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Abstract

In this paper we provide a new methodology to analyze the (Gaussian) profile quasi likelihood
function for panel regression models with with interactive fixed effects, also called factor models.
The number of factors is assumed to be known. Employing the perturbation theory of linear op-
erators, we derive a power series expansion of the likelihood function in the regression parameters.
Using this expansion we work out the first order asymptotic theory of the quasi maximum likeli-
hood estimator (QMLE) in the limit where both the cross sectional dimension and the number of
time periods become large. We find that there are two sources of asymptotic bias of the QMLE:
bias due to correlation or heteroscedasticity of the idiosyncratic error term, and bias due to weak
(as opposed to strict) exogeneity of the regressors. For idiosyncratic errors that are independent
across time and cross section we provide an estimator for the bias and a bias corrected QMLE.
We also discuss estimation in cases where the true parameter is on the boundary of the parameter
set, and we provide bias corrected versions of the three classical test statistics (Wald, LR and LM
test) and show that their asymptotic distribution is a chi-square distribution.

1 Introduction

This paper studies a panel regression model where the individual fixed effects \;, also called factor
loadings, interact with common time specific effects f;, also called factors. Interactive models have
been widely used in various economic applications. In analyzing the relationship between wages
and hours worked, interactive fixed effect models are considered to account for non-stationary in
individual effects (e.g., Holtz-Eakin, Newey, and Rosen (1988)). There \; can describe the unobserved
earnings abilities of individuals, while f; can correspond to changes in e.g. local working conditions, or
macroeconomic states of the economy. In some asset pricing theories, the asset returns are described
by an interactive factor model (e.g., Ross (1976) and Chamberlain and Rothschild (1983)). In these
theories \; measures the sensitivity of the asset to the common factors f;. Also, the interactive models
have been proposed for modeling cross sectional dependence (e.g., Phillips and Sul (2003), Bai and Ng
(2004), Moon and Perron (2004), and Pesaran (2006)). For example, in international cross country
data analysis, the country specific effect \; measures how much a particular country is affected by
global shocks of f;. Here the common shocks of f; cause correlation in the cross country data.

In the present paper we study the (Gaussian) quasi likelihood function of the interactive fixed
effect model which is minimized over the parameters \;, f¢, and the regression coefficients. The profile
quasi likelihood function of the model, in which \; and f; are already integrated out, becomes the

*Previous versions of this paper were circulated under the title “Asymptotic Analysis of the Quasi-MLE of Panel
Regression Models with Interactive Fixed Effects”.



sum of the N — R smallest eigenvalues of the sample covariance matrix of the panel, where N is the
cross-sectional size of the panel, and R is the number of factors (assumed to be known).

The main contribution of the paper is to provide a general methodology to expand the profile quasi
likelihood function as a power series expansion in the regression parameters. In particular, we derive
the quadratic approximation which is necessary to establish the so-called first order asymptotic theory
of the QMLE and to work out the limits of the classical test statistics (Wald, LR and LM test).

The conventional likelihood expansion is done by a Taylor approximation in the regression coef-
ficients. In our case this expansion is difficult to perform due to the implicit eigenvalue problem in
the profile quasi likelihood function. The analytic properties of this objective function are not known
in the literature so far. The approach we choose is to perform a joint expansion in the regression
parameters and in the idiosyncratic error terms. Using the perturbation theory of linear operators
we show that the profile quasi likelihood function is analytic in a neighborhood of the true parameter
and we obtain a formula of the expansion coefficients for all orders.

Our likelihood expansion is valid with a general type of regressors, in particular we allow for weakly
exogenous regressors and so called “low-rank” regressors, e.g. time-invariant and common regressors,
or interacted dummy variables. We also allow for time-serial and cross-sectional correlation and
heteroscedasticity of the idiosyncratic error terms. Our analysis uses the alternative asymptotic where
both the number of cross-sectional units N and the number of time periods 7" becomes large, which
was shown to be a convenient tool to characterize the asymptotic bias due to incidental parameter
problems, see e.g. Hahn and Kuersteiner (2002; 2004), Hahn and Newey (2004), and Hahn and Moon
(2006).

Using the likelihood expansion we understand the nature of the potential asymptotic bias in
the QMLE caused by the incidental parameters, A; and f;. This is possible because we know the
approximate score in a closed form. What we find is that there are two main sources that may cause
asymptotic bias. The first one is due to the presence of weakly exogenous regressors in either time or
cross-sectional direction. The second one is due to heteroscedasticity or correlation of the idiosyncratic
errors, again either in time or cross-sectional direction. These biases corresponds to the well-know
incidental parameter problem in the panel data literature (Neyman and Scott, 1948).

As applications of the likelihood expansion we investigate three problems: (i) deriving the asymp-
totic distribution of the QMLE with weakly exogenous regressors using the alternative asymptotic
N, T — oo, (ii) exploring the case where the true parameter is on the boundary of the parameter set,
and (iii) studying the characteristics of the three classical test statistics for testing a general linear
restriction on the regression parameters, again under the alternative asymptotic. The analysis of these
three applications is new in the literature on panel regression models with interactive fixed effects.

To obtain the limiting distribution of the QMLE we need to derive the asymptotic properties of
the approximated Hessian and of the approximated score, both known in explicit form from the profile
quasi likelihood expansion. Under the assumption of independent error terms (but allowing for het-
eroscedasticity) we show that the score (and thus the QMLE) converges to a normal distribution, and
we provide estimators for its asymptotic bias and covariance matrix, as well as for the probability limit
of the approximated Hessian. These estimators do not require knowledge on whether the regressors
are strictly or weakly exogenous. Using these estimators we construct a bias corrected QMLE. To
prove consistency of the estimators it is convenient to use the expansions of the regression residuals
and of the projectors of the estimated factors and factor loadings in the regression parameters. These
expansions are a byproduct of the perturbation theory that is used to derive the likelihood expansion,
and they can be used whenever the factors and factor loadings are estimated by principal components
even if the regression parameters are not estimated by maximum likelihood.

The analysis of the QMLE as described so far is performed under the assumption that the true
parameter is an interior point of the parameter set. Combining our likelihood expansion with the
results in Andrews (1999) we derive the asymptotic QMLE distribution for situations where the true
parameter is on the boundary, given that the parameter set is locally approximated by a convex cone.



Under these assumptions we also define a “bias corrected” QMLE and show that its distribution is
the one that the QMLE would have for unbiased score function.

For testing a general linear hypothesis we consider the Wald, LR and LM tests. We show that
these tests are still asymptotically equivalent, but have a non-central chi-square distribution due to
the bias of the QMLE and of the score. Using our estimators for the asymptotic Hessian and score bias
we provide bias corrected versions of the three test statistics and show that their limiting distribution
is a chi-square distribution. We also provide a convenient estimator for the score function at the
restricted parameter which features in the LM test and which otherwise would need to be calculated
numerically — since no explicit formula for the derivative of the likelihood function is known. Using
this score estimator we obtain a modified bias corrected LM test statistics that is easy to compute.

For estimation, this paper considers the QMLE. In the literature, various other estimation tech-
niques for interactive factor models are studied. Holtz-Eakin, Newey, and Rosen (1988) study a panel
regression model with factors and lagged dependent variables, i.e. they also allow for weakly exoge-
nous regressors. In their asymptotic T is fixed, i.e. the factors f; cause no incidental parameter bias.
To solve the incidental parameter problem for \; they estimate a quasi-differenced version of the model
using appropriated lagged variables as instruments. They also investigate various testing problems.
For small T their parameter estimates are easy to obtain and are unbiased. However, implementing
their method for large T is difficult since one has to minimize a non-linear objective function (e.g.
for GMM) over many parameters — since the f; (or their quotients) are estimated jointly with the
regression parameters. Thus, with respect to the size of T' the Holtz-Eakin, Newey, and Rosen (1988)
method is complementary to our our approach, since our asymptotic is accurate only for large T. The
same is true for Ahn, Lee and Schmidt (2001), who study the QMLE and a GMM estimator in fixed
T asymptotic. To achieve consistency in this asymptotic they have to assume that the regressors are
iid distributed across individuals. Pesaran (2006) discusses common correlated effect estimators for
multi-factor models.

Another closely related to paper is the work of Bai (2009). He studies the QMLE for panel
regression models with interactive fixed effects, but assuming strictly exogenous regressors, and using
a different methodology to derive the asymptotic distribution. Bai starts from the first order condition
of the quasi likelihood maximization problem to derive the first order asymptotic theory of the QMLE.
He finds that under the alternative asymptotic and for strictly exogenous regressors the QMLE is
biased due to correlation and heteroscedasticity of the error terms. He gives consistent estimators for
these bias terms and for the QMLE covariance matrix, and thus provides a bias corrected estimator.
He also studies time-invariant and common regressors. Compared to our paper, Bai focuses on the
properties of the QMLE, while we first study the characteristics of the likelihood function by using
our expansion results from perturbation theory. This allows us to investigate situations where the
true parameter is on the boundary, and to study the limiting distribution of the LR and LM test. As
opposed to Bai, we allow for weakly exogenous regressors, e.g. lagged dependent variables, and we
show that they cause additional bias terms and how to correct for them. Our treatment of “low-rank
regressors” is also more general than Bai’s discussion since we allow not only for time-invariant and
common regressors, but for all kinds of “low-rank regressors”, e.g. also for interacted dummy variables
that appear in “difference in difference” estimation and that are ruled out by Bai’s assumptions.

The paper is organized as follows. In the next section we introduce the interactive fixed effect
model and the QMLE of the regression parameters, and we provide a set of assumptions that are
sufficient to show consistency of the QMLE. In section 3 we present the expansion of the profile
quasi likelihood function in the regression parameters, give a general discussion of the asymptotic
bias of the QMLE, and also provide useful expansions of the regression residuals and of the principal
component projectors in the regression parameters. In section 4 we apply the likelihood expansion
to work out the asymptotic distribution of the QMLE. Under independent idiosyncratic error terms,
but allowing for heteroscedasticity and weakly exogenous regressors, we present estimators for the
different components of the asymptotic bias and thus provide a bias corrected QMLE. We also discuss



the limiting distribution of the QMLE when the true parameter is on the boundary of the parameter
set, and we work out the asymptotic distribution of the (bias corrected) classical test statistics.
Afterwards we conclude. Some technical details have been moved to the appendix, and most of the
proofs have been transfered to the supplementary material.

A few words on notation. For a column vectors v its Euclidean norm is defined by ||v| = vv'v .
For the n-th largest eigenvalues (counting multiple eigenvalues multiple times) of a symmetric matrix
B we write Eigval,,(B). For an m x n matrix A the Frobenius norm is ||A||p = \/Tr(AA’), and the
operator norm is ||A| = maxgzyern HHA%UHH, or equivalently |A|| = /Eigval, (A’A). Furthermore, we
use Py = A(A’A)"tA" and My =1 — A(A’A)~1 A, where (A’A)~! denotes some generalized inverse
if A is not of full column rank. For square matrices B, C, we use B > C (or B > C) to indicate
that B — C is positive (semi) definite. For a positive definite symmetric matrix A we write A'/2 and
A~Y/2 for the unique symmetric matrices that satisfy A/2A1/2 = A and A=1/24-1/2 = A='. We use
V for the gradient of a function, i.e. V f(x) is the row vector of partial derivatives of f with respect
to each component of x. The Kronecker-delta symbol is defined by d;; = 1 and d;; = 0 for ¢ # 5. We
use “wpal” for “with probability approaching one”, and 1(.) for the indicator function.

