necessary to guarantee

consistency.
10In appendix ? we give two examples that show that Bai’s condition D(F 0) > 0 does not guarantee consistency in

a more general case.
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∑K
κ=0 ǫk Xκ/

√
NT as a small perturbation of the unperturbed matrix λ0f0′/

√
NT . The goal is to

expand the profile quasi likelihood LNT = LNT (ǫ) in the perturbation parameters ǫ = (ǫ0, . . . , ǫK),

i.e. in a neighborhood of ǫ = 0 we want to write

LNT (ǫ) =
1

NT

∞
∑

g=1

K
∑

κ1=0

K
∑

κ2=0

. . .
K
∑

κg=0

ǫκ1
ǫκ2

. . . ǫκg
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

, (3.2)

where L(g) = L(g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

are the expansion coefficients.

Note that the unperturbed matrix λ0f0′/
√
NT has rank R. Thus, the T −R smallest eigenvalues

of the unperturbed T × T matrix f0λ0′λ0f0′/NT are all zero, and due to assumption 1 on λ0 and

f0 we find that the R non-zero eigenvalues of this T × T matrix converge to positive constants as

N,T → ∞. In more technical terms this means that the “separating distance” of the zero-eigenvalue

of the unperturbed T × T converges to a positive constant. Under this condition the perturbation

theory of linear operators guarantees that the above expansion of LNT in ǫ exists and is convergent as

long as the operator norm of the perturbation matrix
∑K

κ=0 ǫk
Xκ√
NT

is smaller than the convergence

radius r0(λ
0, f0). For details, see Kato (1980) and appendix D. In the appendix the convergence

radius r0(λ
0, f0) is defined and it is shown that under assumption 1 it converges to a positive constant

in probability as N,T → ∞.

Thus, the above expansion of the profile quasi likelihood function is applicable whenever the

operator norm of the perturbation matrix
∑K

κ=0 ǫk
Xκ√
NT

is smaller than r0(λ
0, f0). Fortunately, when

evaluated at a consistent estimator β = β̂ this is the case asymptotically. Note that ‖Xκ/
√
NT‖ = Op1

for κ = 0, . . . ,K. For κ = 0 this is true by definition, and for κ = k = 1, . . . ,K this is satisfied due to

4, namely we have ‖Xk‖ ≤ ‖Xk‖F = Op(
√
NT ). In addition, assumption 3 guarantees that ǫ0 →p 0,

and for β = β̂ with β̂ →p β0 we also have ǫk →p 0 for κ = k = 1, . . . ,K. Thus, the operator

norm of the perturbation converges to zero in probability if evaluated for a consistent estimator of β.

This shows how our assumption on the model play together to guarantee that the above likelihood

expansion is valid asymptotically.11

Perturbation theory (e.g. Kato (1980)) also provides an explicit formula for the expansion coeffi-

cients L(g). For example, L(1)
(

λ0, f0, Xκ

)

= 0, and L(2)
(

λ0, f0, Xκ1
, Xκ2

)

= Tr(Mλ0Xκ1
Mf0X ′

κ2
).

The general formula is given in theorem D.2 in the appendix. Using this formula one can derive the

following bound

1

NT

∣

∣

∣
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣
≤ aNT (bNT )g ‖Xκ1‖√

NT

‖Xκ2‖√
NT

. . .
‖Xκg

‖√
NT

, (3.3)

where aNT and bNT are functions of λ0 and f0 that converge to positive constants in probability, i.e.

aNT →p a > 0 and bNT →p b > 0. This bound on the coefficients L(g) allows to work out a bound on

the remainder term, when the likelihood expansion is truncated at a particular order.

3.1 Quadratic Approximation of the Likelihood Function

The assumptions on the model made so far are sufficient to expand LNT (β) in (β−β0) and ‖e‖/
√
NT .

But in order to cut the expansion in ‖e‖/
√
NT at a finite order and be able to give a useful bound

on the remainder term, we need to strengthen assumption 3 slightly.

Assumption 3∗. We assume that there exists a deterministic ξNT and and a positive integer Ge such

that ‖e‖/
√
NT = Op(ξNT ), for some series ξNT that satisfies

√
NT (ξNT )

Ge → 0 as N,T → ∞.

Note that the value of the constant Ge not only depends on the distributional assumptions for the

error term eit, but also on the particular convergence scheme of N and T . For all examples of error

11Note that all we need for this result is assumption 1, 3, ‖Xk‖ = Op(
√

NT ), and consistency of β̂. However, in order

to achieve consistency of the QMLE we also have to impose assumption 2 and 4.
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distributions given in appendix A we have ‖e‖ = Op(
√

max(N,T )), i.e. ξNT = min(N,T )−
1
2 . There

is a large literature that studies the asymptotic behavior of the operator norm of random matrices,

see e.g. German (1980), Silverstein (1989), Bai, Silverstein, Yin (1988), Yin, Bai, and Krishnaiah

(1988), and Latala (2005). Loosely speaking, we expect the result ‖e‖ = Op(
√

max(N,T )) to hold as

long as the errors eit have mean zero, uniformly bounded fourth moment, and weak time-serial and

cross-sectional correlation (in some well-defined sense, see the examples). Assuming this is satisfied

and considering the limit N,T → ∞ with N/T → κ2, ∞ > κ > 0, we find assumption 3∗ to be

satisfied with Ge = 3.

We can now present the quadratic approximation of the profile quasi likelihood function LNT (β).

Theorem 3.1. Let assumptions 1, 3∗, and 4 be satisfied with Ge ≥ 3. Then, the profile quasi likelihood

function satisfies LNT (β) = Lq,NT (β) + INT + (NT )−1RNT (β), where INT is independent of β, the

remainder RNT (β) is such that for any series ηNT → 0 we have

sup
{β:‖β−β0‖≤ηNT }

|RNT (β)|
(

1 +
√
NT

∥

∥β − β0
∥

∥

)2 = op (1) , (3.4)

and Lq,NT (β) is a second order polynomial in β, namely

Lq,NT (β) = (β − β0)′WNT (β − β0) − 2√
NT

(β − β0)′ CNT , (3.5)

with K × K matrix WNT = WNT (λ0, f0,X) defined by WNT,k1k2
= (NT )−1 Tr(Mf0 X ′

k1
Mλ0 Xk2

),

and K-vector CNT = CNT (λ0, f0, e,X) given by CNT,k =
∑Ge

g=2 C
(g)
(

λ0 , f0 ,Xk e
)

. The general

formula for the coefficients C(g) is C(g)
(

λ0, f0, Xk, e
)

= g(4NT )−1/2 L(g)
(

λ0, f0, Xk, e, e, . . . , e
)

,

with L(g) defined in theorem D.2 of the appendix. For g = 2 and g = 3 we have

C(2)
(

λ0, f0, Xk, e
)

=
1√
NT

Tr(Mf0 e′Mλ0 Xk) ,

C(3)
(

λ0, f0, Xk, e
)

= − 1√
NT

[

Tr
(

eMf0 e′Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′)

+ Tr
(

e′Mλ0 eMf0 X ′
k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)

+ Tr
(

e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
]

. (3.6)

In theorem D.2 of the appendix we give the general expansion of LNT (β) up to arbitrary orders in

β and e. We refer to WNT and CNT as the approximated Hessian and the approximated score (at the

true parameter β0). The exact Hessian and the exact score (at the true parameter β0) contain higher

order expansion terms in e, but the expansion up the particular order above is sufficient to work out

the first order asymptotic theory of the QMLE.

Using the bound one the remainder RNT (β) given in equation 3.4 one cannot infer any properties

of the score function, i.e. of the gradient ∇LNT (β), because nothing is said about ∇RNT (β). The

following theorem gives a bound on ∇RNT (β) that is needed to derive the limiting distribution of the

Lagrange multiplier test in the application section below.

Theorem 3.2. Under the assumptions of theorem 3.1 we can write the score function as

∇LNT (β) = 2WNT (β − β0) − 2√
NT

CNT + (NT )−1 ∇RNT (β) ,

where the remainder ∇RNT (β) satisfies for any sequence ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

‖∇RNT (β)‖
√
NT

(

1 +
√
NT

∥

∥β − β0
∥

∥

) = op (1) . (3.7)

Theorem 3.2 can be easily proven using our complete likelihood expansion.
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3.2 Expansions of Projectors and Residuals

It is convenient to also have the asymptotic β-expansions of the projectors Mλ̂(β) and Mf̂ (β) that

correspond to the minimizing parameters λ̂(β) and f̂(β) in equation (2.4). Note that the minimizing

λ̂(β) and f̂(β) can be defined for all values of β, not only for the minimizing value β = β̂. The

corresponding residuals are defined by

ê(β) = Y −
K
∑

k=1

βk Xk − λ̂(β) f̂ ′(β) . (3.8)

Theorem 3.3. Under assumption 1, 3, and 4 we have the following expansions

Mλ̂(β) = Mλ0 +M
(1)

λ̂,e
+M

(2)

λ̂,e
−

K
∑

k=1

(

βk − β0
k

)

M
(1)

λ̂,k
+M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 +M
(1)

f̂ ,e
+M

(2)

f̂ ,e
−

K
∑

k=1

(

βk − β0
k

)

M
(1)

f̂ ,k
+M

(rem)

f̂
(β) ,

ê(β) = Mλ0 eMf0 + ê(1)e −
K
∑

k=1

(

βk − β0
k

)

ê
(1)
k + ê(rem)(β) , (3.9)

where the operator norms of the remainders satisfy for any series ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

∥

∥

∥
M

(rem)

λ̂
(β)
∥

∥

∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥

∥

∥
M

(rem)

f̂
(β)
∥

∥

∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥

∥ê(rem)(β)
∥

∥

(NT )1/2‖β − β0‖2 + ‖e‖ ‖β − β0‖ + (NT )−1‖e‖3
= Op (1) , (3.10)

and we have rank(ê(rem)) ≤ 6R PUT INTO PROOF!!!!, and the expansion coefficients are given by

M
(1)

λ̂,e
= −Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 ,

M
(1)

λ̂,k
= −Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′X ′
k Mλ0 ,

M
(2)

λ̂,e
= Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1λ0′

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

−Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′Mλ0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ , (3.11)
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analogously

M
(1)

f̂ ,e
= −Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

M
(1)

f̂ ,k
= −Mf0 X ′

k λ
0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ ǫk Mf0 ,

M
(2)

f̂ ,e
= Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

−Mf0 e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′

− f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ , (3.12)

and finally

ê
(1)
k = Mλ0 Xk Mf0 ,

ê(1)e = −Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 . (3.13)

In theorem D.2 of the appendix we give the general expansion of Mλ̂(β) up to arbitrary orders

in β and e. The general expansion of Mf̂ (β) can be obtained from the one for Mλ̂(β) by applying

symmetry (N ↔ T , λ ↔ f , Y ↔ Y ′, Xk ↔ X ′
k), and the general expansion for can be obtained via

ê(β) = Mλ̂(β)
[

Y − ∑K
k=1 βk Xk

]

, with Y given in equation (2.2). For most purposed the expansions

up to the finite orders given above should be sufficient.

Having expansions for Mλ̂(β) and Mf̂ (β) we also have expansions for Pλ̂(β) = IN −Mλ̂(β) and

Pf̂ (β) = IT −Mf̂ (β). The reason why we give expansions of the projectors and not expansions of λ̂(β)

and f̂(β) directly is that for the latter we would need to specify a normalization, while the projectors

are independent of any normalization choice. An expansion for λ̂(β) can for example be defined by

λ̂(β) = Pλ̂(β)λ0, in which case the normalization of λ̂(β) is implicitly defined by the normalization of

λ0.

The expansions are very useful. In the present paper we make use of the expansions in theorem 3.3

in order to derive the properties of the variance and bias estimates of the QMLE below, i.e. of objects

that contain the estimates Mλ̂(β), Mf̂ (β), and ê. More generally, one can use these expansions

in situations where λ̂ and f̂ are still defined as principal components estimators (i.e. eigenvectors

corresponding to the largest eigenvalues of the sample covariance matrix), but where a different

estimator for β (not the QMLE) is used. For those alternative estimators the likelihood expansion in

theorem 3.1 is irrelevant, but the expansions 3.3 are still applicable as long as principal components

are used to estimate factors and factor loadings.

3.3 Remarks
√
NT -consistency of the QMLE

The following corollary is the key for working out the asymptotic distribution of the QMLE.

Corollary 3.4. Under the assumptions of the theorems 2.1 and 3.1, and assuming that β0 is an

interior point of the parameter set B we have
√
NT

(

β̂k1
− β0

k1

)

= W−1
NTCNT + op(1).

Andrews (1999) provides a general discussion of the limiting distribution of extremum estima-

tors. Once consistency of the QMLE is established, and the profile quasi likelihood expansion in
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theorem 3.1 is derived, one obtains the above corollary by applying theorem 3 in Andrews (1999).