2 Model, QMLE and Consistency

In this paper we study the following panel regression model with cross-sectional size N and T time
periods

Yie = B X + N f + ear i=1...N, t=1...T, (2.1)

where X;; is a K x 1 vector of observable regressors, 8° is a K x 1 vector of regression coefficients, )\?
is an R x 1 vector of unobserved factor loadings, f is an R x 1 vector of unobserved common factors,
and e;; are unobserved errors. The superscript zero indicates the true parameters. Throughout this
paper we assume that the true number of factors R is known.

Model (2.1) can be written in matrix notation as

K
Y=Y B Xe+ Xf"+e, (2.2)
k=1

where Y, X, and e are N x T matrices, A’ is a N x R matrix, and f© is a T x R matrix. Our goal is
/

to estimate the parameter 3° = (ﬂ?, e ﬂ?{) and to find its limiting distribution when both N and T

are large. The estimator we consider in this paper is the QMLE that is defined by

8 = argmin Lyt (8) , (2.3)
BEB

where B ¢ R is a compact parameter set that contains the true parameter, i.e. 3° € B. If there are
multiple global minima in B we want 3 to be one of them. The objective function is given by

1 I K ! K
Lyt (8) = inf 577 Tr (Y - ;mxk - Af’) (Y = B X - Af’)

= k=1

[ K K !
1
=inf — T Y — X | MY — X
HJ} NT r ( Zﬂk k) f( gﬁk k)

k=1

1 T K / K

= N7 > Eigval, (Y —~ Zﬂka) (Y - Zﬂka> : (2.4)
t=R+1 k=1 k=1

Here we give three expressions for Ly (), which are shown to be equivalent in the supplementary
material. !



The first expression for Ly (3) is the sum of the squares of the residuals é;; = Y;; — 3’ X;; — )\?’ P
minimized over the parameters A and f. We have >, >, é% = Tr(¢’¢), and this trace notation will
be used extensively throughout the paper. Note that Ly (8) is minus the logarithm of the Gaussian
profile likelihood function of model (2.2), and in the following we therefore refer to Ly (3) as profile
quasi likelihood function. Note also that the minimizing value Ly (5) is uniquely defined, although
the minimizing parameters A and f are not uniquely determined, since the objective function is
invariant under transformations A — AA and f — fA~!, where A is a non-singular R x R matrix.

The second expression for Lyt (3) is obtained form the first one by integrating out A, i.e. by
eliminating it from the objective function by use of its own first order condition. Analogously one
can integrate out f to obtain a formulation where only the parameter A remains. In the appendix
we show that the optimal f is obtained by combining the R eigenvectors that correspond to the R
largest eigenvalues of the T' x T matrix (Y - Efc{:l ﬁka>/ (Y — Zszl 6ka>. Using this result one
obtains the third way to write the profile quasi likelihood function, namely as the sum over the T'— R
smallest eigenvalues of this 7' x T matrix. This last expression for Ly () is our starting point when
expanding Lyt (§) around 3°. This expression is also most convenient for numerical computations of
the QMLE — at each step of the numerical optimization over 8 one needs to calculate the eigenvalues
of a T x T matrix, which is much faster than minimizing over the high dimensional parameters A and
£l

To show consistency of the QMLE B of the interactive fixed effect model, and also later for our first
order asymptotic theory, we consider the limit N, 7" — oo, i.e. more precisely we want min(N,T) — oo,
but we allow for max(N,T) to grow at a faster rate. In the following we present assumptions on Xy,
e, A and f that guarantee consistency.?

Assumption 1. The probability limits of \X’ \° /N and f% f°/T exist and have full rank, i.e.
(i) plimy 7o (\YA°/N) >0, (i) plimy o (f*f°/T) > 0.

Assumption 2. (i) plimy 7 [(NT) " Tr(Xye')] =0, (i) plimy 7o [(NT)"1Tr(X° f€')] = 0.

Assumption 3. The operator norm of the error matrix e grows at a rate smaller than vV NT, i.e.

plimy 7. (lel/VNT) =o0.

Assumption 1 guarantees that the matrices f© and A\ have full rank, i.e. that there are R distinct
factors and factor loadings asymptotically, and that the norm of each factor f;or and factor loading )\?T
grows at a rate of /T and /N, respectively. Assumption 2 demands that the regressors are weakly
exogenous and that the combination of factors and factor loadings is “weakly exogenous” in the same
sense. Assumption 3 will be discussed in more detail in the next section. It is a regularity condition
on the the error term e;;, and we give examples of error distributions that satisfy this condition in
appendix A. The final assumption needed for consistency is an assumption on the regressors Xj.

Assumption 4. We assume that the probability limit of the K x K matriz (NT)~! Do Xit Xy
exists and is positive definite, i.e. plimy . |(NT)™! Zf\; ZtT:l X X!, | > 0. In addition, we
assume that the K regressors can be decomposed into Ky low-rank regressors X;, | = 1,..., Ky, and
Ky = K — K1 high-rank regressors X,,, m = K+ 1,...,K. The two types of regressors satisfy:

(i) Consider linear combinations Xnigha = Zﬁ:}(lﬂ amXm of the high-rank regressors X, for

1For numerical purposes one should use the last expression in (2.4) if T is smaller than N. If T is larger than N one
should use the symmetry of the problem (N < T, A < f, Y < Y/, X}, < X} ) and calculate L7 (8) as the sum over

!
the N — R smallest eigenvalues of the N x N matrix (Y — Eszl ﬁka) (Y — Zszl ﬁka> .

2In principle we should write XIEN’T), eN.T) ANT) and FN.T)  because all these matrices, and even their dimen-
sions, are functions on N and 7', but we suppress this dependence throughout the paper.



Ky-vectors® o with ||a| = 1. We assume

- Xnigh, o Xpign
min Eigval, (W‘) >0 wpal.
{a€RKX2,|al|=1} i:2R§(1+1 NT
(i) For the low-rank regressors we assume rank(X;) =1,1=1,..., K, i.e. the they can be written
as X; = wy; for N x 1 vectors w; and T x 1 vectors v;, and we define the N x Ky matriz
w = (wy,...,wkg,) and the T x K1 matrizv = (v1,...,vk, ). We assume that there exists B > 0
(independent of N, T ) such that (a) N~ A\ M, \° > Bly wpal, and (b)) T=' f¥ M, f* > Blg

wpal.

The distinction between low-rank and high-rank regressors introduced in assumption 4 is essential
for showing consistency of the QMLE. The two most prominent examples of low-rank regressors are
time-invariant regressors, which satisfy X;;; = X, for all 4,¢,7, and common (or cross-sectionally
invariant) regressors, which satisfy X;;; = X;;; for all 4,j,t. To give another example of a low-
rank regressor, let D; = 1(i € A) and D; = 1(t € B) be dummy variables that indicate whether
individual ¢ is in A C {1,..., N} (group dummy), and whether ¢ is in B C {1,...,7} (e.g. monthly
dummy). The interacted dummy variable X; ;; = DZ-Dt then is a low-rank regressor, but is neither
time-invariant nor common. Interacted dummy variables of this sort appear frequently in “difference
in difference” estimation. In these examples, and probably for the vast majority of applications, the
low-rank regressors all satisfy rank(X; ;) = 1, as demanded in assumption 4. However, none of our
conclusions and proofs would be different if we allowed for low-rank regressors with rank larger than
one as long as their rank remains constant as N, T — oo0.*

The appearance of the factors and factor loadings in the assumption on the low-rank regressors
is inevitable in order to guarantee consistency. For example, consider a low-rank regressor that is
cross-sectionally independent and proportional to the r’th unobserved factor, e.g. X;;: = fi. The
corresponding regression coefficient 3; is then not identified, because the model is invariant under a
shift 8; — B, +a, Air — Air —a, for an arbitrary a € R. This phenomenon is well known from ordinary
fixed effect models, where the coefficients of time-invariant regressors are not identified. Assumption
4 (ii) therefore guarantees for X; = wjv] that w; is sufficiently different from A, and v; is sufficiently
different from f°. To get an intuition for this assumption, consider the smallest principal angles
0 20 and 0, o between the N-dimensional subspaces spanned by w and A\Y, and the T-dimensional
subspaces spanned by v and f°, respectively.® It turns out that assumption 4(ii) is equivalent to
demanding that both 6,, o > ¢ and 6, yo > ¢ hold wpal, for some constant ¢ > 0, i.e. the smallest
angle between the subspaces spanned by w and A is not allowed to converge to zero, and equivalently
for v and f9.5

A typical example of a high-rank regressor is one, where its distribution guarantees that it has full
rank asymptotically, e.g. Xy, i+ = 1 + Ziy, where Z;; ~ iid N'(0,1). However, a high-rank regressors
may still have a significant “low-rank component”, e.g. Xy, ¢+ =1+ Zi + )\?T f?r, where Z;; as above
and A\). and f2 are the r’th factor loading and factor.

Let the Ky x Ko matrix W be defined by Wi, m, = (NT) 'Tr(X,, X, ), €. it is a sub-matrix
of (NT)™! >t XitXj;. The no-collinearity condition plimy ., W > 0 would be equivalent to
assumption 4 (i) on the high-rank regressors if the sum over the eigenvalues in this assumption would

3The components of the Ka-vector a are denoted by a1 to ak.

4We would then have X; = wyv), where w; is a N X rank(X;) matrix, and v; is a T' x rank(X;). The definition of w
and v would remain the same, but they would be N X Rx and T X Rx matrices, where Rx = 21121 rank(X;) is the
sum over the rank of all low-rank regressors. In addition, we would have to make a slight change in assumption 4 (i) on
the high-rank regressors, namely replacing K71 by Rx, i.e. we would have Z£2R+RI+1.

5The concept of the principal angles between subspaces is a well known mathematical concept, see definition B.4
in the appendix. In the simplest case of only one factor (R = 1) and only one low-rank regressor (K; = 1) we have
0.0,x = arccos[w’ A/([[w][[[AIN] and 8, ; = arccos[o’ f/(JolllIF1])).

6This statement holds conditional on assumption 1 being satisfied. For details see theorem B.5 and the proof of
lemma C.2 in the appendix.



run from ¢ = 1 to N, because the sum over all eigenvalues of a matrix is just its trace. Assumption 4
(i) is stricter than that since the first 2R + K7 eigenvalues are omitted from the sum. An immediate
consequence is that high-rank regressors have to satisfy rank(X,,) > 2R + K, which explains their
name.

We can now state our consistency result for the QMLE.

Theorem 2.1. Let the assumptions 1, 2, 3, 4 be satisfied, and let the parameter set B be compact”
In the limit N,T — oo we then have
B — 8.

P

Bai (2009) also proves consistency of the QMLE of the interactive fixed effect model, but under
different assumptions on the regressors. He also employs, what we call assumption 1 and 2, and he uses
a low-level version of assumption 3.8 Bai (2009) demands the regressors to be strictly exogenous, but
for his consistency proof this assumption is not used. The real difference between our assumptions
and his is the treatment of high- and low-rank regressors. He gives a condition on the regressors
(his assumption A) that rules out low-rank regressors, i.e. that works for the case of only high-rank
regressors. This condition still involves A°, which we felt should better be avoided for the high-
rank regressors since A\’ is not observable.” In a separate section Bai (2009) gives a condition on
the regressors (in his notation D(F°) > 0) that is applicable in the case of only time-invariant and
common regressors, i.e. that does not guarantee consistency for high-rank regressors and for more
general low-rank regressors.!® In contrast, our assumption 4 allows for a combination of high- and low-
rank regressors, and for low-rank regressors that are more general than time-invariant and common
regressors.

3 Profile Quasi Likelihood Expansion

The last expression in equation (2.4) for the profile quasi likelihood function is on the one hand
very convenient, because it does not involve any minimization over continuous parameters A\ or f,
on the other hand, this does not seem like an expression that can be easily discussed by analytic
means, because in general there is no explicit formula for the n-th largest eigenvalue of a matrix. This
complicates the analysis of the asymptotic distribution of the QMLE, because it is not straightforward
how to compute derivatives in order to expand Ly (/3) around 3°.