Defining the unrestricted minimizer of the quadratic approximation of the objective function β̂q =

argminβ∈RK Lq,NT (β), we find
√
NT (β̂q−β0) = W−1

NT CNT , i.e. the statement of the corollary can be

rewritten as
√
NT

(

β̂ − β0
)

=
√
NT

(

β̂q − β0
)

+ op(1). Thus, the bound on the remainder RNT (β)

in the profile quasi likelihood expansion is such that asymptotic distribution of β̂ is given by the

one of β̂q. The assumptions on the model made so far guarantee that W−1
NT = Op(1), i.e. a direct

consequence of the corollary is that the QMLE β̂ is
√
NT -consistent if and only if CNT = Op(1).

Asymptotic Bias of the QMLE

Corollary 3.4 is a can be used to derive the limiting distribution of the QMLE β̂ under different

distributional assumptions on λ0, f0, e, and Xk, and for different asymptotics T,N → ∞. The

restriction on e and Xk made to derive the corollary still allow for very general cross-sectional and

time-serial correlation of the errors, and for very general weakly exogenous regressors. In order to

actually compute the limiting distribution of β̂ more specific assumptions on λ0, f0, e, and Xk have to

me made, depending on the particular application in mind. A concrete example of these more specific

assumptions is given in the application section below.

It is natural to assume that the approximated Hessian WNT converges to a constant matrix in

probability as N,T → ∞, see also Bai (2009). Thus, according to corollary 3.4 the asymptotic distri-

bution of β̂ is up to a matrix multiplication given by the asymptotic distribution of the approximated

score CNT . Asymptotic bias of β̂ therefore corresponds to asymptotic bias of CNT , and we now give

an informal discussion of the different bias terms that can occur.

According to theorem 3.1 the approximated score is proportional to the sum over the terms

C(g)
(

λ0, f0, Xk, e
)

from g = 2 to Ge. In the following we restrict attention to the terms g = 2

and g = 3, and discuss under what conditions these terms contribute an asymptotic bias to the

QMLE. As discussed previously, for ‖e‖ = Op(max(N,T )) and N/T → κ2, ∞ > κ > 0, asymptoti-

cally we have Ge = 3, i.e. under these conditions higher order score terms do not contribute to the

limiting distribution of β̂. In the following we always treat λ0 and f0 as non-stochastic.

We start with the discussion of the C(2) term. If the regressors Xk are strictly exogenous we have

EC(2)
(

λ0, f0, Xk, e
)

= 0, i.e. no asymptotic bias originates from C(2) in this case. However, if the

regressors are weakly exogenous we have12

E

[

C(2)
(

λ0, f0, Xk, e
)

]

= −
√

N

T
Tr

[

Pf0E

(

1

N
e′Xk

)]

−
√

T

N
Tr

[

Pλ0 E

(

1

T
eX ′

k

)]

+ o(1)

= −
√

N

T

T
∑

t=1

T
∑

τ=1

Pf0,tτ
1

N

N
∑

i=1

E (eitXk,iτ )

−
√

T

N

N
∑

i=1

N
∑

j=1

Pλ0,ij

1

T

T
∑

t=1

E (eitXk,jt) + o(1) . (3.14)

To better understand the structure of these bias terms, consider model 2.2 and assume f0 is

known. By multiplying with Mf0 from the right we eliminate the factor term and obtain YMf0 =
∑K

k=1 βkXkMf0 + eMf0 . The OLS estimator (which is also the QMLE) of this equation satis-

fies
√
NT (β̃k1

− β0
k1

) =
∑K

k2=1[V
−1
NT ]k1k2

(NT )−1/2Tr(Mf0e′Xk2
), where the K × K matrix VNT is

defined by VNT,k1k2
= (NT )−1Tr(Xk1

Mf0X ′
k2

). Assuming that VNT converges to a positive def-

inite matrix V in probability, we thus find that under weak exogeneity E

[√
NT (β̃k1

− β0
k1

)
]

=

−∑K
k2=1[V

−1]k1k2
E
[

(NT )−1/2Tr(Pf0e′Xk2
)
]

+o(1). Thus, the first type of bias we found in equation

(3.14) also appears in a factor model in which the factors are observed. Such a model is the standard

12Here we assumed that E

h

(NT )−1/2Tr(Pf0 e′ Pλ0 Xk)
i

= o(1), which can be shown to be true under additional

assumptions on e and Xk, and for N and T growing at the same rate, see section 4.1.
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fixed effect model if R = 1 and f0 = (1, 1, . . . , 1)′. For a dynamic fixed effect model this bias of

the OLS estimator is well known (for fixed T asymptotics it causes inconsistency), and the standard

remedy is to use IV and GMM estimators, see e.g. Arellano and Bond (1991). Hahn and Kuersteiner

(2002) use the asymptotics N,T → ∞ to characterize this bias in dynamic fixed effect models and in

order to work out a biased corrected estimator. We follow the same strategy for the interactive fixed

effect model.

The expectation value of the first term in (3.14) has a non-zero probability limit ifXk,it is correlated

with eiτ for t > τ . For example, in the AR(1) model Yit = βYi,t−1 + λif
′
t + eit, assuming one factor

(R = 1) that is constant, i.e. f0 = (1, 1, . . . , 1)′, and −1 < β < 1, and eit independent across i

and t with mean zero and variance σ2
e, we find Tr

[

Pf0E
(

N−1e′ Y−
)]

= σ2
eβ(1 − β)−1 + o(1). In

addition, there is the pre-factor
√

N/T . Thus, if T grows at a faster rate than N this asymptotic bias

due to weak exogeneity vanishes; if N grows at a faster rate than T then the QMLE is not
√
NT -

consistent, unless strict exogeneity is assumed; and if N and T grow at the same rate the QMLE is√
NT -consistent, but biased.

The model is symmetric under N ↔ T , λ0 ↔ f0, X ′
k ↔ Xk and e ↔ e′. Theoretically, the

discussion of the second term in (3.14) is therefore analogous to that of the first term, i.e. the second

term also describes a bias that is due to weak exogeneity, but that is increasing in
√

T/N . However,

practically this bias is probably less relevant, since for most applications it does not seem reasonable

to assume that eit is uncorrelated with Xit (weak exogeneity) but correlated with Xjt for i 6= j (which

is the source of this second type of bias due to weak exogeneity). Nevertheless, in some applications

this my be the case, e.g. when the dependent variable Yit for unit i appears as a regressors in the

equation for Yjt of unit j 6= i.13

For the discussion of the C(3) terms, we assume for simplicity that the regressors Xk are strictly

exogenous and non-stochastic. We then have14

E

[

C(3)
(

λ0, f0, Xk, e
)

]

= −
√

T

N
Tr

[

λ0′
E

(

1

T
e e′
)

Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1

]

−
√

N

T
Tr

[

f0′
E

(

1

N
e′ e

)

Mf0 X ′
k λ

0 (λ0′λ0)−1 (f0′f0)−1

]

+ o(1) .

(3.15)

These are the two bias terms that were already found by Bai (2009). For error terms eit that are

cross-sectionally independent and homoscedastic we have E
(

T−1 e e′
)

= IN , and the first bias term

in equation (3.15) then is zero since λ0′

Mλ0 = 0. However, under cross-sectional correlation or

heteroscedasticity of eit this bias term is non-zero. Analogously, for errors eit that are time-serial

independent and homoscedastic we have E
(

N−1 e′ e
)

= IT , i.e. the second bias term in equation

(3.15) is zero. This term contributes asymptotic bias to the QMLE only under time-serial correlation

or heteroscedasticity.

Thus, if eit is iid across i and t we expect no asymptotic bias from the C(3) terms (this is true

even if regressors are not strictly exogenous), but there may still be asymptotic bias from the C(2)

term due to weak exogeneity.

13For this to be consistent with weak exogeneity we need a partial ordering on the cross-sectional labels so that Yit

only appears in the equation for Yjt if i > j.
14Here we assume that Tr

“

ePf0 e′ Mλ0 Xk f0 (f0′f0)−1 (λ0′λ0)−1 λ0′
”

= op(1),

Tr
“

e′Pλ0 e Mf0 X′

k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′
”

= op(1), and Tr
“

e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′
”

=

op(1). In the application section below we give an example of low-level assumptions on e and Xk under which

this is true. In general, the above equations are satisfied as soon as one can show that ‖Pλ0ePλ0‖ = Op(1), and

‖Pλ0eX′

k‖ = Op(
√

NT ).
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4 Applications of the Likelihood Expansion

4.1 Asymptotic Distribution and Bias Correction of the QMLE

In this subsection we apply corollary 3.4 to work our the asymptotic distribution of the QMLE β̂, and

to correct for the asymptotic bias. For this purpose the assumptions 1 to 4 made on the model so

far are too weak, i.e. more specific assumptions on λ0
i , f

0
t , Xk and e have to be made, and also the

asymptotics N,T → ∞ has to be specified further. These additional specifications can be made very

differently, depending on the particular empirical application one has in mind. The assumptions we

make in the following are clearly restrictive, but they still capture a large class of relevant models.

Assumption 5.

(i) In addition to assumption 1 on λ0 and f0 we assume that ‖λ0
i ‖ and ‖f0

t ‖ are uniformly bounded

across i, t and N,T .

(ii) The errors eit are independent across i and t, they satisfy Eeit = 0, and the eighth moment Ee8it
is bounded uniformly across i, t and N,T .

(iii) In addition to assumption 4, we assume that the regressors Xk, k = 1, . . . ,K, can be decomposed

as Xk = Xstr
k +Xweak

k . The component Xstr
k is strictly exogenous, i.e. Xstr

k,it is independent of

ejτ for all i, j, t, τ . The component Xweak
k is weakly exogenous, and more specifically we assume

Xweak
k,it =

t−1
∑

τ=1

ck,iτ ei,t−τ , (4.1)

for some coefficients ck,iτ that satisfy

|ck,iτ | < ατ , (4.2)

where α ∈ (0, 1) is a constant that is independent of τ = 1 . . . , T −1, k = 1 . . . K and i = 1 . . . N .

We also assume that E(Xstr
k,it)

8 is bounded uniformly over i, t and N,T .

(iv) We consider a limit N,T → ∞ with N/T → κ2, where 0 < κ <∞.

Assumption 5(i) is needed in order to calculate probability limits of expressions that involve λ0
i

and f0
t . One could weaken this assumption and only ask for existence and boundedness of some

higher moments of λ0
i and f0

t , but the assumptions as it is now is very convenient from a theoretical

perspective, e.g. it guarantees that Pf0,tτ is of order 1/T uniformly across t, τ and T .

Assumption 5(ii) requires cross-sectional and time-serial independence of eit, but heteroscedasticity

in both directions is still allowed, i.e. we still expect an asymptotic bias of the QMLE due to the C(3)

term. In the appendix we show that assumption 5(ii) guarantees that ‖e‖ = Op(max(N,T )), i.e. for

the asymptotics N,T → ∞ that is specified in assumption 5(iv) we find assumption 3∗ to be satisfied

with Ge = 3. Assumption 2 is also satisfied as a consequence of assumption 5, i.e. assumption 5

guarantees that our quadratic expansion of the profile quasi likelihood function is applicable.

Assumption 5(iii) requires that the regressors Xk are additively separable into a strictly and a

weakly exogenous component and assumes that the weakly exogenous component can be written as

an MA(∞) process with innovation eit.
15 An example where this is satisfied is if the interactive fixed

effect model is just one equation of a vector auto-regression for each cross-sectional unit, e.g. for the

VAR(1) case we would have

(

Yit

Zit

)

= B

(

Yi,t−1

Zi,t−1

)

+

(

λ0′
i f

0
t

dit

)

+

(

1 0

Γ I

)(

eit

uit

)

, (4.3)

15Actually, Xweak
k is only a truncated MA(∞) process, because it only depends on eit for i ≥ 1, but not on eit

for i ≤ 0. However, one can define the decomposition Xk = X̃weak
k + X̃str

k where X̃weak
k =

P

∞

τ=1 ck,iτ ei,t−τ is a

non-truncated MA(∞) process with innovation eit, and X̃str
k = Xstr

k − P

∞

τ=t ck,iτ ei,t−τ is still strictly exogenous.

14



where Zit is a r×1 vector of additional variables, B is (r+1)× (r+1) matrix of parameters, the r×1

vectors dit and uit are independent of eit, and Γ is a r× r covariance matrix. Here we already applied

a Cholesky decomposition to the general form of the innovation of a VAR model in order to single our

the shocks eit that are genuine to Yit.
16 The first row in equation (4.3) is our interactive factor model

with regressors Yi,t−1 and Zi,t−1, and due to the structure of the VAR process these regressors have

a decomposition into strictly and weakly exogenous regressors as demanded in assumption 5(iii). The

generalization of this example to VAR processes of higher order is straitforward.