The key idea of this paper is to use the perturbation theory of linear operators to perform the
expansion of Lyp () around 5%, More precisely, we expand simultaneously in 3 and in the operator
norm of the error term e. Let the K + 1 expansion parameters be defined by ¢y = |le||/v/NT and
€ = 62 — Bk, k=1,..., K (the sign convention here is chosen for convenience), and define the N x T
matrix Xo = (V' NT/|le||)e. With these definitions we obtain

1 K )\OfO/ K X
—[v- Xi | = T N L 3.1
VNT kZ:lﬂ R T UNT ;::O " VNT (31
and according to equation (2.4) the profile quasi likelihood function Lyz(8) can be written as the
sum over the T'— R smallest eigenvalues of this matrix multiplied with its transposed. We consider

"We assume compactness of B mainly to guarantee existence of B We also use boundedness of B in the consistency
proof, but only for those parameters 3;, | = 1...Kj, that correspond to low-rank regressors (see assumption 4).
Assuming boundedness of the parameter set simplifies the structure of the proof significantly, but the proof can be done
without this assumption, as long as existence of ,(AS’ is guaranteed.

8We state assumption 3 in a high-level format because the operator norm of e is important for our expansion of
L NT-

9 As argued above, for the low-rank regressors appearance of A and f© in assumption 4 (ii) is necessary to guarantee
consistency.

10Tn appendix ? we give two examples that show that Bai’s condition D(F°) > 0 does not guarantee consistency in
a more general case.



Zf:o € X./VNT as a small perturbation of the unperturbed matrix A°f%//NT. The goal is to
expand the profile quasi likelihood Lyt = Lyr(€) in the perturbation parameters € = (e, ..., €x),
i.e. in a neighborhood of € = 0 we want to write

] =KX K
Lyt (6) = w7 SN . €y €ng - v €y L (N0 O Xy Xy oo, X)) » (32)
g=1 k1=0 K2=0 Kg=0
where L9 = L(9) ()\0, f% X.,, Xuy,...,X,,) are the expansion coefficients.

Note that the unperturbed matrix A° f% /v/NT has rank R. Thus, the T — R smallest eigenvalues
of the unperturbed T' x T matrix fOAYA’fY/NT are all zero, and due to assumption 1 on X\’ and
f° we find that the R non-zero eigenvalues of this 7" x T matrix converge to positive constants as
N, T — oo. In more technical terms this means that the “separating distance” of the zero-eigenvalue
of the unperturbed T x T converges to a positive constant. Under this condition the perturbation
theory of linear operators guarantees that the above expansion of L7 in € exists and is convergent as

long as the operator norm of the perturbation matrix Zf:o €L \/)](VLT is smaller than the convergence
radius ro(A\’, f°). For details, see Kato (1980) and appendix D. In the appendix the convergence
radius 7"0()\0, f°) is defined and it is shown that under assumption 1 it converges to a positive constant
in probability as N,T — oc.

Thus, the above expansion of the profile quasi likelihood function is applicable whenever the

operator norm of the perturbation matrix Zf:() €k \/)](VLT is smaller than ro()\o, f9). Fortunately, when

evaluated at a consistent estimator 3 = /3 this is the case asymptotically. Note that || X, /v NT]|| = 0,1
for k =0,...,K. For k = 0 this is true by definition, and for k = k = 1,..., K this is satisfied due to
4, namely we have [ Xkl < HX;CHF = 0,(V/NT). In addition, assumption 3 guarantees that ¢y —, 0,
and for 8 = [ with j —p (% we also have ¢, —p 0 for &k = k = 1,..., K. Thus, the operator
norm of the perturbation converges to zero in probabﬂity if evaluated for a consistent estimator of 3.
This shows how our assumption on the model play together to guarantee that the above likelihood
expansion is valid asymptotically.'!

Perturbation theory (e.g. Kato (1980)) also provides an explicit formula for the expansion coeffi-
cients L9). For example, LM (X°) 0, X,.) =0, and L& (X°, f°, X,.,, X, ) = Tr(Myo X, Mo X[,).
The general formula is given in theorem D.2 in the appendix. Using this formula one can derive the
following bound

[ Xy || 1| Xk | ([ X, I
VNT VNT =~~~ NT '

where ayr and by are functions of \° and fO that converge to positive constants in probability, i.e.
anyT —p a > 0and byr —p b > 0. This bound on the coefficients L9 allows to work out a bound on

1
ﬁ ‘L(g) (on f07 Xﬂlv XK27 ... aXRg)

< ant (bnT)? (3.3)

the remainder term, when the likelihood expansion is truncated at a particular order.

3.1 Quadratic Approximation of the Likelihood Function

The assumptions on the model made so far are sufficient to expand Ly7(3) in (6—3°) and ||e|| /v NT.
But in order to cut the expansion in |le||/v NT at a finite order and be able to give a useful bound
on the remainder term, we need to strengthen assumption 3 slightly.

Assumption 3*. We assume that there exists a deterministic & yp and and a positive integer G such
that |le||/VNT = Op(Enr), for some series &yp that satisfies vV NT (fNT)G"‘ — 0as N, T — co.

Note that the value of the constant GG, not only depends on the distributional assumptions for the
error term e;;, but also on the particular convergence scheme of N and T'. For all examples of error

1 Note that all we need for this result is assumption 1, 3, || Xy || = Op(v/NT), and consistency of 3. However, in order
to achieve consistency of the QMLE we also have to impose assumption 2 and 4.



distributions given in appendix A we have ||e|| = O, (y/max(N,T)), i.e. &y = min(N,T)"z. There
is a large literature that studies the asymptotic behavior of the operator norm of random matrices,
see e.g. German (1980), Silverstein (1989), Bai, Silverstein, Yin (1988), Yin, Bai, and Krishnaiah
(1988), and Latala (2005). Loosely speaking, we expect the result |le|| = Op(y/max(N,T)) to hold as
long as the errors e;; have mean zero, uniformly bounded fourth moment, and weak time-serial and
cross-sectional correlation (in some well-defined sense, see the examples). Assuming this is satisfied
and considering the limit N,T — oo with N/T — k2, oo > k > 0, we find assumption 3* to be
satisfied with G, = 3.

We can now present the quadratic approximation of the profile quasi likelihood function Ly (3).

Theorem 3.1. Let assumptions 1, 3, and 4 be satisfied with G, > 3. Then, the profile quasi likelihood
function satisfies Ly7(8) = Ly n7(8) + InT + (NT)™! Rnr(83), where Int is independent of 3, the
remainder Ryt(0) is such that for any series nyp — 0 we have
R
sup B (B)] 5 =0p(1), (3.4)
{B:l18=B°l<nnr} (1 4+ +/NT ||g — 50H>

and Ly n7(B) is a second order polynomial in 3, namely

2
L = B=-8YwW -8 - —=— B-8YCnr. 3.5
onT(B) = (B=06") Wnr (B-15") m(ﬁ B7) Cnr (3.5)
with K x K matriz Wy = Wyr(\, f°,X) defined by W gk, = (NT)™H Tr(Mo X Myo Xy,),
and K-vector Cnp = C’NT(/\O,fO,e,X) gwen by Cnrj = Z?:ez c (/\O,f0 , X, e). The general
formula for the coefficients C'9) is C9) ()\0, 1O, Xy, e) = g(4NT)= /2 L(9) ()\0, % Xy, e, e, .. .,e),
with L9 defined in theorem D.2 of the appendiz. For g =2 and g = 3 we have

1
CP (N, £ Xy, e) = N Tr(Mpo €' Myo Xi) ,

1
CO N, 0, X, e) = — T | (eMyo ¢ Myo X fO (7 £0) 1 (A¥A%) "1 AY)

+ Tr (e/]\4>\0 ero X]/c )\O ()\OIAO)—l (fO/fO)—l fO/)
+ Tr (¢/Myo Xy Myo e’ N (AYA) 7L (fYFO) 71 ) | . (3.6)

In theorem D.2 of the appendix we give the general expansion of L7 (8) up to arbitrary orders in
B and e. We refer to Wy and Cnp as the approximated Hessian and the approximated score (at the
true parameter ﬁo). The exact Hessian and the exact score (at the true parameter ﬁo) contain higher
order expansion terms in e, but the expansion up the particular order above is sufficient to work out
the first order asymptotic theory of the QMLE.

Using the bound one the remainder Ry7(3) given in equation 3.4 one cannot infer any properties
of the score function, i.e. of the gradient VLy7(/), because nothing is said about VRy7(5). The
following theorem gives a bound on VRy7(3) that is needed to derive the limiting distribution of the
Lagrange multiplier test in the application section below.

Theorem 3.2. Under the assumptions of theorem 3.1 we can write the score function as

VIne(8) = 2War (8- 8°) — J% Cnt + (NT)" VR (8) |

where the remainder VRyT(0) satisfies for any sequence nyp — 0

IVRye @) _
p = 0p (1)
(B:18-8 | <nwz} VNT (1 +VNT || - ﬁOH)

Theorem 3.2 can be easily proven using our complete likelihood expansion.

(3.7)



3.2 Expansions of Projectors and Residuals

It is convenient to also have the asymptotic S-expansions of the projectors Mj(3) and M f(ﬁ) that

correspond to the minimizing parameters A(3) and f(3) in equation (2.4). Note that the minimizing
A(B) and f(B) can be defined for all values of 3, not only for the minimizing value 8 = 5. The
corresponding residuals are defined by

K
eB) =Y =Y B Xk — \B) f(B) . (3.8)
k=1

Theorem 3.3. Under assumption 1, 3, and 4 we have the following expansions

]~

My (8) = Myo + MY 4+ M

e Ae

(B — 82) M) + M"™ (8)

k=1
K
1 2 1 rem
My(B) = Myo + M 4 M — k (B = 82) ML)+ M ()

=1

K
&(B) = Myo e Myo + ) — N (8, — B9) &) + erem) () , (3.9)

k=1

where the operator norms of the remainders satisfy for any series ny — 0

[r @) _
5 <neny 15— B+ (VD) V2 el 5 — P + (D)5 e~ P
[pr ) _
15 <ne) T~ BT+ (NT) 2 el 15— 7 + (D)5 e~ P
su () _o,1),  (310)

p -
(5:18—-p0l<nyry (NT)Y28 = B2 + [le|l 15 = 871 + (NT) = e]?
and we have rank(é*™) < 6R PUT INTO PROOF!!!!, and the expansion coefficients are given by

M) = = Myoe fO (F7£0) 71 VAN TN = AT TN T (V0T e My

Milli = — Mo X) f° (fO/fo)q ()\0/)\0)75\0/ _ )\ (/\O/AO)—I (fO/fo)q £ X, Myo |
M§22 = Myoe fO(f% f0) (}\0/)\0)—1>\0/ e fO (fY o)1 ()\0/)\0)—1)\0/
+ )\O ()\0/)\0)—1 (fO/fO)—l fO/ e/ )\O ()\O/)\O)—l (fO/fO)—l fO/ €I M/\O
o M}\O erO e/ )\0 ()\0/)\0)71 (fO/fO)71 ()\O/AO)fl )\0/
_ )\O ()\0//\0)71 (fO/fO)71 ()\OIAO)fl >‘0/er0 e j\4}\0
_ M)\O €f0 (fO/fO)—l ()\0//\0)—1 (fO/fO)—l fO/ e/ ]\4}\0
F XAV O T Myo e fO(FVFO) T YA TN, (3.11)
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analogously

MJ(Elz _ —Mfo e A0 ()\O/AO)fl (fO/fO)flfO/ . fO (fO/fO)fl (/\0/>\0)71 )\O/ero 7

Mj(cllz — — Mjpo X}/C 20 ()\0/)\0)—1 (fO/fO)—lfO/ . fo (fO/fO)—l ()\0/)\0)—1 2\ ex Mo,

M}i) — Mf() el )\O ()\O/)\O)—l (fO/fO)—lfO/ e/ )\0 ()\0/)\0)—1 (fO/fO)—lfO/
4 fO (fO/fO)—l ()\0//\0)—1 )\0/ efO (fO/fO)—l ()\0//\0)—1 )\Olero
= Mo Myoe f (ffO)7H N7 (S £
_ fO (fO/fO)—l ()\O/)\O)—l (fO/fO)_l fO/ e M}\o ero
. Mfo e )\O ()\OIAO)fl (fO/fO)fl (/\O/)\O)fl /\Olero
4 fO (fO/fO)71 ()\OI/\O)fl )\0/ ero el AO (/\OIAO)fl (fOlfO)*lfO/ , (312)

and finally

eV = Myo Xy Mo |
éél) _ —M)\o era e )\O (}\0/)\0)71 (fO/fO)’l fO/
. )\O ()\O/)\O)fl (f()/f())fl f()/ 6l ]\4}\0 erO
— Myoe fO(fY )L (AYA) A" e Mo . (3.13)

In theorem D.2 of the appendix we give the general expansion of Mj(/3) up to arbitrary orders
in 8 and e. The general expansion of M f(ﬁ) can be obtained from the one for Mj(3) by applying
symmetry (N < T, A — f, Y - Y’ X < X}), and the general expansion for can be obtained via
e(p) = M5 (B) [Y - Zle B Xk}, with Y given in equation (2.2). For most purposed the expansions
up to the finite orders given above should be sufficient.