Assumption 5 is not yet sufficient do guarantee existence of a limiting distribution of the QMLE

β̂. What is missing is the following condition that guarantees that the limiting variance and the

asymptotic bias converge to constant values.

Assumption 6. Let Xk = Mλ0 Xstr
k Mf0 + Xweak

k and for each i, t define the K-vector Xit =

(X1,it, . . . ,XK,it)
′. The K × K matrices W and Ω, and the K-vectors B1, B2 and B3, are defined

below, and we assume that they exist:

W = plim
N,T→∞

1

NT

N
∑

i=1

T
∑

t=1

Xit X
′
it ,

Ω = plim
N,T→∞

1

NT

N
∑

i=1

T
∑

t=1

E
[

e2it Xit X
′
it

]

,

B1,k = plim
N,T→∞

1

N
Tr
[

Pf0E
(

e′Xweak
k

)]

,

B2,k = plim
N,T→∞

1

T
Tr
[

E (ee′) Mλ0 Xstr
k f0 (f0′f0)−1 (λ0′λ0)−1 λ0′] ,

B3,k = plim
N,T→∞

1

N
Tr
[

E (e′e) Mf0 Xstr ′
k λ0 (λ0′λ0)−1 (f0′f0)−1 f0′] . (4.4)

We now have all assumptions that are needed to derive the asymptotic distribution of β̂.

Theorem 4.1. Let assumption 5 and 6 be satisfied, and let the true parameter β0 be an interior point

of the compact parameter set B. Then we have

√
NT

(

β̂ − β0
)

→
d

N
(

W−1B, W−1 ΩW−1
)

, (4.5)

where B = −κB1 − κ−1B2 − κB3.

From corollary 3.4 we already know that the limiting distribution of β̂ is given by the limiting

distribution of W−1
NTCNT . To proof theorem 4.1 one first has to show that W = plimN,T→∞WNT .

We could have defined W this way, but the definition given in assumption 6 is equivalent, although

the equivalence is non-trivial since in Xk the weakly exogenous part is not projected with Mf0 and

Mλ0 . The intuition here is that since by assumption Xweak
k is uncorrelated with λ0 and f0 it does not

matter whether the corresponding subspaces (of fixed dimension) are projected out of Xweak
k (whose

dimension grows to infinity). For the strictly exogenous part of the regressors this is different, because

Xstr
k can be correlated with λ0 and f0, and may have a significant part that is proportional to λ0 and

f0 and that is projected out by Mf0 and Mλ0 . For later applications the definition of W given in

assumption 6 may be easier to evaluate (e.g. in a lagged dependent variable model we have Xstr
k = 0.)

Note that assumption 4 guarantees that W is positive definite.

The second step in proving the theorem is to show that the approximated score at the true pa-

rameter satisfies CNT →d N (B,Ω). The asymptotic variance Ω and the asymptotic bias B1 originate

exclusively from the C(2) term. The strictly exogenous part of the regressors only contributes to the

16To guarantee independence (not merely uncorrelatetness) of eit and uit one has to assume normally distributed

errors in this example.
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asymptotic variance, but the weakly exogenous part contributes to both, namely to the asymptotic

variance via the term Tr(e′Xweak
k ) and to the bias B1 via the term Tr(Pf0 e′Xweak

k ). The bias B1 is

due to correlation of the errors eit and the regressors Xk,iτ in the time direction (for τ > t). In section

3.3 we also discussed a bias to to correlation of errors and regressors in the cross-sectional dimension,

but here we assume cross-sectional independence, i.e. this second type of bias is not present.

The three C(3) terms contribute no variance, i.e. they converge to constants in probability. One

C(3) is vanishing, an the other two contribute the asymptotic biases B2 and B3 that are due to cross-

sectional and time-serial heteroscedasticity. Note that the weakly exogenous part regressors does not

contribute to B2 and B3.

In order to express our estimators for asymptotic bias and asymptotic variance we first have to

introduce some notation.

Definition 4.2. Let ηi and ηt be the N and T -dimensional unit column vectors that have unity at

position i and t, respectively, and zeros everywhere else. Let Γ(.) be a well-behaved Kernel function17

with Γ(0) = 1 ?, and let M be a bandwidth parameter that depends on N and T . For an N×N matrix

A and a T × T matrix B we define

(i) the diagonal truncation AtruncD =
∑N

i=1 ηi η
′
iAηi η

′
i, B

truncD =
∑T

t=1 ηt η
′
tB ηt η

′
t.

(ii) the right-sided and left-sided Kernel truncation BtruncR =
∑T−1

t=1

∑T
τ=t+1 Γ

(

t−τ
M

)

ηt η
′
tB ητ η

′
τ ,

BtruncL =
∑T

t=2

∑t−1
τ=1 Γ

(

t−τ
M

)

ηt η
′
tB ητ η

′
τ .

We now define our estimators for W , Ω, B1, B2 and B3.

Definition 4.3. Let X̂k(β) = Mλ̂(β)Xk Mf̂ (β), and for each i, t define the K-vector X̂it(β) =

(X̂1,it(β), . . . , X̂K,it(β))′. We define the K ×K matrices Ŵ (β) and Ω̂(β), and the K-vectors B̂1(β),

B̂2(β) and B̂3(β) as follows

Ŵ (β) =
1

NT

N
∑

i=1

T
∑

t=1

X̂it X̂
′
it ,

Ω̂(β) =
1

NT

N
∑

i=1

T
∑

t=1

ê2it X̂it X̂
′
it ,

B̂1,k(β) =
1

N
Tr
[

Pf̂ (ê′Xk)
truncR

]

,

B̂2,k(β) =
1

T
Tr
[

(ê ê′)
truncD

Mλ̂Xk f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′]
,

B̂3,k(β) =
1

N
Tr
[

(ê′ ê)
truncD

Mf̂ X
′
k λ̂ (λ̂

′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]

, (4.6)

where we suppressed the β-dependence of X, ê, f̂ , and λ̂ on the right hand side.18

The estimators above are dependent on β, since one needs an estimator for β in order to obtain

the residuals ê and the estimators for the factors and factor loadings.

Theorem 4.4. Under assumption 5 and 6, for M → ∞ and M5/T → 0, and for any
√
NT -consistent

estimator β̂ = β0 +Op((NT )−1/2) we have Ŵ (β̂) = W +op(1), Ω̂(β̂) = Ω+op(1), B̂1(β̂) = B1 +op(1),

B̂2(β̂) = B2 + op(1), and B̂3(β̂) = B3 + op(1).

Note that the assumption M5/T → 0 can be relaxed if additional higher moment restrictions on eit

and Xk,it are imposed. We can now present our bias corrected estimator and its limiting distribution.

17For the proofs of the theorems we use the truncation Kernel which is defined by Γ(x) = 1 for ‖x‖ ≤ 1, and Γ(x) = 0

otherwise, but this is only to simplify notation. Other Kernel functions could be used.
18Here f̂(β) and λ̂(β) are the principal component estimators defined above, and ê(β) are the corresponding residuals

defined in equation (3.8).
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Corollary 4.5. Under assumption 5 and 6, for β0 being an interior point of the compact parameter

set B, and for M → ∞ and M5/T → 0 we find that the bias corrected QMLE

β̂
∗

= β̂ + Ŵ−1(β̂)
(

T−1B̂1(β̂) +N−1B̂2(β̂) + T−1B̂3(β̂)
)

satisfies
√
NT

(

β̂
∗ − β0

)

→d N
(

0, W−1 ΩW−1
)

.

According to theorem 4.4 a consistent estimator of the asymptotic variance of β̂
∗

is given by

Ŵ−1(β̂) Ω̂(β̂) Ŵ−1(β̂).

4.2 Asymptotic Distribution when the True Parameter is on the Boundary

In corollary 4.5 we gave a bias corrected estimator β̂
∗

and its limiting distribution under the assumption

that β0 is an interior point of the parameter set B, i.e. when locally there are no parameter restriction

on β. In the present subsection we discuss situations where β0 is on the boundary of the B, i.e.

when local parameter restrictions are present. In this case, one can use the result of Andrews (1999)

to obtain the limiting distribution of the QMLE, once the quadratic expansion of the profile quasi

likelihood function is obtained and the limiting distribution of the approximated score and Hessian are

derived, and it is not difficult to apply Andrews’ method also to the derive the limiting distribution

of an appropriately defined “bias corrected” QMLE. The following assumption will be used in this

subsection and in the next one.

Assumption 7.

(i) We have a scalar objective function LNT (β) that is used to estimate the parameter β ∈ B ⊂ R
K ,

whose true value β0 ∈ B. We assume that the objective function has an asymptotic quadratic

expansion of the form LNT (β) = Lq,NT (β) + INT + 1
NT RNT (β), where INT is independent

of β, the remainder RNT (β) satisfies the condition in equation (3.4), and Lq,NT (β) = (β −
β0)′WNT (β − β0) − 2 (NT )−1/2 (β − β0)′ CNT is a second order polynomial.

(ii) We consider a limit N,T → ∞, which may satisfy additional restrictions (e.g. N/T → const.).

For this asymptotics, we assume that there exist positive definite K ×K matrices Ω and W and

a K-vector B such that the approximated Hessian WNT and the approximated score CNT satisfy

WNT →pW , and CNT →d C, where C ∼ N (B,Ω).

(iii) We assume that the estimator β̂ that minimizes LNT (β) subject to β ∈ B is consistent.

(iv) We have estimators Ŵ (β), Ω̂(β) and B̂(β) that are consistent for W , Ω and B when evaluated

for any
√
NT -consistent estimator of β0.

Assumption 7 can be satisfied in the interactive fixed effect model for different estimators of W ,

Ω and B, and under different assumptions on λ0, f0, Xk and e. In the last subsection we presented

a concrete example for which the assumption holds, namely for the estimators in definition 4.3, and

under the assumptions of corollary 4.5, but for assumption 7 to be satisfied it is not necessary that

β0 is an interior point of B.

In this section we want to discuss the limiting distribution of the QMLE for cases where β0 is on

the boundary of the parameter set B. More specifically, we consider the case where B − β0 is locally

approximated by a convex cone Λ ⊂ R
K . We refer to Andrews (1999) for the definition of “locally

approximated”. A special case is when B − β0 is locally equal to a cone Λ ⊂ R
K , i.e. if there exists

ǫ > 0 such that B(0, ǫ) ∩ (B − β0) = B(0, ǫ) ∩ Λ, where B(0, ǫ) is the ball with radius ǫ around the

origin. Remember that Λ ⊂ R
K is a cone iff az ∈ Λ for every a > 0 and z ∈ Λ, i.e. it is invariant

under rescalings with positive scaling factor that are centered at the origin. Whenever β0 ∈ B and B

is defined by equality and inequality constraints on linear combinations of β we find that B − β0 is
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locally equal to a convex cone. Under non-linear equality and inequality constraints one usually finds

B − β0 is locally approximated by a convex cone Λ ⊂ R
K .

When β0 is on the boundary of the parameter set it is not guaranteed that the bias corrected esti-

mator β̂
∗

defined in corollary 4.5 satisfies β̂
∗ ∈ B asymptotically.19 We therefore define an alternative

“bias corrected” estimator by20

β̂
∗∗

= argmin
β∈B

L∗∗
NT (β) , L∗∗

NT (β) = LNT

[

β + (NT )−1/2 Ŵ−1(β̂) B̂(β̂)
]

, (4.7)

where β̂ is the QMLE that minimizes LNT (β) subject to β ∈ B, i.e. β̂
∗∗

is defined by a two-step

minimization procedure. The estimator β̂
∗∗

is bias corrected in the sense that its limiting distribution

is the one that the QMLE β̂ would have if the asymptotic bias of the score would be vanishing, i.e. if

B = 0. However, β̂
∗∗

usually has an asymptotic bias since its limiting distribution is a projection (or

truncation) of a multivariate normal distribution, as described in the theorem below.

In order to describe the limiting distributions of β̂ and β̂
∗∗

it is convenient to introduce the

function lq(φ) = φ′Wφ− 2φ′C for φ ∈ R
K . For all φ ∈ R

K we find that under assumption 7 we have

NT
[

LNT (βNT ) − LNT (β0)
]

→d lq(φ) for βNT = β0 + (NT )−1/2φ. Thus, lq(φ) is the limit of the

appropriately rescaled profile quasi likelihood function when holding φ =
√
NT (β − β0) fixed.

Theorem 4.6. Let assumption 7 be satisfied and let B−β0 be locally approximated by a closed convex

cone Λ ⊂ R
K . Define the random variables Φ = argminφ∈Λ lq(φ), and Φ∗∗ = argminφ∈Λ lq(φ+W−1B).