Having expansions for M3 () and M(3) we also have expansions for P5(3) = Iy — M;(f) and
Pf(ﬁ) =Ir—M f(ﬂ) The reason why we give expansions of the projectors and not expansions of 5\(5)
and f (B) directly is that for the latter we would need to specify a normalization, while the projectors
are independent of any normalization choice. An expansion for 5\(6) can for example be defined by
AB) = P;(3)A°, in which case the normalization of A(f) is implicitly defined by the normalization of
A0

The expansions are very useful. In the present paper we make use of the expansions in theorem 3.3
in order to derive the properties of the variance and bias estimates of the QMLE below, i.e. of objects
that contain the estimates Mj(3), M f(ﬂ), and é. More generally, one can use these expansions
in situations where \ and f are still defined as principal components estimators (i.e. eigenvectors
corresponding to the largest eigenvalues of the sample covariance matrix), but where a different
estimator for S (not the QMLE) is used. For those alternative estimators the likelihood expansion in
theorem 3.1 is irrelevant, but the expansions 3.3 are still applicable as long as principal components
are used to estimate factors and factor loadings.

3.3 Remarks
vV NT-consistency of the QMLE

The following corollary is the key for working out the asymptotic distribution of the QMLE.

Corollary 3.4. Under the assumptions of the theorems 2.1 and 3.1, and assuming that 3° is an
interior point of the parameter set B we have v NT (Bkl — 621) = WxyrCnr + 0,(1).

Andrews (1999) provides a general discussion of the limiting distribution of extremum estima-
tors. Once consistency of the QMLE is established, and the profile quasi likelihood expansion in
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theorem 3.1 is derived, one obtains the above corollary by applying theorem 3 in Andrews (1999).
Defining the unrestricted minimizer of the quadratic approximation of the objective function g3, =
argmingeprx Lg N7 (3), we find v/ NT(f)’q -p% = Wﬁilp CnNT, i.e. the statement of the corollary can be

rewritten as vV NT (3 - ﬂo) =VvNT (Bq - 5()) + 0p(1). Thus, the bound on the remainder Ry7(5)

in the profile quasi likelihood expansion is such that asymptotic distribution of B is given by the
one of #,. The assumptions on the model made so far guarantee that W&% = 0,(1), i.e. a direct
consequence of the corollary is that the QMLE 3 is v/ NT-consistent if and only if Cyr = Op(1).

Asymptotic Bias of the QMLE

Corollary 3.4 is a can be used to derive the limiting distribution of the QMLE B under different
distributional assumptions on A°, fO, e, and Xj, and for different asymptotics T, N — oco. The
restriction on e and X made to derive the corollary still allow for very general cross-sectional and
time-serial correlation of the errors, and for very general weakly exogenous regressors. In order to
actually compute the limiting distribution of B more specific assumptions on \°, 19, e, and X}, have to
me made, depending on the particular application in mind. A concrete example of these more specific
assumptions is given in the application section below.

It is natural to assume that the approximated Hessian Wi converges to a constant matrix in
probability as N, T — oo, see also Bai (2009). Thus, according to corollary 3.4 the asymptotic distri-
bution of B is up to a matrix multiplication given by the asymptotic distribution of the approximated
score C'yp. Asymptotic bias of [3 therefore corresponds to asymptotic bias of Cyr, and we now give
an informal discussion of the different bias terms that can occur.

According to theorem 3.1 the approximated score is proportional to the sum over the terms
c) (/\0, f°, Xy, e) from g = 2 to G.. In the following we restrict attention to the terms g = 2
and ¢ = 3, and discuss under what conditions these terms contribute an asymptotic bias to the
QMLE. As discussed previously, for ||| = Op(max(N,T)) and N/T — k2, co > £ > 0, asymptoti-
cally we have G, = 3, i.e. under these conditions higher order score terms do not contribute to the
limiting distribution of B In the following we always treat A% and f° as non-stochastic.

We start with the discussion of the C'®) term. If the regressors X are strictly exogenous we have
EC® (X%, f°, Xy, e) = 0, i.e. no asymptotic bias originates from C® in this case. However, if the
regressors are weakly exogenous we have!?

E [C@) (X°, £°, Xy, e)} =— \/?Tr |:PfoE (;[e’xk)] - \/zTr [PXDE (;eX,’Cﬂ +o(1)

N LT 1 &
I \/;ZZ Pfo,tTN;E(eith:iT)

t=171=1

T N N 1 T
B \/; Z Z Pyo i T Z]E (est Xk jt) +o(1) . (3.14)
' t=1

i=1 j=1

To better understand the structure of these bias terms, consider model 2.2 and assume f° is
known. By multiplying with Mo from the right we eliminate the factor term and obtain Y Mo =
fo:l BpXpMgo + eMyo. The OLS estimator (which is also the QMLE) of this equation satis-
fies VNT(B), — ﬁgl) = Zki:ﬂvz\?”}]hkz (NT)_l/QTI‘(Mfoe/Xk2), where the K x K matrix Vyr is
defined by Vrik, = (NT) 'Tr(Xg, Mpo X} ). Assuming that Viyp converges to a positive def-
inite matrix V in probability, we thus find that under weak exogeneity E \/NT(B,C1 - 521) =
- Z,i:l[V’l]klkgE [(NT)~Y/2Tr(Pyoe’ Xy, )] +0(1). Thus, the first type of bias we found in equation
(3.14) also appears in a factor model in which the factors are observed. Such a model is the standard

2Here we assumed that E [(NT)’l/QTr(Pfo e’ Pyo Xk)] = o(1), which can be shown to be true under additional

assumptions on e and Xg, and for N and T growing at the same rate, see section 4.1.
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fixed effect model if R = 1 and f° = (1,1,...,1)". For a dynamic fixed effect model this bias of
the OLS estimator is well known (for fixed T asymptotics it causes inconsistency), and the standard
remedy is to use IV and GMM estimators, see e.g. Arellano and Bond (1991). Hahn and Kuersteiner
(2002) use the asymptotics N,T — oo to characterize this bias in dynamic fixed effect models and in
order to work out a biased corrected estimator. We follow the same strategy for the interactive fixed
effect model.

The expectation value of the first term in (3.14) has a non-zero probability limit if X}, ;; is correlated
with e;, for t > 7. For example, in the AR(1) model Y;; = 8Yi+—1 + A fi + €, assuming one factor
(R = 1) that is constant, i.e. f° = (1,1,...,1)’, and —1 < 3 < 1, and e;; independent across i
and t with mean zero and variance o2, we find Tr [PpoE (N7’ Y_)] = 028(1 — B)~' + o(1). In
addition, there is the pre-factor \/N/T. Thus, if T grows at a faster rate than N this asymptotic bias
due to weak exogeneity vanishes; if N grows at a faster rate than 7' then the QMLE is not v NT-
consistent, unless strict exogeneity is assumed; and if N and T grow at the same rate the QMLE is
V' NT-consistent, but biased.

The model is symmetric under N « T, A — f9, Xj, < Xy and e < €. Theoretically, the
discussion of the second term in (3.14) is therefore analogous to that of the first term, i.e. the second
term also describes a bias that is due to weak exogeneity, but that is increasing in /7T/N. However,
practically this bias is probably less relevant, since for most applications it does not seem reasonable
to assume that e;; is uncorrelated with X;; (weak exogeneity) but correlated with X, for ¢ # j (which
is the source of this second type of bias due to weak exogeneity). Nevertheless, in some applications
this my be the case, e.g. when the dependent variable Y;; for unit i appears as a regressors in the
equation for Yj; of unit j # i.'3

For the discussion of the C®) terms, we assume for simplicity that the regressors X} are strictly
exogenous and non-stochastic. We then havel4

E[CO) (X, 1°, X, )] = \/zTr {AO'E <;eel> Mo X, £ (F7 1) (AO’AO)l}

By 175 (g ) Mo X OO () o)
(3.15)

These are the two bias terms that were already found by Bai (2009). For error terms e;; that are
cross-sectionally independent and homoscedastic we have E (T “lee! ) = Iy, and the first bias term
in equation (3.15) then is zero since M v = 0. However, under cross-sectional correlation or
heteroscedasticity of e;; this bias term is non-zero. Analogously, for errors e;; that are time-serial
independent and homoscedastic we have E (N —le e) = Ip, i.e. the second bias term in equation
(3.15) is zero. This term contributes asymptotic bias to the QMLE only under time-serial correlation
or heteroscedasticity.

Thus, if e; is iid across i and ¢ we expect no asymptotic bias from the C® terms (this is true
even if regressors are not strictly exogenous), but there may still be asymptotic bias from the c®
term due to weak exogeneity.

13For this to be consistent with weak exogeneity we need a partial ordering on the cross-sectional labels so that Yy
only appears in the equation for Yj; if i > j.

Here we assume that Tr (ePfo e Myo Xy fO(fOf0)=1 (A¥A0)—1 )\O’> = op(1),
Tr (¢ Pyo € Mpo X} A0 AOXO) 71 (£ £0) 71 £9) = 0,(1), and Tr (&' Myo Xg Myo e/ A% (\YX0) 1 (f0/f0)~1 ) =
op(1). In the application section below we give an example of low-level assumptions on e and Xj under which

this is true. In general, the above equations are satisfied as soon as one can show that ||[PyoePyo|| = Op(1), and

|PyoeX} || = Op(VNT).
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4 Applications of the Likelihood Expansion

4.1 Asymptotic Distribution and Bias Correction of the QMLE

In this subsection we apply corollary 3.4 to work our the asymptotic distribution of the QMLE 3, and
to correct for the asymptotic bias. For this purpose the assumptions 1 to 4 made on the model so
far are too weak, i.e. more specific assumptions on )\?7 £, X}, and e have to be made, and also the
asymptotics V,T — oo has to be specified further. These additional specifications can be made very
differently, depending on the particular empirical application one has in mind. The assumptions we
make in the following are clearly restrictive, but they still capture a large class of relevant models.

Assumption 5.

(i) In addition to assumption 1 on \° and f° we assume that |\Y|| and || f°| are uniformly bounded
across i,t and N, T.

(ii) The errors ey are independent across i and t, they satisfy Ee;; = 0, and the eighth moment Ee8,
18 bounded uniformly across i,t and N,T.

(iii) In addition to assumption 4, we assume that the regressors Xy, k= 1,..., K, can be decomposed
as Xp = Xt + XPeak. The component X5¥ is strictly ezogenous, i.e. X34 is independent of
ejr for alli,j,t,7. The component X,Z"eak is weakly exogenous, and more specifically we assume

t—1
eak
X = Z Chyit €it—1 » (4.1)
T=1

for some coefficients cy, i+ that satisfy
|ckir| < a7, (4.2)

where « € (0,1) is a constant that is independent of T =1...,T—1,k=1...K andi=1...N.
We also assume that E(thjt)s s bounded uniformly over i,t and N,T.

(iv) We consider a limit N,T — oo with N/T — k2, where 0 < k < 00.

Assumption 5(i) is needed in order to calculate probability limits of expressions that involve )\?
and f?. One could weaken this assumption and only ask for existence and boundedness of some
higher moments of ! and f°, but the assumptions as it is now is very convenient from a theoretical
perspective, e.g. it guarantees that Pjo ;. is of order 1/T uniformly across t,7 and 7.

Assumption 5(ii) requires cross-sectional and time-serial independence of e;;, but heteroscedasticity
in both directions is still allowed, i.e. we still expect an asymptotic bias of the QMLE due to the C'®)
term. In the appendix we show that assumption 5(ii) guarantees that |le]| = Op(max(N,T)), i.e. for
the asymptotics N, T — oo that is specified in assumption 5(iv) we find assumption 3* to be satisfied
with G, = 3. Assumption 2 is also satisfied as a consequence of assumption 5, 7.e. assumption 5
guarantees that our quadratic expansion of the profile quasi likelihood function is applicable.

Assumption 5(iii) requires that the regressors X are additively separable into a strictly and a
weakly exogenous component and assumes that the weakly exogenous component can be written as
an MA (0o) process with innovation e;;.!> An example where this is satisfied is if the interactive fixed
effect model is just one equation of a vector auto-regression for each cross-sectional unit, e.g. for the
VAR(1) case we would have

Y; Y1 A f? 1 0 (e
=B ’ g 4.
(Zi > <Zi,t1) - < di i I I uir) (43)

15 Actually, X,‘g’c“k is only a truncated MA(oco) process, because it only depends on e;; for ¢ > 1, but not on e;
for i < 0. However, one can define the decomposition Xj = X2k 4 X" where Xeak = 3°%° | ¢; e~ is a
non-truncated MA(oco) process with innovation e, and X5 = X3t — $°°°

224 Ch,ir €i,t—r is still strictly exogenous.
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where Z;; is a r x 1 vector of additional variables, B is (r+1) x (r+ 1) matrix of parameters, the r x 1
vectors d;; and u;; are independent of e;;, and I is a r X r covariance matrix. Here we already applied
a Cholesky decomposition to the general form of the innovation of a VAR model in order to single our
the shocks e;; that are genuine to Y;;.'6 The first row in equation (4.3) is our interactive factor model
with regressors Y; ;1 and Z;,_1, and due to the structure of the VAR process these regressors have
a decomposition into strictly and weakly exogenous regressors as demanded in assumption 5(iii). The
generalization of this example to VAR processes of higher order is straitforward.

Assumption 5 is not yet sufficient do guarantee existence of a limiting distribution of the QMLE
[3. What is missing is the following condition that guarantees that the limiting variance and the
asymptotic bias converge to constant values.

Assumption 6. Let X, = My X" Mo + X,?eak and for each i,t define the K-vector X;; =
(%1,ity---, Xkit). The K x K matrices W and 2, and the K-vectors By, By and Bs, are defined
below, and we assume that they exist:

1 N T
W = plim —; X Xy,
N, NT ; ; t
1 N T
Q= plim — E [e2, X X))
JBim N 2 2 B [oh X X
1
Bip = plim — Tr [PpE (¢/Xeak)] |
Lk NI,)THOON [PpolE (X))
1
By = plim —Tr[E(ee’) Myo X fO(f7f0) 1 (AYA%)1AY]
N.T—o0 1
1
B37k:Np}im NT v [E(e'e) Mo X3/ N0 (AYA0) 7 (fY )7L f] . (4.4)

We now have all assumptions that are needed to derive the asymptotic distribution of 8.

Theorem 4.1. Let assumption 5 and 6 be satisfied, and let the true parameter B° be an interior point
of the compact parameter set B. Then we have

\/W(B—ﬁo) SN (WB, waw ), (4.5)

where B = —kB; — k~'By — kB;.

From corollary 3.4 we already know that the limiting distribution of 3 is given by the limiting
distribution of Wy1.Cnr. To proof theorem 4.1 one first has to show that W = plim N.T—o0 WNT-
We could have defined W this way, but the definition given in assumption 6 is equivalent, although
the equivalence is non-trivial since in Xj the weakly exogenous part is not projected with Myo and
Myo. The intuition here is that since by assumption X,‘j’eak is uncorrelated with A\ and f9 it does not
matter whether the corresponding subspaces (of fixed dimension) are projected out of X,‘Q’eak (whose
dimension grows to infinity). For the strictly exogenous part of the regressors this is different, because
X3 can be correlated with A% and f°, and may have a significant part that is proportional to A\° and
f© and that is projected out by M fo and Myo. For later applications the definition of W given in
assumption 6 may be easier to evaluate (e.g. in a lagged dependent variable model we have X;* = 0.)
Note that assumption 4 guarantees that W is positive definite.

The second step in proving the theorem is to show that the approximated score at the true pa-
rameter satisfies Cyr —4 N (B, ). The asymptotic variance {2 and the asymptotic bias B; originate
exclusively from the C® term. The strictly exogenous part of the regressors only contributes to the

160 guarantee independence (not merely uncorrelatetness) of e;; and u;¢ one has to assume normally distributed
errors in this example.
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asymptotic variance, but the weakly exogenous part contributes to both, namely to the asymptotic
variance via the term Tr(e’X;***¥) and to the bias By via the term Tr(Pjo ¢’ X}'°**). The bias By is
due to correlation of the errors e;; and the regressors Xy, ;- in the time direction (for 7 > t). In section
3.3 we also discussed a bias to to correlation of errors and regressors in the cross-sectional dimension,
but here we assume cross-sectional independence, i.e. this second type of bias is not present.

The three C® terms contribute no variance, i.e. they converge to constants in probability. One
C®) is vanishing, an the other two contribute the asymptotic biases By and Bs that are due to cross-
sectional and time-serial heteroscedasticity. Note that the weakly exogenous part regressors does not
contribute to By and Bs.

In order to express our estimators for asymptotic bias and asymptotic variance we first have to
introduce some notation.

Definition 4.2. Let n; and 1, be the N and T-dimensional unit column vectors that have unity at
position i and t, respectively, and zeros everywhere else. Let T'(.) be a well-behaved Kernel function'”
with I'(0) =1 ?, and let M be a bandwidth parameter that depends on N and T. For an N x N matriz
A and a T x T matriz B we define

(i) the diagonal truncation A*W9neP = Zfil n; 1 Am;nl, BEweD = Zle 0, 1y Bnyny.
(ii) the right-sided and left-sided Kernel truncation B¥"°R = tT;ll ZZ:H_l U (5F) nyn, B,
run T -1 -7
Bl = 570 S T (57) men B o
We now define our estimators for W, Q, By, By and Bs.
Definition 4.3. Let .’%k(ﬁ) = M;(B) Xk Mf(ﬁ), and for each i,t define the K-vector .’%ﬁzt(ﬁ) =

(X14(B), ..., Xxu(B)). We define the K x K matrices W(3) and Q(8), and the K-vectors By (),
By(3) and Bs(3) as follows

R 1 N T ) R
W(ﬂ) = ﬁ Z Z xltx;t )
=1 t=1
~ 1 N T .
Q(B) = NT Z Z é?txzt ;t )
=1 t=1
Bl,k(ﬂ) _ %Tr [PA(é/X )truncR} ’
Bos(B) = T [(6e)™ P 0y X F () WA
By(9) = T [(¢ &)™ M Xp AR (1) 7] (46)

where we suppressed the B-dependence of X, é, f, and \ on the right hand side.'®

The estimators above are dependent on 3, since one needs an estimator for 3 in order to obtain
the residuals é and the estimators for the factors and factor loadings.

Theorem 4.4. Under assumption 5 and 6, for M — oo and M®/T — 0, and for any v/ NT-consistent
estimator 3 = 3°+O,((NT)~'/2) we have W (B) = W 40,(1), Q(B) = Q+0,(1), B(8) = By +0,(1),
Bg(ﬂ) = BQ + Op(l), and Bg(ﬂ) = Bg + Op(].).

Note that the assumption M®/T — 0 can be relaxed if additional higher moment restrictions on e;;
and X}, ;+ are imposed. We can now present our bias corrected estimator and its limiting distribution.

I7For the proofs of the theorems we use the truncation Kernel which is defined by I'(z) = 1 for ||z|| < 1, and T'(z) = 0
otherwise, but this is only to simplify notation. Other Kernel functions could be used.

18Here f(8) and A(B) are the principal component estimators defined above, and é(3) are the corresponding residuals
defined in equation (3.8).
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Corollary 4.5. Under assumption 5 and 6, for ° being an interior point of the compact parameter
set B, and for M — oo and M®/T — 0 we find that the bias corrected QMLE

Ak

B =B+ W (B) (T Bu(B) + N7 Ba(B) + T Ba(3))
satisfies VNT (B* - BO) —a N (0, WtQw1).

According to theorem 4.4 a consistent estimator of the asymptotic variance of f?* is given by

W=H(B) QB W (B).

4.2 Asymptotic Distribution when the True Parameter is on the Boundary

In corollary 4.5 we gave a bias corrected estimator B* and its limiting distribution under the assumption
that 8% is an interior point of the parameter set B, i.e. when locally there are no parameter restriction
on B. In the present subsection we discuss situations where 8° is on the boundary of the B, i.e.
when local parameter restrictions are present. In this case, one can use the result of Andrews (1999)
to obtain the limiting distribution of the QMLE, once the quadratic expansion of the profile quasi
likelihood function is obtained and the limiting distribution of the approximated score and Hessian are
derived, and it is not difficult to apply Andrews’ method also to the derive the limiting distribution
of an appropriately defined “bias corrected” QMLE. The following assumption will be used in this
subsection and in the next one.

Assumption 7.

(i) We have a scalar objective function Ly7(3) that is used to estimate the parameter 3 € B C R,
whose true value B° € B. We assume that the objective function has an asymptotic quadratic
expansion of the form Lnyt(8) = Lon1(B) + InT + 57 Rnr(3), where Iny is independent
of B, the remainder Ry (8) satisfies the condition in equation (3.4), and Lo nT(8) = (8 —
B Wt (8= 3% — 2(NT)~'/2 (8 — 8°) Cnr is a second order polynomial.

(i) We consider a limit N,T — oo, which may satisfy additional restrictions (e.g. N/T — const.).
For this asymptotics, we assume that there exist positive definite K x K matrices  and W and
a K-vector B such that the approzimated Hessian Wt and the approximated score Cnr satisfy
Wyt —p W, and Cnr —4q C, where C ~ N (B, Q).

(iii) We assume that the estimator (3 that minimizes Lyr(0) subject to 8 € B is consistent.

(iv) We have estimators W(3), Q(B) and B(B) that are consistent for W, Q and B when evaluated
for any V' NT -consistent estimator of °.