Then
√
NT

(

β̂ − β0
)

→d Φ,
√
NT

(

β̂
∗∗ − β0

)

→d Φ∗∗, NT
[

LNT

(

β̂
)

− LNT

(

β0
)

]

→d lq(Φ),

NT
[

L∗∗
NT

(

β̂
∗∗)− L∗∗

NT

(

β0
)

]

→d lq(Φ
∗∗ +W−1B) − lq(W

−1B).

Theorem 4.6 is a special case of theorem 3 in Andrews (1999). Although Andrews does not

explicitly consider bias correction, it is easy to check that both objective functions LNT (β) and

L∗∗
NT (β) satisfy the assumptions necessary to apply Andrews’ theorem for the limiting distributions.

By writing the limiting distribution of the approximated score as C = B+Ω1/2ZK , where ZK is a

K-dimensional standard normal distribution, we can give slightly more explicit expressions for Φ and

Φ∗∗, namely

Φ = argmin
φ∈Λ

[

φ−W−1(B + Ω1/2ZK)
]′
W
[

φ−W−1(B + Ω1/2ZK)
]

,

Φ∗∗ = argmin
φ∈Λ

[

φ−W−1Ω1/2ZK

]′
W
[

φ−W−1Ω1/2ZK

]

. (4.8)

Thus, the asymptotic distribution of
√
NT (β̂ − β0) is given by the orthogonal projection (relative to

the metric W ) of W−1(B + Ω1/2ZK) ∼ N (W−1B, W−1ΩW−1) onto the cone Λ. For interior points

of Λ the distribution of
√
NT (β̂ − β0) is the same as for N (W−1B, W−1ΩW−1), but for a point on

the boundary of Λ the distribution is given by an integral over those points that are projected on this

point. The distribution for
√
NT (β̂

∗∗ − β0) is given by almost the same formula, but without bias B.

In the one-dimensional case (K = 1) the only non-trivial closed cones are Λ = [0,∞) and Λ = (−∞, 0],

i.e. the distributions of
√
NT (β̂ − β0) and

√
NT (β̂

∗∗ − β0) are truncated normal distributions.

4.3 Hypothesis Testing

For our interactive fixed effect model, we now want to discuss the three classical test statistics for

testing a general linear restriction on β, i.e. the null-hypothesis is H0 : Hβ0 = h, and the alternative

19Even when β0 is an interior point of B one may not have β̂
∗ ∈ B at finite sample, i.e. the estimator β̂

∗∗

can be

useful also in this case.
20Alternatively one could define the new “bias corrected” estimator by using the bias corrected QMLE β̂

∗

that is

obtained without imposing any local restrictions on β, and whose limiting distribution is given in corollary 4.5 above

(the parameter set B used in the corollary is different from the one we consider now). By defining the new estimator as a

minimizer of (β̂
∗−β)′Ŵ (β̂

∗

)(β̂
∗−β) subject to β ∈ B, one obtains an estimator that has the same limiting distribution

as β̂
∗∗.
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is Ha : Hβ0 6= h, where H is a r ×K matrix of rank r ≤ K, and h is a r × 1 vector. For easy of

exposition we restrict the presentation to a linear hypothesis, but using the tools provided above one

can generalize the discussion to the testing of non-linear hypotheses. Using the expansion LNT (β)

one can also discuss testing when the true parameter is on the boundary, see Andrews (2001).

Throughout this subsection we assume that β0 is an interior point of B, i.e. there are no local

restrictions on β as long as the null-hypothesis is not imposed. The limiting distribution of the unre-

stricted estimator β̂ = argminβ∈B
LNT (β) was given in theorem 4.1 for a specific set of assumptions

on λ0, f0, Xk and e. But the result
√
NT

(

β̂ − β0
)

→d N
(

W−1B, W−1 ΩW−1
)

holds whenever

assumption 7 is satisfied, because the unrestricted case is the special case of theorem 4.6 for which

Λ = R
K , i.e. Φ = W−1C.

We define the restricted estimator by β̃ = argminβ∈B̃
LNT (β), where B̃ = {β ∈ B|Hβ = h} is the

restricted parameter set. Note that B̃ − β0 is locally equal to the r-dimensional subspace Λ = {φ ∈
R

K |Hφ = 0}, which is a special case of a convex cone, i.e. one can apply theorem 4.6 to obtain the lim-

iting distribution of β̃. One finds
√
NT (β̃−β0) →d Φ̃, with Φ̃ = argminΛ lq(φ) = W

−1C, and W
−1 =

W−1 −W−1H ′(HW−1H ′)−1HW−1.21 Therefore
√
NT (β̃ − β0) →d N

(

W
−1B, W

−1 ΩW
−1
)

.22

Wald Test

Using the results above we find that under the null-hypothesis
√
NT

(

Hβ̂ − h
)

is asymptotically

distributed as N
(

HW−1B, HW−1 ΩW−1H ′). Thus, due to the presence of the bias B, the standard

Wald test statistics WDNT = NT
(

Hβ̂ − h
)′ (

HŴ−1 Ω̂ Ŵ−1H ′
)−1 (

Hβ̂ − h
)

is not asymptotically

χ2
r distributed. Using our estimator for the bias it is natural to define the bias corrected Wald test

statistics as

WD∗
NT =

[√
NT

(

Hβ̂ − h
)

−HŴ−1B̂
]′ (

HŴ−1 Ω̂ Ŵ−1H ′
)−1 [√

NT
(

Hβ̂ − h
)

−HŴ−1B̂
]

,

(4.9)

and under the null hypothesis we find WD∗
NT →d χ

2
r if assumption 7 is satisfied. Here we used

B̂ = B̂(β̂), Ŵ = Ŵ (β̂), and Ω̂ = Ω̂(β̂).

Likelihood Ratio Test

For the discussion of the LR test we have to assume that Ω = cW for some scalar constant c > 0,

and that we have a consistent estimator ĉ for c. This condition is satisfied in our interactive fixed

effect model if assumption 5 and 6 hold, and if Ee2it = σ2
e = c, i.e. if there is no heteroscedasticity. A

consistent estimator for c in this context is ĉ = σ̂2
e = (NT )−1

∑N
i=1

∑T
t=1 êit.

The likelihood ratio test statistics is defined by LRNT = ĉ−1NT
[

LNT

(

β̃
)

− LNT

(

β̂
)]

. Applying

theorem 4.6 we find that under assumption 7 we have

LRNT −→
d

c−1
[

l(Φ̃) − l(Φ)
]

= c−1
[

l(W−1C) − l(W−1C)
]

= c−1C ′W−1H ′(HW−1H ′)−1HW−1C . (4.10)

This is the same limiting distribution that one finds for the Wald test under Ω = cW (in fact, one

can show WDNT = LRNT + op(1)), i.e. we need to define a bias correction for LR test in order to

achieve a χ2 limiting distribution.

21By definition we have Φ̃ = MW,H′W−1C, where MW,H′ = IK −W−1H′(HW−1H′)−1H is the orthogonal projector

onto the subspace Λ with respect to the metric W . One can easily check that the projector MW,H′ as given here has all

the required properties, namely HMW,H′ = 0 (thus, (MW,H′φ) ∈ Λ for all φ ∈ R
K), (MW,H′ )2 = MW,H′ (idempotence),

Tr(MW,H′ ) = K − r (projector on K − r dimensional subspace), and M ′

W,H′W (IK − MW,H′ ) = 0 (orthogonality wrt

to W ). Note that MW,H′ = MH′ if W = IK .
22For the K × K covariance matrix given here we have rank(W−1 Ω W−1) = K − r, because HW−1 = 0. The

asymptotic distribution of
√

NT (β̃ − β0) is therefore K − r dimensional with support Λ.
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It is natural to base the bias corrected LR test on the objective function L∗∗
NT used above to define

the biased corrected estimator β∗∗. Thus, we define

LR∗
NT = ĉ−1

[

min
{β∈B|Hβ=h}

LNT

(

β + (NT )−1/2Ŵ−1B̂
)

− min
β∈B

LNT

(

β + (NT )−1/2Ŵ−1B̂
)

]

,

(4.11)

where B̂ = B̂(β̂) and Ŵ = Ŵ (β̂) do not depend on the parameter β in the minimization problem.23

Asymptotically we have minβ∈B LNT

(

β + (NT )−1/2Ŵ−1B̂
)

= LNT (β̂), because β ∈ B does not

impose local constraints, i.e. close to β0 it does not matter for the value of the minimum whether one

minimizes over β or over β+(NT )−1/2Ŵ−1B̂. The correction to the LR test therefore originates from

the first term in LR∗
NT . For the minimization over the restricted parameter set it matters whether the

argument of LNT is β or β + (NT )−1/2Ŵ−1B̂, because generically we have HW−1B 6= 0 (otherwise

no correction would be necessary for the LR statistics).

Using theorem 4.6 one finds

LR∗
NT −→

d
c−1

[

min
{φ∈RK |Hφ=0}

l
(

φ+W−1B
)

− l (Φ)

]

= c−1
[

l
(

W
−1(C −B) +W−1B

)

− l
(

W−1C
)]

= c−1(C −B)′W−1H ′(HW−1H ′)−1HW−1(C −B) , (4.12)

i.e. we obtain the same formula as for LRNT , but the limit of the score C is replaced by the bias

corrected term C − B. Under assumption 7 we therefore find LR∗
NT →d χ

2
r. One can show that

LR∗
NT = WD∗

NT + op(1).

Lagrange Multiplier Test

Using the bound on ∇RNT given in theorem 3.2 and the fact that the restricted estimator β̃ is
√
NT -

consistent, we immediately find
√
NT∇LNT (β̃) =

√
NT∇Lq,NT (β̃)+op(1). We have

√
NT∇Lq,NT (β̃) =

2
√
NTWNT (β̃−β0)−2CNT , and under assumption 7 we showed that

√
NT (β̃−β0)→d W

−1C. There-

fore we find
√
NT∇LNT (β̃) →d −2H ′(HW−1H ′)−1HW−1C, and

√
NTHW−1∇LNT (β̃) →d −2HW−1C.

The LM test statistics is given by LMNT = NT/4∇LNT (β̃)′W̃−1H̃ ′(HW̃−1Ω̃W̃−1H ′)−1HW−1∇LNT (β̃),

where B̃ = B̂(β̃), W̃ = Ŵ (β̃) and Ω̃ = Ω̂(β̃). One can be show that the LM test is asymptotically

equivalent to the Wald test: LMNT = WDNT + op(1), i.e. again bias correction is necessary. We

define the bias corrected LM test statistics as24

LM∗
NT =

1

4
(
√
NT ∇LNT (β̃) + B̃)′W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1(

√
NT ∇LNT (β̃) + B̃) ,

(4.13)

Under the null hypothesis, if assumption 7 holds, and if RNT (β) satisfies the bound in equation 3.7

we have LM∗
NT →d χ

2
r.

In order to apply LM∗
NT as defined above one needs the gradient of LNT (β) at β̃. Since no explicit

expression for the derivatives of LNT (β) exists, the gradient needs to be calculated numerically, which

may be inconvenient. We therefore propose to use an approximation of the gradient that is much

easier to compute. Define the K-vector ∇̃LNT (β) by (∇̃LNT (β))k = −2Tr(X ′
kẽ(β)) for k = 1, . . . ,K,

and define the modified bias corrected LM test as

LM∗∗
NT =

1

4
(
√
NT ∇̃LNT (β̃) + B̃)′W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1(

√
NT ∇̃LNT (β̃) + B̃) .

(4.14)

23Here one could also use B̂(β̃) and Ŵ (β̃) as estimates B and W , but these estimators are not consistent if the null

hypothesis is false. Since we want to test properties of the regression parameters and not properties of the estimators

B̂ and Ŵ , it is reasonable to use estimators that are robust towards violation of H0.
24Alternatively, one could define the bias corrected LM test as LM∗

NT = NT/4∇LNT (β̃ +

W̃−1B̃)′W̃−1H′(HW̃−1Ω̃W̃−1H′)−1HW̃−1∇LNT (β̃ + W̃−1B̃) and would obtain the same limiting distribution.
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Theorem 4.7. Let assumption ? be satisfied, and let β̃ be an estimator that satisfies
√
NT (β̃−β0) =

op(1). Then we have
√
NT∇LNT (β̃) =

√
NT ∇̂LNT (β̃) + op(1).

This theorem guarantees that LM∗∗
NT has the same limiting distribution as LM∗

NT , i.e. LM∗∗
NT →d χ

2
r.