Assumption 7 can be satisfied in the interactive fixed effect model for different estimators of W,
Q and B, and under different assumptions on \°, 9, X, and e. In the last subsection we presented
a concrete example for which the assumption holds, namely for the estimators in definition 4.3, and
under the assumptions of corollary 4.5, but for assumption 7 to be satisfied it is not necessary that
(° is an interior point of B.

In this section we want to discuss the limiting distribution of the QMLE for cases where 6% is on
the boundary of the parameter set B. More specifically, we consider the case where B — 3° is locally
approximated by a convex cone A C RE. We refer to Andrews (1999) for the definition of “locally
approximated”. A special case is when B — 3° is locally equal to a cone A C RE | i.e. if there exists
€ > 0 such that B(0,e) N (B — 3°) = B(0,¢) N A, where B(0,€) is the ball with radius e around the
origin. Remember that A C RX is a cone iff az € A for every @ > 0 and z € A, d.e. it is invariant
under rescalings with positive scaling factor that are centered at the origin. Whenever 3° € B and B
is defined by equality and inequality constraints on linear combinations of 3 we find that B — 8° is

17



locally equal to a convex cone. Under non-linear equality and inequality constraints one usually finds
B—3° is locally approximated by a convex cone A C RX.

When 3° is on the boundary of the parameter set it is not guaranteed that the bias corrected esti-
mator [3* defined in corollary 4.5 satisfies B* € B asymptotically.'® We therefore define an alternative
“bias corrected” estimator by2°

B” = argmin Lii2(6), Nr(8) = Ly [B+ (ND)TPWINB BB . @)
where B is the QMLE that minimizes Ly7(3) subject to § € B, i.e. B** is defined by a two-step
minimization procedure. The estimator B** is bias corrected in the sense that its limiting distribution
is the one that the QMLE B would have if the asymptotic bias of the score would be vanishing, i.e. if
B = 0. However, @** usually has an asymptotic bias since its limiting distribution is a projection (or
truncation) of a multivariate normal distribution, as described in the theorem below.

In order to describe the limiting distributions of B and 3** it is convenient to introduce the
function I,(¢) = ¢'W¢ — 2¢'C for ¢ € RE. For all ¢ € R we find that under assumption 7 we have
NT [Ln7(Byz) — Lnr(8%)] —a lg(¢) for Byp = B° + (NT)~/24. Thus, I,(¢) is the limit of the
appropriately rescaled profile quasi likelihood function when holding ¢ = vV NT(3 — °) fixed.

Theorem 4.6. Let assumption 7 be satisfied and let B—3° be locally approzimated by a closed convex
cone A C R¥. Define the random variables ® = argmin e (), and ®** = argmin e l,(¢+W ' B).

Then VNT (3=4°) —a @, VNT (87 =) =4 @™, NT Lyt (B) = Lnr (8)] —a lo(®),
NT [L}‘V*T (ﬁ) e (ﬁo)} —d 1g(®* + WIB) — 1, (W-1B).

Theorem 4.6 is a special case of theorem 3 in Andrews (1999). Although Andrews does not
explicitly consider bias correction, it is easy to check that both objective functions Ly7(8) and
L3 (8) satisfy the assumptions necessary to apply Andrews’ theorem for the limiting distributions.

By writing the limiting distribution of the approximated score as C' = B+ QY22 where Zx is a
K-dimensional standard normal distribution, we can give slightly more explicit expressions for ® and
®** namely

!/
& = argmin {qb W YB+ Ql/QZK)} W [qﬁ — WY B+ Q22|
PEA
!
®** = argmin [qs - W‘lQl/ZZK] W [¢ - W‘lQl/QZK] . (4.8)
PpEA
Thus, the asymptotic distribution of v N T(B — 3% is given by the orthogonal projection (relative to
the metric W) of W=H(B + QY2Zg) ~ N(W™'B, W'QW 1) onto the cone A. For interior points
of A the distribution of vV NT (3 — 3°) is the same as for N(W 1B, W=1QW 1), but for a point on
the boundary of A the distribution is given by an integral over those points that are projected on this
point. The distribution for v NT(3 — °) is given by almost the same formula, but without bias B.
In the one-dimensional case (K = 1) the only non-trivial closed cones are A = [0, 00) and A = (—o0, 0],
i.e. the distributions of vV NT(3 — °) and VNT(3 — ") are truncated normal distributions.

4.3 Hypothesis Testing

For our interactive fixed effect model, we now want to discuss the three classical test statistics for
testing a general linear restriction on 3, i.e. the null-hypothesis is Hy : H 3% = h, and the alternative

19Fven when 80 is an interior point of B one may not have B* € B at finite sample, i.e. the estimator B** can be
useful also in this case.

20 Alternatively one could define the new “bias corrected” estimator by using the bias corrected QMLE ,3* that is
obtained without imposing any local restrictions on 3, and whose limiting distribution is given in corollary 4.5 above
(the parameter set B used in the corollary is different from the one we consider now). By defining the new estimator as a
mir}iinizer of (B" = B)W(B™)(B" — B) subject to 8 € B, one obtains an estimator that has the same limiting distribution
as [ *.
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is H, : HpB° # h, where H is a r x K matrix of rank r < K, and h is a r x 1 vector. For easy of
exposition we restrict the presentation to a linear hypothesis, but using the tools provided above one
can generalize the discussion to the testing of non-linear hypotheses. Using the expansion Ly7(3)
one can also discuss testing when the true parameter is on the boundary, see Andrews (2001).

Throughout this subsection we assume that 4% is an interior point of B, i.e. there are no local
restrictions on (§ as long as the null-hypothesis is not imposed. The limiting distribution of the unre-
stricted estimator § = argmingep Lyt () was given in theorem 4.1 for a specific set of assumptions
on A, f° X, and e. But the result VNT (B — 50) —q N (W™IB, W-1QW~1) holds whenever
assumption 7 is satisfied, because the unrestricted case is the special case of theorem 4.6 for which
A=RE jie ®=W"1C.

We define the restricted estimator by 3 = argming g Lyt (8), where B = {8 € B|HB = h} is the
restricted parameter set. Note that B— g% is locally equal to the r-dimensional subspace A = {¢ €
RX| Hp = 0}, which is a special case of a convex cone, i.e. one can apply theorem 4.6 to obtain the lim-
iting distribution of 3. One finds VNT(3 — 3°) —4 ®, with & = argmin ly(¢p) =W 1C, and W~ =
W= — W H (HW ' H')""HW 12! Therefore VNT(3 — 3°) —q N (26-'B, -1 Q~1).22

‘Wald Test

Using the results above we find that under the null-hypothesis v NT (H @ — h) is asymptotically

distributed as N (HW~'B, HW ' QW ~'H’). Thus, due to the presence of the bias B, the standard
. / . -1,

Wald test statistics WDy = NT (Hﬂ - h) (HVV*1 Q W’lH’) (H,B - h) is not asymptotically

X2 distributed. Using our estimator for the bias it is natural to define the bias corrected Wald test
statistics as

WDk = [VNT (5 - ) - w8 (mi— Q=) [VNT (1p - 1) - miv—5]
(4.9)

and under the null hypothesis we find W D%, —q4 X2 if assumption 7 is satisfied. Here we used
B = B(3), W = W(j3), and Q = Q(3).

Likelihood Ratio Test

For the discussion of the LR test we have to assume that {2 = ¢W for some scalar constant ¢ > 0,
and that we have a consistent estimator ¢ for ¢. This condition is satisfied in our interactive fixed
effect model if assumption 5 and 6 hold, and if Ee? = 02 = ¢, i.e. if there is no heteroscedasticity. A
consistent estimator for ¢ in this context is ¢ = 6% = (NT)~! Zfil Zthl it

The likelihood ratio test statistics is defined by LRy1 = ¢ ! NT [LNT (B) — Lyt (ﬁ)] . Applying

theorem 4.6 we find that under assumption 7 we have
LRyp — ¢! [l((i)) - 1(@)} = L o) — (W to)]
= c'OWH'(HWH) "'t HW~!C . (4.10)

This is the same limiting distribution that one finds for the Wald test under Q = ¢W (in fact, one
can show WDy = LRyT + 0,(1)), i.e. we need to define a bias correction for LR test in order to
achieve a x? limiting distribution.

21By definition we have & = My, g W~1C, where My gr =k —~W=IH'(HW~YH')~1H is the orthogonal projector
onto the subspace A with respect to the metric W. One can easily check that the projector My f/ as given here has all
the required properties, namely H My, g7 = 0 (thus, (Myy, g/ ¢) € Aforall ¢ € RX), (MW,H/)2 = Myy, g+ (idempotence),
Tr(Myy, ) = K — r (projector on K — r dimensional subspace), and M‘//V,H’W(HK — My /) = 0 (orthogonality wrt
to W). Note that My g = My if W =1If.

22For the K x K covariance matrix given here we have rank(20-1Q20~!) = K — r, because H20~! = 0. The
asymptotic distribution of \/ﬁ(,@ — /BO) is therefore K — r dimensional with support A.

19



It is natural to base the bias corrected LR test on the objective function L}/ used above to define
the biased corrected estimator 3**. Thus, we define

* =1 i —1/213 1R\ _ —1/278-1 A
LRyp (BeB| Hh=h) Lt <B +(NT)™/"W B) min Lyt (5 + (NT)"/*W B)] 7

(4.11)

where B = B (B) and W = W(B) do not depend on the parameter 3 in the minimization problem.??
Asymptotically we have mingeg Lyr <ﬁ+ (NT)_l/QW_lé) = Lyr(fB), because § € B does not
impose local constraints, i.e. close to 8° it does not matter for the value of the minimum whether one
minimizes over § or over 8+ (N T)_l/ 2)/ =1 B. The correction to the LR test therefore originates from
the first term in LR},,. For the minimization over the restricted parameter set it matters whether the
argument of Lyr is 3 or §+ (NT)~Y2W 1B, because generically we have HW !B # 0 (otherwise
no correction would be necessary for the LR statistics).
Using theorem 4.6 one finds

—1

LR; i “'B)—1(®
Ryt — {¢ER21‘12¢:0}Z (¢+W™'B) —1(D)
=c ' (W (C-B)+W™'B)-1(W'0)]
=c YO -BYWH(HW'H)"'"HW~(C - B), (4.12)

i.e. we obtain the same formula as for LRy7, but the limit of the score C' is replaced by the bias
corrected term C' — B. Under assumption 7 we therefore find LR}y, —a X2. One can show that
LRy = WD}y + op(1).

Lagrange Multiplier Test

Using the bound on VR 7 given in theorem 3.2 and the fact that the restricted estimator Bis VNT-

consistent, we immediately find \/WVLNT(B) = \/JWVL,LNT(B)—i—op(l). We have \/WVL%NT(B) =

ZWWNT(B—BO) —2CnNT, and under assumption 7 we showed that \/W(B—ﬂo) —q 2~ 1C. There-

fore we find VNTV Lyr(3) —q —2H' (HW - H)"'HW~'C, and VNTHW 'V Ly7(B) —a —2HW'C.
The LM test statistics is given by LMyp = NT/4V Lyp(8)W *H'(HW *QW " H)"'HW ~'V Lyx7(3),

where B = B(3), W = W(3) and Q = Q(B). One can be show that the LM test is asymptotically

equivalent to the Wald test: LMyp = WDyn7 + 0,(1), i.e. again bias correction is necessary. We

define the bias corrected LM test statistics as2*

LM = % (VNTVLynr(B)+B)WTH' (HW QW LH ) 'HW Y(VNT VLNr(B) + B) ,
(4.13)

Under the null hypothesis, if assumption 7 holds, and if Ryr(3) satisfies the bound in equation 3.7
we have LM ¥ —a X2

In order to apply LM as defined above one needs the gradient of Lyr(5) at (3. Since no explicit
expression for the derivatives of Ly (8) exists, the gradient needs to be calculated numerically, which
may be inconvenient. We therefore propose to use an approximation of the gradient that is much
easier to compute. Define the K-vector VLyr(8) by (VLn7(8))r = —2Tr(X&(B)) for k=1,..., K,
and define the modified bias corrected LM test as

LM, = i (VNT VLyr(B)+B)W'H'(HW QW H') ' HW " (VNT VLyr(3) + B) .
(4.14)

23Here one could also use B(3) and W (3) as estimates B and W, but these estimators are not consistent if the null
hypothesis is false. Since we want to test properties of the regression parameters and not properties of the estimators
B and W, it is reasonable to use estimators that are robust towards violation of Hy.

24 Alternatively, one could define the bias corrected LM test as LMy = NT/4 VLNT(B +
WIBYW—1H (HW-1QW1H')"'HW ~'VLxr(3+ W~1B) and would obtain the same limiting distribution.
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Theorem 4.7. Let assumption ? be satisfied, and let 3 be an estimator that satisfies v/ NT(B—ﬁO) =
op(1). Then we have VNTVLnr(8) = VNTVLnT(8) + 0,(1).

This theorem guarantees that LM 3% has the same limiting distribution as LM}, i.e. LM —a X2

5 Conclusions

For the interactive fixed effect model (2.1) we provide a methodology that uses the perturbation theory
of linear operators to expand the profile quasi likelihood function Ly7(8) around the true regression
parameter 3°. In particular, we work out the quadratic expansion that of Lyp (8) and show how it can
be used to derive the first order asymptotic theory of the QMLE of # under the alternative asymptotic
N, T — oo. It is found that the QMLE can be asymptotically biased (i) due to weak exogeneity of
the regressors and (ii) due to correlation and heteroscedasticity of the idiosyncratic errors e;;. We
also provide expansions of the projectors M i and M5, and of the residuals € in the the regression
parameters that are very useful when working with these estimators, e.g. when proving consistency
of the estimators of the asymptotic bias of (.

As applications of our general methodology, we work out the limiting distribution of the QMLE
B under the assumption of independent error terms e;;. Consistent estimators for the asymptotic
covariance matrix and for the asymptotic bias of the QMLE are provided, and thus a bias corrected
QMLE is given. We also discuss the asymptotic distribution of the QMLE when the true parameter
is on the boundary of the parameter set. Finally, we derive the asymptotic distribution of the Wald,
LR and LM test statistics, which are not chi-square due to the asymptotic bias of the score and of
the QMLE. We provide bias corrected test statistics and show that their asymptotic distribution is
chi-squared.

In future work, the most important extension of the present paper will be to study situations where
the true number of factors R is not known but has to be estimated. There is a sizable literature on the
estimation of the number of factors in approximated factor models, e.g. Bai and Ng (2002), Onatski
(2005), but none of these papers estimates the number of factors jointly with additional regression
coefficients.

A Examples of Error Distributions

Under each of the following distributional assumptions on the errors e;;, 1 = 1,... ., N, t =1,...,T,
we have |le|]| = O,(y/max(N,T)). The proofs are given in the supplementary material.

(i) The e;; are independent across i and t, they satisfy Ee;; = 0, and Ee}, is bounded uniformly
over i,t and N, T.

(ii) The e;; follow different MA(co) process for each 4, namely
eit:Zz/JiTuiyt,T, fori=1...N,t=1...T, (A1)
=0

where the u;, t = 1... N, t = —o0...T are independent random variables with Eu;; = 0 and
Eu, uniformly bounded across i,t and N,T. The coefficients v;, satisfy

e o0

2
ZO T e v < B EO: max [y, < B, (A.2)
T= =

for a finite constant B which is independent of N and T'.

(iii) The error matrix e is generated as e = o!/2u¥Y/2 where u is an N x T matrix with independently
distributed entries u;; and Eu;; = 0, Eu?, = 1, and Euj, is bounded uniformly across i,¢ and
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N,T. Here g is the N x N cross-sectional covariance matrix, and 3 is T'x T time-serial covariance
matrix, and they satisfy

T

N
e 2 bl < B s 2 (Bl < B (4-2)

for some finite constant B which is independent of IV and 7'. In this example we have Ee;e;r =
Oij Zt.,—.

B Some Matrix Algebra

Theorem B.1 (Special Case of Weyl’s Inequalities). Let A and B be real symmetric matrices of

dimensions n. For alli =1, ". ,n we then have
Eigval,(A) + Eigval,,(B) < Eigval,(A + B) < Eigval,(A) + Eigval, (B)

For the proof see e.g. Bhatia (1997). Two immediate implications of theorem B.1 are the following.
First, if B is positive semi-definite, then Eigval;(A) < Eigval,(A+B). Second, since the operator norm
of B is always larger or equal then the absolute value of any eigenvalue of B we have Eigval,(4)—||B| <
Eigval,(A + B) < Eigval,(A) + || B|.

Now let A be an arbitrary n x m matrix. In addition to the operator (or spectral) norm ||A||
and to the Frobenius (or Hilbert-Schmidt) norm || A||F, it is also convenient to define the 1-norm, the
oo-norm, and the max-norm as

j 1...

n m
1AL = max > |4yl [ Alle = max > |Ay], [|Allmax = max  max [Ay[ . (B.1)
j=1l..m Py i=1..n = i=1l...n j=1..m

Theorem B.2 (Some useful Inequalities). Let A be a n X m matriz, B be a m X p matriz, and C
and D be n X n matrices Then we have

(
(i) [[AB|l < [[Al[IB]l
(iir) — |[ABllp < [[Alp Bl < [lAllp I1Blg
(w) — Te(AB) < |AlplBllp .,  i#n=p,
(v) [T (C)] < |[Clrank (C) ,
(vi) IC| < Tx (C) if C symmetric and C >0,
(vii)  JJAI? < 1Al [[Alloo
(vit)) [ Allmax < (Al < vVrm || Allmax
(iz) |A'CA| < ||A'DA| , if C is symmetric and C < D.

) Al < Al < [lA] rank (4)'

~

<
<

Theorem B.3. Let N, T, R, Ry and Ry be positive integers such that R < N, R<T, and R =
Ri+ Ry. Let Z be an N X T matriz, A be a N X R, f be a T x R matriz, A be a N X Ry matriz, and
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f be a T x Ry matriz. Define
S1(Z) = ifrg’ T [(Z = Af) (Z' = fN)] ,
Sy(Z) = n}f T (Z M; Z') ,
S3(Z) = ir){fTr(Z' M, Z),

Su(Z) = inf Te(M5 Z M; Z')
f

S5(Z)= Y Eigval,(2'Z),
i=1

N-R-1
Se(Z) = Eigval,(Z22) , (B.2)
Then we have
S1(Z) = S2(2) = S3(2) = Su(Z) = S5(Z) = Se(2) , (B.3)

Note that we do not have to restrict ourselves to matrices A\, f, X and f of full rank in the above
minimization problems. If for example X is not of full rank we can still define (\’\)~! as the generalized
inverse (e.g. via singular value decomposition). The projector M) is therefore still defined in this
case, and still satisfied M)A = 0 and rank(My) 4+ rank(A) = N. If rank(Z) > R then the optimal A,
f, X and f have full rank.

Definition B.4. Let A be an n X r1 matriz and B be an n X ro matric with rank(A) = r1 and
rank(B) = rq. The smallest principal angle 04 g € [0,7/2] between the linear subspaces span(A) =
{Aa|a € R™} and span(B) = {Bb|b € B2} of R™ is defined by

o' A'Bb

_ B4
0tacin 0berr2 || Aa||BY]] (B-4)

cos(0a,p) =
Theorem B.5. Let A be an n X r1 matriz and B be an n X ro matriz with rank(A) = r; and
rank(B) = 9. Then we have the following alternative characterizations of the smallest principal angle
between span(A) and span(B)

. B |Mp Aal|
sin(fa,p) = min Al
o IMaBY|

] I B B.5

otberr2 || AD] B

Proof. Since |[Mp Aal|* + ||Pg Aal|? = ||Aal|? and sin(f4,5)* + cos(04,5)* = 1, we find that proving
the theorem is equivalent to proving

_ |Ps Ad| _ ||PABY]|
) 1Ps Al _ [1PABY] B.
cos(0a.B) 0AaeR™ [Aall 0£beRr2 [Ab]| o

This result is theorem 8 in Galantai, Hegedus (2006), and the proof can, for example, be found there. |

C Proof of Consistency (Theorem 2.1)

For series (of random variables) a = ayr and b = byr we use the notation a = O, 4 (b) if a = O, (b) and
a > 0. Analogously we define op, 1 (b). In addition we use the notation a = O, 44 (b) if ¢1 > a/b > ¢
wpal, for some positive constant ¢; and cs.

Following Bai (2009), we first show
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Lemma C.1. Under the assumptions of theorem 2.1 we have

1
WTF(Xk My )| = op(1),

max
f
max LTr()\o Y Mpe)| = o,(1)
i INT ! P
1
m)gx ﬁTr(ePf e =o0,(1), (C.1)

where the parameters f are T x R matrices with rank(f) = R.

Proof. By assumption 2 we know that the first two equations in lemma C.1 are satisfied when replacing
My by the identity matrix. So we are left to show max; |5 Tr(E Py e’)| = 0,(1), where Z is either
Xi, A f% or e. In all three cases we have ||Z||/v/NT = O,(1), by assumption 1, 3, and 4, respectively.
Therefore

1 — / H@H H‘:”
—Tr(ZP <R = . .
N ( fe) < op(l) (C.2)

max
f
|

Lemma C.2. Under assumption 1 and 4 there exists a constant By > 0 such that

w Myow — Bow'v >0, wpal,
v'Mpov — Byv'v>0, wpal. (C.3)

Proof. Note that w may not have full rank, e.g. because wy = wsz. We can decompose w = ww,
where @ is a N x rank(w) matrix and @ is a rank(w) x K; matrix. Note that @ has full rank, and
My, = My.

By assumption 1 (i) we know that A’ \”/N has a probability limit, i.e there exists some B; > 0
such that A”\° /N < Byl wpal. Using this and assumption 4 we find that for any R x 1 vector a # 0
we have

| M, A° al|? B a X" M, \a B

= > — wpal. C4
A al|? a N \a By P (C4)
Applying theorem B.5 we find
Y @' Myowb N M, \a B
— = n —————— > — 1. C.5
07sber§}gk(w> LTI oggnlw a A \¢ B; wpa (C5)
Therefore we have wpal
B
b (’J}/M/\OID—’LD/QI)>()>O, (C.6)
By
for every rank(w) x 1 vector b, and thus
iy . B _, .
W MAow—gw w>0, wpal. (C.7)
1
Therefore also (multiplying from the left with @’ and from the right with @)
!/ B !/
w M,\UW—FW w>0, wpal. (C.8)
1
Analogously we can show
v' Mpov—Byv'v>0, wpal, (C.9)

for some positive constant By. |
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As a consequence of the last results we obtain some properties of the low-rank regressors summa-
rized in the following lemma.