5 Conclusions

For the interactive fixed effect model (2.1) we provide a methodology that uses the perturbation theory

of linear operators to expand the profile quasi likelihood function LNT (β) around the true regression

parameter β0. In particular, we work out the quadratic expansion that of LNT (β) and show how it can

be used to derive the first order asymptotic theory of the QMLE of β under the alternative asymptotic

N,T → ∞. It is found that the QMLE can be asymptotically biased (i) due to weak exogeneity of

the regressors and (ii) due to correlation and heteroscedasticity of the idiosyncratic errors eit. We

also provide expansions of the projectors Mf̂ and Mλ̂, and of the residuals ê in the the regression

parameters that are very useful when working with these estimators, e.g. when proving consistency

of the estimators of the asymptotic bias of β.

As applications of our general methodology, we work out the limiting distribution of the QMLE

β̂ under the assumption of independent error terms eit. Consistent estimators for the asymptotic

covariance matrix and for the asymptotic bias of the QMLE are provided, and thus a bias corrected

QMLE is given. We also discuss the asymptotic distribution of the QMLE when the true parameter

is on the boundary of the parameter set. Finally, we derive the asymptotic distribution of the Wald,

LR and LM test statistics, which are not chi-square due to the asymptotic bias of the score and of

the QMLE. We provide bias corrected test statistics and show that their asymptotic distribution is

chi-squared.

In future work, the most important extension of the present paper will be to study situations where

the true number of factors R is not known but has to be estimated. There is a sizable literature on the

estimation of the number of factors in approximated factor models, e.g. Bai and Ng (2002), Onatski

(2005), but none of these papers estimates the number of factors jointly with additional regression

coefficients.

A Examples of Error Distributions

Under each of the following distributional assumptions on the errors eit, i = 1, . . . , N , t = 1, . . . , T ,

we have ‖e‖ = Op(
√

max(N,T )). The proofs are given in the supplementary material.

(i) The eit are independent across i and t, they satisfy Eeit = 0, and Ee4it is bounded uniformly

over i, t and N,T .

(ii) The eit follow different MA(∞) process for each i, namely

eit =
∞
∑

τ=0

ψiτ ui,t−τ , for i = 1 . . . N, t = 1 . . . T , (A.1)

where the uit, i = 1 . . . N , t = −∞ . . . T are independent random variables with Euit = 0 and

Eu4
it uniformly bounded across i, t and N,T . The coefficients ψiτ satisfy

∞
∑

τ=0

τ max
i=1...N

ψ2
iτ < B ,

∞
∑

τ=0

max
i=1...N

|ψiτ | < B , (A.2)

for a finite constant B which is independent of N and T .

(iii) The error matrix e is generated as e = σ1/2uΣ1/2, where u is an N×T matrix with independently

distributed entries uit and Euit = 0, Eu2
it = 1, and Eu4

it is bounded uniformly across i, t and
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N,T . Here σ is the N×N cross-sectional covariance matrix, and Σ is T×T time-serial covariance

matrix, and they satisfy

max
j=1...N

N
∑

i=1

|σij | < B , max
τ=1...T

T
∑

t=1

|Σtτ | < B , (A.3)

for some finite constant B which is independent of N and T . In this example we have Eeitejτ =

σijΣtτ .

B Some Matrix Algebra

Theorem B.1 (Special Case of Weyl’s Inequalities). Let A and B be real symmetric matrices of

dimensions n. For all i = 1,
. . . , n we then have

Eigvali(A) + Eigvaln(B) ≤ Eigvali(A+B) ≤ Eigvali(A) + Eigval1(B)

For the proof see e.g. Bhatia (1997). Two immediate implications of theorem B.1 are the following.

First, if B is positive semi-definite, then Eigvali(A) ≤ Eigvali(A+B). Second, since the operator norm

of B is always larger or equal then the absolute value of any eigenvalue ofB we have Eigvali(A)−‖B‖ ≤
Eigvali(A+B) ≤ Eigvali(A) + ‖B‖.

Now let A be an arbitrary n × m matrix. In addition to the operator (or spectral) norm ‖A‖
and to the Frobenius (or Hilbert-Schmidt) norm ‖A‖F , it is also convenient to define the 1-norm, the

∞-norm, and the max-norm as

‖A‖1 = max
j=1...m

n
∑

i=1

|Aij | , ‖A‖∞ = max
i=1...n

m
∑

j=1

|Aij | , ‖A‖max = max
i=1...n

max
j=1...m

|Aij | . (B.1)

Theorem B.2 (Some useful Inequalities). Let A be a n ×m matrix, B be a m × p matrix, and C

and D be n× n matrices Then we have

(i) ‖A‖ ≤ ‖A‖F ≤ ‖A‖ rank (A)
1/2

,

(ii) ‖AB‖ ≤ ‖A‖ ‖B‖ ,

(iii) ‖AB‖F ≤ ‖A‖F ‖B‖ ≤ ‖A‖F ‖B‖F ,

(iv) Tr(AB) ≤ ‖A‖F ‖B‖F , if n = p,

(v) |Tr (C)| ≤ ‖C‖ rank (C) ,

(vi) ‖C‖ ≤ Tr (C) , if C symmetric and C ≥ 0,

(vii) ‖A‖2 ≤ ‖A‖1 ‖A‖∞ ,

(viii) ‖A‖max ≤ ‖A‖ ≤ √
nm ‖A‖max ,

(ix) ‖A′CA‖ ≤ ‖A′DA‖ , if C is symmetric and C ≤ D.

Theorem B.3. Let N , T , R, R1 and R2 be positive integers such that R ≤ N , R ≤ T , and R =

R1 +R2. Let Z be an N × T matrix, λ be a N ×R, f be a T ×R matrix, λ̃ be a N ×R1 matrix, and
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f̃ be a T ×R2 matrix. Define

S1(Z) = inf
f,λ

Tr
[

(Z − λf ′)
(

Z ′ − fλ′
)]

,

S2(Z) = inf
f

Tr(ZMf Z
′) ,

S3(Z) = inf
λ

Tr(Z ′Mλ Z) ,

S4(Z) = inf
λ̄,f̄

Tr(Mλ̃ ZMf̃ Z
′) ,

S5(Z) =
N−R−1
∑

i=1

Eigvali(Z
′Z) ,

S6(Z) =

N−R−1
∑

i=1

Eigvali(ZZ
′) , (B.2)

Then we have

S1(Z) = S2(Z) = S3(Z) = S4(Z) = S5(Z) = S6(Z) , (B.3)

Note that we do not have to restrict ourselves to matrices λ, f , λ̃ and f̃ of full rank in the above

minimization problems. If for example λ is not of full rank we can still define (λ′λ)−1 as the generalized

inverse (e.g. via singular value decomposition). The projector Mλ is therefore still defined in this

case, and still satisfied Mλλ = 0 and rank(Mλ) + rank(λ) = N . If rank(Z) ≥ R then the optimal λ,

f , λ̃ and f̃ have full rank.

Definition B.4. Let A be an n × r1 matrix and B be an n × r2 matrix with rank(A) = r1 and

rank(B) = r2. The smallest principal angle θA,B ∈ [0, π/2] between the linear subspaces span(A) =

{Aa| a ∈ R
r1} and span(B) = {Bb| b ∈ B

r2} of R
n is defined by

cos(θA,B) = max
0 6=a∈Rr1

max
0 6=b∈Rr2

a′A′Bb

‖Aa‖‖Bb‖ . (B.4)

Theorem B.5. Let A be an n × r1 matrix and B be an n × r2 matrix with rank(A) = r1 and

rank(B) = r2. Then we have the following alternative characterizations of the smallest principal angle

between span(A) and span(B)

sin(θA,B) = min
0 6=a∈Rr1

‖MB Aa‖
‖Aa‖

= min
0 6=b∈Rr2

‖MAB b‖
‖Ab‖ . (B.5)

Proof. Since ‖MB Aa‖2 + ‖PB Aa‖2 = ‖Aa‖2 and sin(θA,B)2 + cos(θA,B)2 = 1, we find that proving

the theorem is equivalent to proving

cos(θA,B) = min
0 6=a∈Rr1

‖PB Aa‖
‖Aa‖ = min

0 6=b∈Rr2

‖PAB b‖
‖Ab‖ . (B.6)

This result is theorem 8 in Galantai, Hegedus (2006), and the proof can, for example, be found there.

C Proof of Consistency (Theorem 2.1)

For series (of random variables) a = aNT and b = bNT we use the notation a = Op,+(b) if a = Op(b) and

a > 0. Analogously we define op,+(b). In addition we use the notation a = Op,++(b) if c1 > a/b > c2
wpa1, for some positive constant c1 and c2.

Following Bai (2009), we first show
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Lemma C.1. Under the assumptions of theorem 2.1 we have

max
f

∣

∣

∣

∣

1

NT
Tr(Xk Mf e

′)

∣

∣

∣

∣

= op(1) ,

max
f

∣

∣

∣

∣

1

NT
Tr(λ0 f0′Mf e

′)

∣

∣

∣

∣

= op(1) ,

max
f

∣

∣

∣

∣

1

NT
Tr(ePf e

′)

∣

∣

∣

∣

= op(1) , (C.1)

where the parameters f are T ×R matrices with rank(f) = R.

Proof. By assumption 2 we know that the first two equations in lemma C.1 are satisfied when replacing

Mf by the identity matrix. So we are left to show maxf

∣

∣

1
NT Tr(ΞPf e

′)
∣

∣ = op(1), where Ξ is either

Xk, λ0f0′, or e. In all three cases we have ‖Ξ‖/
√
NT = Op(1), by assumption 1, 3, and 4, respectively.

Therefore

max
f

∣

∣

∣

∣

1

NT
Tr(ΞPf e

′)

∣

∣

∣

∣

≤ R
‖e‖√
NT

‖Ξ‖√
NT

= op(1) . (C.2)

Lemma C.2. Under assumption 1 and 4 there exists a constant B0 > 0 such that

w′Mλ0 w − B0 w
′ v ≥ 0 , wpa1,

v′Mf0 v − B0 v
′ v ≥ 0 , wpa1. (C.3)

Proof. Note that w may not have full rank, e.g. because w2 = w3. We can decompose w = w̃ w̄,

where w̃ is a N × rank(w) matrix and w̄ is a rank(w) ×K1 matrix. Note that w̃ has full rank, and

Mw = Mw̃.

By assumption 1 (i) we know that λ0′λ0/N has a probability limit, i.e there exists some B1 > 0

such that λ0′λ0/N < B1IR wpa1. Using this and assumption 4 we find that for any R×1 vector a 6= 0

we have

‖Mv λ
0 a‖2

‖λ0 a‖2
=

a′ λ0′Mv λ
0 a

a′ λ0′ λ0 a
>

B

B1
wpa1. (C.4)

Applying theorem B.5 we find

min
0 6=b∈Rrank(w)

b′ w̃′Mλ0 w̃ b

b′ w̃′ w̃ b
= min

0 6=a∈RR

a′ λ0′Mw λ
0 a

a′ λ0′ λ0 a
>

B

B1
wpa1. (C.5)

Therefore we have wpa1

b′
(

w̃′Mλ0 w̃ − B

B1
w̃′w̃

)

b > 0 , (C.6)

for every rank(w) × 1 vector b, and thus

w̃′Mλ0 w̃ − B

B1
w̃′ w̃ > 0 , wpa1. (C.7)

Therefore also (multiplying from the left with w̄′ and from the right with w̄)

w′Mλ0 w − B

B1
w′ w ≥ 0 , wpa1. (C.8)

Analogously we can show

v′Mf0 v −B0 v
′ v > 0 , wpa1, (C.9)

for some positive constant B0.
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As a consequence of the last results we obtain some properties of the low-rank regressors summa-

rized in the following lemma.

Lemma C.3. Let the assumptions 1 and 4 be satisfied and let Xlow,α =
∑K1

l=1 αlXl be linear combi-

nations of the low-rank regressors. Then there exists some constant B > 0 such that

min
{α∈RK1 ,‖α‖=1}

∥

∥

∥
Xlow,αMf0 X ′

low,α

∥

∥

∥

NT
> B , wpa1,

min
{α∈RK1 ,‖α‖=1}

∥

∥

∥
Mλ0 Xlow,αMf0 X ′

low,αMλ0

∥

∥

∥

NT
> B , wpa1. (C.10)

Proof. Note that
∥

∥

∥
Mλ0 Xlow,αMf0 X ′

low,αMλ0

∥

∥

∥
≤
∥

∥

∥
Xlow,αMf0 X ′

low,α

∥

∥

∥
, because ‖Mλ0‖ = 1, i.e. if

we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xlow,α = w diag(α′) v′. Using lemma C.2 and part (v), (vi) and (xi) of theorem B.2

we find

∥

∥Mλ0 Xlow,αMf0 X ′
low,αMλ0

∥

∥

=
∥

∥Mλ0 w diag(α′) v′Mf0 v diag(α′)w′Mλ0

∥

∥

≥ B0 ‖Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0‖

≥ B0

K1
Tr [Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0 ]

=
B0

K1
Tr [v diag(α′)w′Mλ0w diag(α′) v′]

≥ B0

K1
‖v diag(α′)w′Mλ0w diag(α′) v′‖

≥ B2
0

K1
‖v diag(α′)w′w diag(α′) v′‖

≥ B2
0

K2
1

Tr [v diag(α′)w′w diag(α′) v′]

=
B2

0

K2
1

Tr
[

Xlow,αX
′
low,α

]

(C.11)

Thus we have
∥

∥

∥
Mλ0 Xlow,αMf0 X ′

low,αMλ0

∥

∥

∥

NT
≥ B2

0

K2
1

α′W low α , (C.12)

where the K1 × K1 matrix W low is defined by W low
l1l2

= (NT )−1Tr
(

Xl1X
′
l2

)

. Since by assumption

W low converges to a positive definite matrix, the above inequality proves the lemma.

For the second version of the profile quasi likelihood function in equation (2.4) we write

LNT (β) = inf
f
SNT (β, f) , (C.13)

where

SNT (β, f) =
1

NT
Tr





(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk + e

)

Mf

(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk + e

)′

 ,

(C.14)
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We have LNT (β0) = SNT (β0, f0) = 1
NT Tr

(

eMf0 e′
)

. Using (C.1) we find that

SNT (β, f) = SNT (β0, f0) + S̃NT (β, f)

+
2

NT
Tr

[(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)

Mf e
′
]

+
1

NT
Tr
(

e (Pf0 − Pf ) e′
)

= SNT (β0, f0) + S̃NT (β, f) + op(‖β − β0‖) + op(1) , (C.15)

where we defined

S̃NT (β, f) =
1

NT
Tr





(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)

Mf

(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)′

 . (C.16)

According to assumption 4 we can split the regressors into low- and high-rank regressors which

gives
∑K

k=1(β
0
k −βk)Xk =

∑K1

l=1(β
0
l −βl)Xl +

∑K
m=K1+1(β

0
m −βm)Xm. Since the low-rank regressors

have finite rank we write Xl = wl v
′
l, where wl is a N × rank(Xl) matrix and vl is a T × rank(Xl)

matrix. We also define the N×K1 matrix W = (w1, w2, . . . , wK1
) which combines all first components

of the low-rank regressors. We then have MΞ = MW .

We split S̃NT (β, f) = S̃
(1)
NT (β, f) + S̃

(2)
NT (β, f), where

S̃
(1)
NT (β, f) =

1

NT
Tr





(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)

Mf

(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)′

M(λ0,W )





=
1

NT
Tr





(

K
∑

m=K1+1

(β0
m − βm)Xm

)

Mf

(

K
∑

m=K1+1

(β0
m − βm)Xm

)′

M(λ0,W )



 .

S̃
(2)
NT (β, f) =

1

NT
Tr





(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)

Mf

(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)′

P(λ0,W )



 ,

(C.17)

and (λ0,W ) is the N × (R+K1) matrix that is composed out of λ0 and W .

Applying theorem B.3 and using the definitions in assumption 4(i) we find

S̃
(1)
NT (β, f) ≥ 1

NT

N
∑

i=2R+K1+1

Eigvali





(

K
∑

m=K1+1

(β0
m − βm)Xm

)(

K
∑

m=K1+1

(β0
m − βm)Xm

)′



≥ Op,++

(

∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

2
)

, (C.18)

where βhigh refers to the K2 × 1 parameter vector that corresponds to the high-rank regressors, and

similarly we use βlow for the K1 × 1 parameter vector of low-rank regressors.
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Applying theorems B.3 and B.1 we find

S̃
(2)
NT (β, f) ≥ 1

NT
EigvalR+1





(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)′

P(λ0,W )

(

λ0 f0′ +
K
∑

k=1

(β0
k − βk)Xk

)





=
1

NT
EigvalR+1

[(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)′(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)

+

(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)′

P(λ0,W )

K
∑

m=K1

(β0
m − βm)Xm

+

K
∑

m=K1

(β0
m − βm)X ′

mP(λ0,W )

(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)

+

K
∑

m=K1

(β0
m − βm)X ′

mP(λ0,W )

K
∑

m=K1

(β0
m − βm)Xm

]

≥ 1

NT
EigvalR+1

[(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)′(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)

+

(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)′

P(λ0,W )

K
∑

m=K1

(β0
m − βm)Xm

+

K
∑

m=K1

(β0
m − βm)X ′

mP(λ0,W )

(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)]

≥ 1

NT
EigvalR+1





(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)′(

λ0 f0′ +
K1
∑

l=1

(β0
k − βk)wl v

′
l

)





−Op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

(C.19)

where we used (NT )−1K2 ‖λ0 f0′‖maxm ‖Xm‖ = Op,+(1), (NT )−1K1K2 maxm ‖Xm‖ maxl ‖wl v
′
l‖ =

Op,+(1), and we have Op,+

(∥

∥

∥
βlow − βlow

0

∥

∥

∥

)

= Op,+(1) because by assumption
∥

∥

∥
βlow − βlow

0

∥

∥

∥
is

bounded.

We define

A ≡ λ0 f0′ +
K1
∑

l=1

(β0
l − βl)wl v

′
l = A1 +A2 +A3 , (C.20)

where

A1 = MW APf0 = MW λ0 f0′

A2 = PW AMf0 =

K1
∑

l=1

(β0
l − βl)wl v

′
l Mf0

A3 = PW APf0 = PW λ0 f0′ +
K1
∑

l=1

(β0
l − βl)wl v

′
l Pf (C.21)

We find

A′A ≥ A′A− (a1/2A′
3 + a−1/2A′

2)(a
1/2A3 + a−1/2A2)

= [A′
1A1 − (a− 1)A′

3A3] + (1 − a−1)A′
2A2 (C.22)
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where ≥ for matrices refers to the difference being positive definite, and a is a positive number, namely

a = 1 +
EigvalR(A′

1A1)

2 ‖A3‖2
. (C.23)

The reason for this choice becomes clear below.

Note that [A′
1A1 − (a− 1)A′

3A3] has at most rank R (asymptotically it has exactly rank R).

The non-zero eigenvalues of A′A are therefore given by the (at most) R non-zero eigenvalues of

[A′
1A1 − (a− 1)A′

3A3] and the non-zero eigenvalues of (1 − a−1)A′
2A2, the largest one of the latter

being given given by the operator norm (1 − a−1)‖A′
2A2‖. We therefore find

1

NT
EigvalR+1 (A′A) ≥ 1

NT
EigvalR+1

[

(A′
1A1 − (a− 1)A′

3A3) + (1 − a−1)A′
2A2

]

≥ 1

NT
min

{

(1 − a−1)‖A2‖2 , EigvalR [A′
1A1 − (a− 1)A′

3A3]
}

. (C.24)

Using theorem B.1 and our particular choice of a we find

EigvalR [A′
1A1 − (a− 1)A′

3A3] ≥ EigvalR(A′
1A1) − ‖(a− 1)A′

3A3‖

≥ 1

2
EigvalR(A′

1A1) . (C.25)

Therefore

S̃
(2)
NT (β, f) ≥ 1

2NT
EigvalR(A′

1A1) min

{

1 ,
2 ‖A2‖2

2 ‖A3‖2 + EigvalR(A′
1A1)

}

−Op,+

(
∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

≥ 1

NT

‖A2‖2 EigvalR(A′
1A1)

2 ‖A‖2 + EigvalR(A′
1A1)

−Op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

(C.26)

where we used ‖A‖ ≥ ‖A3‖ and ‖A‖ ≥ ‖A1‖. We have

‖A‖√
NT

≤ ‖λ0 f0′‖√
NT

+

K1
∑

l=1

|β0
l − βl|

‖wl v
′
l‖√

NT
≤ Op,++(1) + Op,+

(∥

∥

∥
βlow − βlow

0

∥

∥

∥

)

= Op,++(1) ,

EigvalR(A′
1A1)√

NT
=

EigvalR
(

f0 λ0′MW λ0 f0′)

√
NT

= Op,++(1) ,

‖A2‖2

NT
= Eigval1

[

K1
∑

l1=1

(β0
l1 − βl1)wl1 v

′
l1 Mf0

K1
∑

l2=1

(β0
l2 − βl2) vl2 w

′
l2

]

≥ Op,++

(

∥

∥

∥
βlow − βlow

0

∥

∥

∥

2
)

= Op,++(1) (C.27)

Here we used assumption 4 (ii) and again the boundedness of βlow. We thus have

S̃
(2)
NT (β, f) ≥ Op,++

(

∥

∥

∥
βlow − βlow

0

∥

∥

∥

2
)

−Op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

, (C.28)

Since β = β0 and f = f0 are possible choices for β̂ and f̂ , we find that the optimal β̂ and f̂ must

satisfy SNT (β̂, f̂) ≤ SNT (β0, f0). From (C.15) we thus find

0 ≥ S̃NT (β̂, f̂) + op

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

+ op(1)

≥ S̃NT (β̂, f̂) − op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

− op,+(1) (C.29)

Using (C.18), (C.28) and S̃
(2)
NT (β, f) ≥ 0 we thus find

0 ≥ Op,++

(

∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

2
)

− op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

− op,+(1)

+ max

{

0 , Op,++

(

∥

∥

∥
βlow − βlow

0

∥

∥

∥

2
)

−Op,+

(
∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

}

(C.30)
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In particular this implies

0 ≥ Op,++

(

∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

2
)

− op,+

(∥

∥

∥
βhigh − βhigh

0

∥

∥

∥

)

− op,+(1) , (C.31)

from which we can deduce25

∥

∥

∥
βhigh − βhigh

0

∥

∥

∥
= op(1) . (C.34)

Once we have this we find that (C.30) becomes

0 ≥ Op,++

(

∥

∥

∥
βlow − βlow

0

∥

∥

∥

2
)

− op,+(1) , (C.35)

and therefore
∥

∥

∥
βlow − βlow

0

∥

∥

∥
= op(1) . (C.36)

D Power Series Expansion of the Profile Quasi Likelihood

Function (Proofs of Theorems 3.1, 3.3 and Corollary 3.4)

Definition D.1. For the N ×R matrix λ0 and the T ×R matrix f0 we define

dmax(λ
0, f0) =

1√
NT

∥

∥λ0f0′∥
∥ =

1√
NT

√

Eigval1(λ
0′f0f0′λ0) ,

dmin(λ0, f0) =
1√
NT

√

EigvalR(λ0′f0f0′λ0) , (D.1)

i.e. dmax(λ
0, f0) and dmin(λ0, f0) are the square roots of the maximal and the minimal eigenvalue of

λ0′f0f0′λ0/NT . Furthermore, the convergence radius r0(λ
0, f0) is given by

r0(λ
0, f0) =

(

4dmax(λ
0, f0)

d2
min(λ0, f0)

+
1

2dmax(λ
0, f0)

)−1

. (D.2)

Why r0(λ
0, f0) is called convergence radius will become clear immediately.

Theorem D.2. If the following condition is satisfies

K
∑

k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+
‖e‖√
NT

< r0(λ
0, f0) , (D.3)

then

25To give a proper proof we note that (C.31) implies that there exists w > 0 such that for all ε > 0, δ > 0 and κ > 0

we have

lim
N,T→∞

Pr
h

0 ≥ (w − ε)‖β̂high − βhigh
0 ‖2 − δ ‖β − β0‖ − κ

i

= 1 , (C.32)

so we find

⇒ lim
N,T→∞

Pr

2

4‖β̂high − βhigh
0 ‖ ≤ δ

2 (w − ε)
+

s

κ

w − ε
+

δ2

4 (w − ε)2

3

5 = 1 , (C.33)

where we have already chosen ε < w. In addition, we can choose δ and κ arbitrarily small, so we have shown

β̂
high →p βhigh

0 .
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(i) the profile quasi likelihood function can be written as a power series in the K + 1 parameters

ǫ0 = ‖e‖/
√
NT and ǫk = β0

k − βk, namely

LNT (β) =
1

NT

∞
∑

g=1

K
∑

κ1=0

K
∑

κ2=0

. . .

K
∑

κg=0

ǫκ1 ǫκ2 . . . ǫκg
L(g)

(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

, (D.4)

where the expansion coefficients are given by26

L(g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

= L̃(g)
(

λ0, f0, X(κ1
, Xκ2

, . . . ,Xκg)

)

=
1

g!

[

L̃(g)
(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

+ all permutations of κ1, . . . , κg

]

,

(D.5)

i.e. L(g) is obtained by total symmetrization of the last g arguments of

L̃(g)
(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

=

g
∑

p=1

(−1)p+1
∑

ν1 + . . . + νp = g
l1 + . . . + lp+1 = p − 1

2 ≥ νj ≥ 1 , lj ≥ 0

Tr
(

S(l1) T (ν1)
κ1... S

(l2) . . . S(lp) T (νp)
...κg

S(lp+1)
)

,

(D.6)

with

S(0) = −Mλ0 , S(l) =
[

λ0(λ0′λ0)−1(f0′f0)−1(λ0′λ0)−1λ0′]l , for l ≥ 1,

T (1)
κ = λ0 f0′X ′

κ +Xκ f
0 λ0′ , T (2)

κ1κ2
= Xκ1 X

′
κ2
, for κ, κ1, κ2 = 0 . . . K

X0 =

√
NT

‖e‖ e , Xκ = Xk , for κ = k = 1 . . . K . (D.7)

(ii) the projector Mλ̂(β) can be written as a power series in the same parameters ǫκ (κ = 0, . . . ,K),

namely

Mλ̂ (β) =

∞
∑

g=0

K
∑

κ1=0

K
∑

κ2=0

. . .

K
∑

κg=0

ǫκ1
ǫκ2

. . . ǫκg
M (g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

, (D.8)

where the expansion coefficients are given by M (0)(λ0, f0) = Mλ0 , and for g ≥ 1

M (g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

= M̃ (g)
(

λ0, f0, X(κ1
, Xκ2

, . . . ,Xκg)

)

=
1

g!

[

M̃ (g)
(

Xκ1
, Xκ2

, . . . ,Xκg

)

+ all permutations of κ1, . . . , κg

]

, (D.9)

i.e. M (g) is obtained by total symmetrization of the last g arguments of

M̃ (g)
(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

=

g
∑

p=1

(−1)p+1
∑

ν1 + . . . + νp = g
l1 + . . . + lp+1 = p
2 ≥ νj ≥ 1 , lj ≥ 0

S(l1) T (ν1)
κ1... S

(l2) . . . S(lp) T (νp)
...κg

S(lp+1) ,

(D.10)

where S(k), T (1)
κ , T (2)

κ1κ2 , and Xκ are given above.

26Here we use the round bracket notation (κ1, κ2, . . . , κg) for total symmetrization of these indices.
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(iii) The coefficients L(g) in the series expansion of LNT (β) are bounded as follows

1

NT

∣

∣

∣
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣

≤ Rg d2
min(λ0, f0)

2

(

16 dmax(λ
0, f0)

d2
min(λ0, f0)

)g ‖Xκ1
‖√

NT

‖Xκ2
‖√

NT
. . .

‖Xκg
‖√

NT
(D.11)

Under the stronger condition

K
∑

k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+
‖e‖√
NT

<
d2
min(λ0, f0)

16 dmax(λ
0, f0)

, (D.12)

we therefore have the following bound on the remainder, if the series expansion for LNT (β) is

truncated at order G ≥ 2:

∣

∣

∣

∣

LNT (β) − 1

NT

G
∑

g=1

K
∑

κ1=0

. . .

K
∑

κg=0

ǫκ1
. . . ǫκg

L(g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣

∣

≤ R (G+ 1)αG+1 d2
min(λ0, f0)

2(1 − α)2
, (D.13)

where

α =
16 dmax(λ

0, f0)

d2
min(λ0, f0)

(

K
∑

k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+
‖e‖√
NT

)

< 1 . (D.14)

(iv) The operator norm of the coefficient M (g) in the series expansion of Mλ̂ (β) is bounded as follows,

for g ≥ 1

∥

∥

∥
M (g)

(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

∥

∥

∥
≤ g

2

(

16 dmax(λ
0, f0)

d2
min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg

‖√
NT

.

(D.15)

Under the condition (D.12) we therefore have the following bound on operator norm of the

remainder of the series expansion of Mλ̂ (β), for G ≥ 0

∥

∥

∥

∥

Mλ̂ (β) −
G
∑

g=0

K
∑

κ1=0

. . .
K
∑

κg=0

ǫκ1
. . . ǫκg

M (g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∥

∥

∥

∥

≤ (G+ 1)αG+1

2(1 − α)2
.

(D.16)

Proof.

(i,ii) We apply perturbation theory in Kato (1980). The unperturbed operator is T (0) = λ0λ0′, the

perturbed operator is T = T (0) +T (1) +T (2) (i.e. the parameter κ that appears in Kato is set to

1), where T (1) =
∑K

κ=0 ǫκXκf
0λ0′+λ0f0′∑K

κ=0 ǫκX
′
κ, and T (2) =

∑K
κ1=0

∑K
κ2=0 ǫκ1ǫκ2Xκ1X

′
κ2

.

The matrices T and T 0 are real and symmetric (which implies that they are normal operators),

and positive semi-definite. We know that T (0) has an eigenvalue 0 with multiplicity N −R, and

the separating distance of this eigenvalue is d = NTd2
min(λ0, f0). The bound (D.3) guarantees

that

‖T (1) + T (2)‖ ≤ NT

2
d2
min(λ0, f0) , (D.17)

by Weyl’s inequality we therefore find that the N − R smallest eigenvalues of T (also counting

multiplicity) are all smaller than NT
2 d2

min(λ0, f0), and they “originate” from the zero-eigenvalue
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of T (0), with the power series expansion for LNT (β) given in (2.22) and (2.18) at p.77/78 of

Kato, and the expansion of Mλ̂ given in (2.3) and (2.12) at p.75,76 of Kato. We still need to

justify the convergence radius of this series. Since we set the complex parameter κ in Kato

to 1, we need to show that the convergence radius (r0 in Kato’s notation) is at least 1. The

condition (3.7) in Kato p.89 reads ‖T (n)‖ ≤ acn−1, n = 1, 2, . . ., and it is satisfied for a =

2
√
NTdmax(λ

0, f0)
∑K

κ=0 |ǫκ|‖Xκ‖ and c =
∑K

κ=0 |ǫκ|‖Xκ‖/
√
NT/2/dmax(λ

0, f0). According

to equation (3.51) in Kato p.95, we therefore find that the power series for LNT (β) and Mλ̂ are

convergent (r0 ≥ 1 in his notation) if

1 ≤
(

2a

d
+ c

)−1

(D.18)

and this becomes exactly our condition (D.3).

When LNT (β) is approximated up to order G ∈ N, Kato’s equation (3.6) at p.89 gives the

following bound on the remainder

∣

∣

∣

∣

LNT (β) − 1

NT

G
∑

g=1

K
∑

κ1=0

. . .

K
∑

κg=0

ǫκ1
. . . ǫκg

L(g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣

∣

≤ (N −R)γG+1 d2
min(λ0, f0)

4(1 − γ)
,

(D.19)

where

γ =

∑K
k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+ ‖e‖√
NT

r0(λ
0, f0)

< 1 . (D.20)

This bound again shows convergence of the series expansion, since γG+1 → 0 as G → ∞.

Unfortunately, for our purposes this is not a good bound since it still involves the factor N −R

(in Kato this factor is hidden since his λ̂(κ) is the average of the eigenvalues, not the sum),

which in our particular case turns out to be unnecessary.

(iii,iv) We have ‖S(k)‖ =
(

NTd2
min(λ0, f0)

)−k
, ‖T (1)

κ ‖ ≤ 2
√
NTdmax(λ

0, f0)‖Xκ‖, and ‖T (2)
κ1κ2‖ ≤

‖Xκ1
‖‖Xκ2

‖. Therefore

∥

∥

∥
S(l1) T (ν1)

κ1... S
(l2) . . . S(lp) T (νp)

...κg
S(lp+1)

∥

∥

∥

≤
(

NTd2
min(λ0, f0)

)− P

lj
(

2
√
NTdmax(λ

0, f0)
)2p−P

νj

‖Xκ1
‖‖Xκ2

‖ . . . ‖Xκg
‖

(D.21)

We have

∑

ν1 + . . . + νp = g
2 ≥ νj ≥ 1

1 ≤ 2p

∑

l1 + . . . + lp+1 = p − 1
lj ≥ 0

1 ≤
∑

l1 + . . . + lp+1 = p
lj ≥ 0

1 =
(2p)!

(p!)2
≤ 4p (D.22)
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Using this we find27

∥

∥

∥
M (g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∥

∥

∥

≤
(

2
√
NTdmax(λ

0, f0)
)−g

‖Xκ1‖‖Xκ2‖ . . . ‖Xκg
‖

g
∑

p=⌈g/2⌉

(

32 d2
max(λ

0, f0)

d2
min(λ0, f0)

)p

≤ g

2

(

16 dmax(λ
0, f0)

d2
min(λ0, f0)

)g ‖Xκ1‖√
NT

‖Xκ2‖√
NT

. . .
‖Xκg

‖√
NT

(D.23)

For g ≥ 3 there always appears at least one factor S(l), l ≥ 1, inside the trace of the terms that

contribute to L(g), and we have rank(S(l)) = R for l ≥ 1. Using Tr(A) ≤ rank(A)‖A‖, and the

equations (D.21) and (D.22), we therefore find28 for g ≥ 3

1

NT

∣

∣

∣
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣

≤ Rd2
min(λ0, f0)

(

2
√
NTdmax(λ

0, f0)
)−g

‖Xκ1
‖‖Xκ2

‖ . . . ‖Xκg
‖

g
∑

p=⌈g/2⌉

(

32 d2
max(λ

0, f0)

d2
min(λ0, f0)

)p

≤ Rg d2
min(λ0, f0)

2

(

16 dmax(λ
0, f0)

d2
min(λ0, f0)

)g ‖Xκ1
‖√

NT

‖Xκ2
‖√

NT
. . .

‖Xκg
‖√

NT
(D.24)

This implies for g ≥ 3

1

NT

∣

∣

∣

∣

∣

∣

K
∑

κ1=0

K
∑

κ2=0

. . .
K
∑

κg=0

ǫκ1
ǫκ2

. . . ǫκg
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

∣

∣

∣

∣

∣

∣

≤ Rg d2
min(λ0, f0)

2

(

16 dmax(λ
0, f0)

d2
min(λ0, f0)

)g
(

K
∑

κ=0

‖ǫκXκ‖√
NT

)g

(D.25)

Therefore for G ≥ 2 we have

∣

∣

∣

∣

LNT (β) − 1

NT

G
∑

g=1

K
∑

κ1=0

. . .

K
∑

κg=0

ǫκ1 . . . ǫκg
L(g)

(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

∣

∣

∣

∣

=
1

NT

∞
∑

g=G+1

K
∑

κ1=0

K
∑

κ2=0

. . .

K
∑

κg=0

ǫκ1
ǫκ2

. . . ǫκg
L(g)

(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

≤
∞
∑

g=G+1

Rg αg d2
min(λ0, f0)

2

≤ R (G+ 1)αG+1 d2
min(λ0, f0)

2(1 − α)2
, (D.26)

where

α =
16 dmax(λ

0, f0)

d2
min(λ0, f0)

K
∑

κ=0

‖ǫκXκ‖√
NT

=
16 dmax(λ

0, f0)

d2
min(λ0, f0)

(

K
∑

k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+
‖e‖√
NT

)

< 1 , (D.27)

27The sum over p only starts from ⌈g/2⌉, the smallest integer larger or equal g/2, because ν1 + . . . + νp = g can not

be satisfied for smaller p, since νj ≤ 2.
28The calculation for the bound of L(g) is almost identical to the one for M(g). But now there appears an additional

factor R from the rank, and since
P

lj = p − 1 (not p as before), there is also an additional factor NTd2
min(λ0, f0).
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Using the same argument we can start from equation (D.23) to obtain the bound (D.16) for the

remainder of the series expansion for Mλ̂ (β).

Note that compared to the bound (D.19) on the remainder, the new bound (D.26) only shows con-

vergence of the power series within the the smaller convergence radius
d2
min(λ0,f0)

16 dmax(λ0,f0)
< r0(λ

0, f0).

However, the factor N −R does not appear in this new bound, which is crucial for our approx-

imations.

We can now proof the key theorem of the main text.

Proof of theorem 3.1. Assumption 1 implies that

dmax(λ
0, f0) −→

p
d∞max > 0 , dmin(λ0, f0) −→

p
d∞min > 0 . (D.28)

Therefore also r0(λ
0, f0) →p r∞0 > 0. Assumptions 1, 2, and 3 furthermore imply that

‖λ0‖√
N

= Op(1) ,
‖f0‖√
T

= Op(1) ,

∥

∥

∥

∥

∥

(

λ0′λ0

N

)−1
∥

∥

∥

∥

∥

= Op(1) ,

∥

∥

∥

∥

∥

(

f0′f0

T

)−1
∥

∥

∥

∥

∥

= Op(1) ,

‖Xk‖√
NT

= Op(1) ,
‖e‖√
NT

= op(1) . (D.29)

For
∥

∥β − β0
∥

∥ ≤ ηNT we have
∥

∥β − β0
∥

∥ = op(1) and also
∣

∣βk − β0
k

∣

∣ = op(1), k = 1 . . . K. We thus find

α = op(1), i.e. the condition to apply theorem D.2 part (iii) is asymptotically satisfied. Using the

inequality (D.11), the linearity of L(g)
(

λ0, f0, Xκ1
, Xκ2

, . . . ,Xκg

)

in the arguments Xκ, and the fact

that ǫ0X0 = e we find

1

NT
(ǫ0)

g−r L(g)
(

λ0, f0, Xk1
, . . . , Xkr

, X0, . . . , X0

)

= Op

(

( ‖e‖√
NT

)g−r
)

. (D.30)
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Applying the inequality (D.13) for G = Ge then gives

LNT (β) =
1

NT

Ge
∑

g=2

K
∑

κ1=0

. . .

K
∑

κg=0

ǫκ1 . . . ǫκg
L(g)

(

λ0, f0, Xκ1 , Xκ2 , . . . ,Xκg

)

+ Op

(

αG+1
)

=
1

NT

Ge
∑

g=2

ǫg0 L
(g)
(

λ0, f0, X0, X0, . . . ,X0

)

+
1

NT

Ge
∑

g=2

g
K
∑

k=1

(

β0
k − βk

)

ǫg−1
0 L(g)

(

λ0, f0, Xk, X0, . . . ,X0

)

+
1

NT

Ge
∑

g=2

g (g − 1)

K
∑

k1=1

K
∑

k2=1

(

β0
k1

− βk1

) (

β0
k2

− βk2

)

ǫg−2
0 L(g)

(

λ0, f0, Xk1
, Xk2

, X0, . . . ,X0

)

+
1

NT

Ge
∑

g=3

g
∑

r=3

Op

[

∥

∥β0 − β
∥

∥

r
ǫg−r
0 L(g)

(

λ0, f0, Xk1
, . . . , Xkr

, X0, . . . ,X0

)

]

+ Op





(

K
∑

k=1

∣

∣β0
k − βk

∣

∣

‖Xk‖√
NT

+
‖e‖√
NT

)Ge+1


 ,

=
1

NT

Ge
∑

g=2

g

K
∑

k=1

(

β0
k − βk

)

L(g)
(

λ0, f0, Xk, e, . . . , e
)

+
2

NT

K
∑

k1=1

K
∑

k2=1

(

β0
k1

− βk1

) (

β0
k2

− βk2

)

L(2)
(

λ0, f0, Xk1
, Xk2

)

+
1

NT
INT +

1

NT
RNT (D.31)

where

INT =

Ge
∑

g=2

L(g)
(

λ0, f0, e, e, . . . , e
)

+NT Op

(

( ‖e‖√
NT

)Ge+1
)

,

RNT (β) =R1,NT (β) +R2,NT (β) +R3,NT (β) ,

R1,NT (β) =NT

Ge+1
∑

g=3

Op

(

‖β0 − β‖2

( ‖e‖√
NT

)g−2
)

,

R2,NT (β) =NT

Ge+1
∑

g=3

g
∑

r=3

Op

(

‖β0 − β‖r

( ‖e‖√
NT

)g−r
)

,

R3,NT (β) =NT Op

(

‖β0 − β‖
( ‖e‖√

NT

)Ge

)

. (D.32)
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We find that INT is independent of β, while R1,NT (β), R2,NT (β) and R3,NT (β) satisfy

sup
β:‖β−β0‖≤ηNT

|R1,NT (β)|
(

1 +
√
NT

∥

∥β − β0
∥

∥

)2 ≤ sup
β:‖β−β0‖≤ηNT

|R1,NT (β)|
NT

∥

∥β − β0
∥

∥

2

= Op

( ‖e‖√
NT

)

= op(1) ,

sup
β:‖β−β0‖≤ηNT

|R2,NT (β)|
(

1 +
√
NT

∥

∥β − β0
∥

∥

)2 ≤ sup
β:‖β−β0‖≤ηNT

|R2,NT (β)|
NT

∥

∥β − β0
∥

∥

2

= Op (ηNT ) = op(1) ,

sup
β:‖β−β0‖≤ηNT

|R3,NT (β)|
(

1 +
√
NT

∥

∥β − β0
∥

∥

)2 ≤ sup
β:‖β−β0‖≤ηNT

|R3,NT (β)|
2
√
NT

∥

∥β − β0
∥

∥

=
√
NT Op

(

( ‖e‖√
NT

)Ge

)

= op(1) , (D.33)

with ηNT → 0. In the last line we used assumption 3’ to show that the term is op(1). Since the

condition (3.4) is satisfied for R1,NT (β), R2,NT (β) and R3,NT (β) separately, it is also satisfied for the

total remainder RNT (β).

Proof of theorem 3.3. The general expansion of Mλ̂ is given in theorem D.2, and here we just make

this expansion explicit up to a particular order. To obtain the bound on the remainder we make us

of equation (D.23) in the proof of theorem D.2. The result for Mf̂ is just obtained by symmetry

(N ↔ T , λ↔ f , e↔ e′, Xk ↔ X ′
k). For the residuals ê we have

ê = Mλ̂

(

Y −
∑

k=1

β̂k Xk

)

= Mλ̂

[

e−
K
∑

k=1

(

β̂k − β0
k

)

Xk + λ0f0′
]

, (D.34)

and plugging in the expansion of Mλ̂ gives the expansion of ê.

Proof of Corollary 3.4. Having the expansion of the profile quasi likelihood function in theorem 3.1,

and in particular the bounds on the remainder terms given there, we only have to verify that asymp-

totically the smallest eigenvalue of the K × K denominator matrix W (λ0, f0, Xk) (which appears

in the second order term in the likelihood expansion) is bounded from below. This guarantees that

W (λ0, f0, Xk) is invertible and that the norm of its inverse ‖W−1(λ0, f0, Xk)‖ is bounded from

above as N,T → ∞. Once this is verified, we can apply the results in e.g. Andrews (1999) to obtain

the equation for β̂ and the corollary is proven.

Remember that

Wk1k2
(λ0, f0, Xk) =

1

NT
Tr(Mf0 X ′

k1
Mλ0 Xk2

) . (D.35)
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The smallest eigenvalue of the symmetric matrix W (λ0, f0, Xk) is given my

EigvalK
[

W (λ0, f0, Xk)
]

= min
{a∈RK , a6=0}

a′W (λ0, f0, Xk) a

‖a‖2

= min
{a∈RK , a6=0}

1

NT ‖a‖2
Tr

[

Mf0

(

K
∑

k1=1

ak1
X ′

k1

)

Mλ0

(

K
∑

k2=1

ak2
Xk2

)]

= min
{α ∈ R

K1 , µ ∈ R
K2

α 6= 0, µ 6= 0}

Tr
[

Mf0

(

X ′
low,α +X ′

high,µ

)

Mλ0 (Xlow,α +Xhigh,µ)
]

NT (‖α‖2 + ‖µ‖2)
,

(D.36)

where we decomposed a′ = (α′, µ′), with α and µ being vectors of length K1 and K2, respectively, and

as in assumption 4 we defined corresponding linear combinations of high- and low-rank regressors29

Xlow,α =

K1
∑

k=1

αk Xk , Xhigh,µ =

K
∑

k=K1+1

µk Xk . (D.37)

We have Mλ0 = M(λ0,Ξ) +P(M
λ0Ξ), where Ξ = (X1, . . . ,XK1

) is the matrix that combines all low-rank

regressors. Using this we obtain

EigvalK
[

W (λ0, f0, Xk)
]

= min
{α ∈ R

K1 , µ ∈ R
K2

α 6= 0, µ 6= 0}

1

NT (‖α‖2 + ‖µ‖2)

{

Tr
[

Mf0

(

X ′
low,α +X ′

high,µ

)

M(λ0,Ξ) (Xlow,α +Xhigh,µ)
]

+ Tr
[

Mf0

(

X ′
low,α +X ′

high,µ

)

P(M
λ0Ξ) (Xlow,α +Xhigh,µ)

]

}

= min
{α ∈ R

K1 , µ ∈ R
K2

α 6= 0, µ 6= 0}

1

NT (‖α‖2 + ‖µ‖2)

{

Tr
[

Mf0 X ′
high,µM(λ0,Ξ)Xhigh,µ

]

+ Tr
[

Mf0

(

X ′
low,α +X ′

high,µ

)

P(M
λ0Ξ) (Xlow,α +Xhigh,µ)

]

}

≥ min
{α ∈ R

K1 , µ ∈ R
K2

α 6= 0, µ 6= 0}

1

‖α‖2 + ‖µ‖2

{

c1‖µ‖2 + max
[

0, c2‖α‖2 − c3‖α‖‖µ‖
]}

≥ min

(

c2
2
,

c1c
2
2

c22 + c23

)

(D.38)

where the inequalities hold in probability as N,T → ∞, and c1, c2 and c3 are appropriate positive

constants (independent of N,T ). Here we used that as N,T → ∞ we have in probability that

1

NT
Tr
[

Mf0 X ′
high,µM(λ0,Ξ)Xhigh,µ

]

≥ c1‖µ‖2 ,

1

NT
Tr
[

Mf0

(

X ′
low,α +X ′

high,µ

)

P(M
λ0Ξ) (Xlow,α +Xhigh,µ)

]

≥ 0 ,

1

NT
Tr
[

Mf0 X ′
low,α P(M

λ0Ξ)Xlow,α

]

≥ c2 ‖α‖2 ,

1

NT
Tr
[

Mf0 X ′
low,α P(M

λ0Ξ)Xhigh,µ

]

≥ −c3
2
‖α‖‖µ‖ ,

1

NT
Tr
[

Mf0 X ′
high,µ P(M

λ0Ξ)Xhigh,µ

]

≥ 0 , (D.39)

29As in assumption 4 the components of µ are denoted µK1+1 to µK to simplify notation.
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which we want to justify now. The second and the last equation in (D.39) are true because e.g.

Tr
[

Mf0 X ′
high,µ P(M

λ0Ξ)Xhigh,µ

]

= Tr
[

Mf0 X ′
high,µ P(M

λ0Ξ)Xhigh,µMf0

]

, and the trace of a sym-

metric positive semi-definite matrix is non-negative. The first inequality in (D.39) is true because

rank(f0) + rank(λ0,Ξ) = 2R+K1 and using theorem B.3 and assumption 4(i) we have

1

NT‖µ‖2
Tr
[

Mf0 X ′
high,µM(λ0,Ξ)Xhigh,µ

]

≥ 1

NT‖µ‖2
Eigval2R+K1+1

[

Xhigh,µX
′
high,µ

]

> 0 , (D.40)

in probability as N,T → ∞, which justifies the existence of the constant c1. The third inequality in

(D.39) is true because according theorem B.2 (v) we have

1

NT
Tr
[

Mf0 X ′
low,α P(M

λ0Ξ)Xhigh,µ

]

≥ − K1

NT
‖Xlow,α‖ ‖Xhigh,µ‖

≥ − K1

NT
‖Xlow,α‖F ‖Xhigh,µ‖F

≥ −K1K1K2 ‖α‖ ‖µ‖ max
k1=1...K1

∥

∥

∥

∥

Xk1√
NT

∥

∥

∥

∥

F

max
k2=K1+1...K

∥

∥

∥

∥

Xk2√
NT

∥

∥

∥

∥

F

≥ −c3
2
‖α‖ ‖µ‖ , (D.41)

where we used that assumption 2 (iii) implies that
∥

∥

∥
Xk/

√
NT

∥

∥

∥

F
< C holds in probability for some con-

stant C as N,T → ∞ (which is stronger than
∥

∥

∥
Xk/

√
NT

∥

∥

∥

F
= Op(1)), and we set c3 = K1K1K2 C

2.

Finally, we have to argue that the third inequality in (D.39) holds. Note that X ′
low,α P(M

λ0Ξ)Xlow,α =

X ′
low,αMλ0 Xlow,α, i.e. we need to show that

1

NT
Tr
[

Mf0 X ′
low,αMλ0 Xlow,α

]

≥ c2 ‖α‖2 . (D.42)

Using part (vi) or theorem B.2 we find

1

NT
Tr
[

Mf0 X ′
low,αMλ0 Xlow,α

]

=
1

NT
Tr
[

Mλ0 Xlow,αMf0 X ′
low,αMλ0

]

≥ 1

NT

∥

∥Mλ0 Xlow,αMf0 X ′
low,αMλ0

∥

∥ , (D.43)

and according to lemma C.3 this expression is bounded by some positive constant times ‖α‖2 (in the

lemma we have ‖α‖ = 1, but all expressions are homogeneous in ‖α‖). This concludes the proof.
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