Lemma C.3. Let the assumptions 1 and 4 be satisfied and let Xiow,o = 21121 a; X; be linear combi-
nations of the low-rank regressors. Then there exists some constant B > 0 such that

HXIOW,O& Mfo Xllow @
min 1 >B, wpal,
{a€RX1, ||o|=1} NT P
HMAO Xiow.a Myo X1 Myo
min : > B, wpal. C.10
{a€RKL Jaf=1} NT P (€10
Proof. Note that HM)\O Xiow,a Myo X{,, o Myo ’ < HXlowaMfo Xlowa , because ||Myo| =1, d.e. if

we can show the second inequality of the lemma we have also shown the first inequality.
We can write Xiow,o = wdiag(e’) v’. Using lemma C.2 and part (v), (vi) and (xi) of theorem B.2
we find

| Mo Xiow,a Mpo Xioy o Myo|
= || Myo wdiag(e/) v Mo vdiag(a’) w' Myo||
> By ||Myo wdiag(a’) v vdiag(a’) w Myo||
By

> i Tr [Myo wdiag(a’) v" v diag(a’) w' Myo]
1

By
e Tr [v diag(a/) w’ Myow diag(a’) v']
1

\ \/

F |lv diag(a’) w' Myow diag(a’) v'||
1

32
F(i |lv diag(a’) w'w diag(a’) v'||

v

B2
— Tr [vdiag(a’) w'w diag(a’) v']

B% ,
= FTI‘ [XIOanXlow,a} (Cll)
1
Thus we have
HM)\O XlOW’Ot J\4fO ‘X1/0w0¢]\4>\0 B2
: > —Fa W 12
NT 2 W, (C.12)

where the Ky x Ki matrix W' is defined by W/ = (NT)"'Tr (X;, X],). Since by assumption
W% converges to a positive definite matrix, the above inequality proves the lemma. Ji

For the second version of the profile quasi likelihood function in equation (2.4) we write
Lyt(B) = irflf Snt (8 f) (C.13)

where

Swr (8. ) = 1 T (AO f0'+2 — B Xk+e> M; (A“ f°’+2 ﬁk)xwe) :
k=1
(C.14)
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We have Ly7(8°) = Snr(8°, %) = 7 Tr (e Mo €'). Using (C.1) we find that

Snr(B, f) = Snr(8°, f°) + Snr(B, f)
K
<>\0 >0 —5k)Xk> My e

k=1

= Snr(8°, %) + Snr(B, f) + op([18 — Bl + op(1) (C.15)

2
+ —Tr

1
NT + ﬁTr (e (Ppo — Py)€)

where we defined

K K !
Snr(B, f) = % Tr (AO 4> (8- mm) Mj (AO 1+ (6~ ﬂkm) . (C16)
k=1 k=1

According to assumption 4 we can split the regressors into low- and high-rank regressors which
gives Zle(ﬁg —Bp) Xk = {ill(ﬁ? -6)X+ ZﬁzKlﬂ(ﬁSn — B, ) Xm. Since the low-rank regressors
have finite rank we write X; = w; v}, where w; is a N x rank(X;) matrix and v; is a T x rank(X;)
matrix. We also define the N x K1 matrix W = (wy, ws, . .., wg, ) which combines all first components
of the low-rank regressors. We then have Mz = Myy.

We split Sxr(3, f) = SUr(8, f) + Sup(8, f), where

I K K !
SUR(B.1) = o T (AO P> - m)xk) My (AO eI mm) M, w)

k=1 k=1

K K !
%Tr < Z (ﬂ?n_ﬁm)Xm> Mf( Z (621_5m)Xm> M(NLW)

m=K;+1 m=K;+1

K K 1

Syr(8, 1) = % Tr <A° £+ (B~ ﬁkm) My (AO £+ 68 - ﬁmxk) Poo) |
k=1 k=1

) (C.17)

and (Ao, W) is the N x (R + K1) matrix that is composed out of Ao and W.
Applying theorem B.3 and using the definitions in assumption 4(i) we find

R 1 N K K !
SN2 s Y. Figwl, ( > 8- ﬁm>Xm) < > 8- 5m>Xm>
i=2R+ K +1 m=K;i+1 m=K;+1
. 2
> Op,++ (Hﬂhlgh . 681gh” ) ’ (0.18)

where "8 refers to the Ko x 1 parameter vector that corresponds to the high-rank regressors, and
similarly we use 8°V for the K; x 1 parameter vector of low-rank regressors.
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Applying theorems B.3 and B.1 we find

k=1 k=1

K ! K
S5, £) 2 o Bigval [(A“ DY m)xk) Pixg.) (A“ P48 - m)xk)]

1

<>\O fO/‘f'Z — Br)wy Uz) <)\0 f0/+z — Br)wy Uz)

NT
! K
(AO £+ Z — Bi)wi v;) Poow) Y (B = B) Xm
m*Kl
K
+ D (B = B X0 Poro,w) (AO £+ Z — Bi)w m)
m:K1
+ Z 60 X P()\o,W) Z 6m)Xm‘|
m=K, m=K;
1 .
N7 Eigvalp ()\O U+ Z — Br)w; vl) <)\0 v+ Z — Br)w vl>
! K
(AO £+ Z — Bi)w vl) Poow) D (B = Bm)Xim
m*Kl
+ Z Bm) X0 Pirg,w) </\0 v+ Z — B )w; vl> ‘|
m= Kl
1 .
> NT Eigvalp [( o+ Z — Br)w vl> <)\0 1o +Z — Br)wy vl>]
~Op+ (Hﬁhigh - 5‘8ith) (C.19)
where we used (NT) ™! Ko || A° f| max,, | Xl = Op4 (1), (NT)™! Ky Ky max,, | X,,|| max; ||w, v]|| =
Op,+(1), and we have O, 4 (HBIOW - %)OW‘D = 0,,+(1) because by assumption HBIOW - %)OWH is
bounded.
We define
A=)\ fO/ + Z ﬂl wy vl A+ Ay + Ag (020)
1=1
where
Ay = My APjo = My \° f¥
K1
A2 = PwAMfo = Z(ﬁ? - 61)11}[ ’Ul/Mfo
=1
As = Py APfo Pw A0 fOl—l—Z ﬁl wy Ul Py (C.Ql)
We find
AA > AA—(a?A + a2 45) (a2 As + a7 1/2 4)
=[AJA; — (a— 1) AfA3] + (1 —a H) AL A, (C.22)
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where > for matrices refers to the difference being positive definite, and a is a positive number, namely

Eigval (A} A1)
a=14+——" C.23
2] 4s]? (C.23)

The reason for this choice becomes clear below.

Note that [A]A4; — (a — 1) A5A3] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A’A are therefore given by the (at most) R non-zero eigenvalues of
[A]A; — (a — 1) A5 A3] and the non-zero eigenvalues of (1 —a~1)AL A, the largest one of the latter
being given given by the operator norm (1 — a~1)||A5Az||. We therefore find

% Eigvalp , (A'A) > NlT Eigvalp, [(A1 41 — (a — 1) A5A3) + (1 —a )AL A,]
1
2 NT min {(1 —a™")|[42|*, Eigvalp[A]A; — (a —1) A543]} . (C.24)

Using theorem B.1 and our particular choice of a we find

Eigval, [A]A; — (a — 1) AL A3] > Eigvalz(A] A1) — |[(a — 1) AL As]|
1
> 3 Eigvalp (A} Ay) . (C.25)
Therefore
2
3(2) - _ - : 2| Azl -~ ‘ high high’
Snr(Bf) = 2NT Bigvalg(4141) mm{l’ 2 As]P + Eigvalg(ALAy) | ~ Ot (‘ A= Da D

1 || A2 || Eigval g (A7 A1) high high
— - — .2
= NT 2|[AP + Bigvalg (AL A) 0P (o=~ b)) (C.26)

where we used ||A| > ||As|| and ||A|| > [|A1]]. We have

K1
||AH H)‘O fO/” ||wl Ul” low _ plow _
\/— JNT + ; 187 = Bl == JNT = < Op++(1) + Op 1 (Hﬁ 0 D =Op1+(1),
Eigvalp(A;A;)  Eigvalg (00 My X° f) 0, (1)
VNT VNT P
B8 " "
N2T = Eigvaly [Z(ﬂ% = By, wy, Ufl Mo 2(5?2 - 512) Uiy wz/21
=1 la=1
2
> Oyt (6 = 857} = 0psst0) (c.27)
Here we used assumption 4 (ii) and again the boundedness of 5°¥. We thus have
2 , .
Wr(B.5) = Opors <H61°W - 5| ) ~ Oy (|7 - B3 ) (C.28)

Since 3 = 8% and f = f° are possible choices for B and f, we find that the optimal B and f must
satisfy Syr(3, f) < Syr(8°, f°). From (C.15) we thus find

0> SNT(B,f)+0p (Hﬁhigh _6hith) +0,(1)
Svr(B. ) = oy ([ = 8" [) = 0p (1) (C:29)

Using (C.18), (C.28) and S'0).(8, f) > 0 we thus find
high high 2 high high
0> Op4+ (| =B —op+ | |87 — Bo —op+(1)

+ max {07 Opivt (Hﬂk’w - ]2> — Oy (|| - ﬂléith)} (C.30)
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In particular this implies

02 O ([958 ] oo, e

from which we can deduce?®

|57 = By | = 0p(1) - (C.34)

Once we have this we find that (C.30) becomes

0> 04y (Hﬁlow _ glow

) - ot (C.35)

and therefore

Hﬁlow 7 low

] = 0,(1) . (C.36)

D Power Series Expansion of the Profile Quasi Likelihood
Function (Proofs of Theorems 3.1, 3.3 and Corollary 3.4)

Definition D.1. For the N x R matriz \° and the T x R matriz fO we define

(N, 1) =~ [IV1]] = \/% /Bigval, (A £ 70X°)
dunin (N0, 1) = ﬁ \/EigvalR@O’fOfO'AO) , (D.1)

i.e. dmax(A2, f9) and dmin(\°, f0) are the square roots of the mazimal and the minimal eigenvalue of
AV fOFONOINT . Furthermore, the convergence radius ro(A°, f°) is given by

-1

Ad (N0, £O 1
TO(Ao,fo):(dQ ((AO fJ;)u ST f@)) . (D.2)

Why 79(X°, £0) is called convergence radius will become clear immediately.

Theorem D.2. If the following condition is satisfies

K

K m HXk” llell

0 r0
e \/W < 7AO(/\ af )v (D?’)

then

25To give a proper proof we note that (C.31) implies that there exists w > 0 such that for all e > 0, § > 0 and x > 0
we have

olim Prlo > (w—o)B"" — gFEP 58— 8% = k] = 1, (C.32)
so we find
S lim Pr |3V ghieny < 0 +\/ LI i }:1, (C.33)
N,T—o0 2(w—¢) w—e 4(w—¢)?

where we have already chosen ¢ < w. In addition, we can choose § and k arbitrarily small, so we have shown
~high high
B —p /80 en
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(i)

(i)

the profile quasi likelihood function can be written as a power series in the K + 1 parameters

o = |le|/VNT and e, = 35, — 3, namely
1 o] K K K
LNT Ni Z Z Z Z €y €Ery - - Ery L(g) (/\07 fo,Xn“sza-'"X*ig) , (D4)
g=1 k1=0 Kk2=0 Kg=0

where the expansion coefficients are given by?S

L9 (N, 0, Xy, Xy oo X)) = L9 (X0, 2, Xys X, X))

1 1~
= o {L(Q) ()\07 10 X, X,{z,,,,,Xng) + all permutations of /11,...,/24 ,
(D.5)
i.e. L9 is obtained by total symmetrization of the last g arguments of
L@, 2 Xy Xy v X))
g
e S Tr (501)7;3? CIOBWIOE 5 Supm) 7
p=1 vi+...+tvp=g
Lhi+...+lpy1=p—1
2>v;>1,1; >0
(D.6)
with
S(O) _ —M/\o , S(l [)\0()\0/)\0) (fO/fO)fl()\O/AO)fl)\Ol]l : fOT’l > 1’
T =X XL+ X, 0N, TR =X, XL, for k,k1,k0 =0... K
VNT
Xo = el e, X. =X, fore=k=1...K . (D.7)
the projector M () can be written as a power series in the same parameters €, (k=0,...,K),
namely

e’} K K K
Z Z Z Z €ry €ry o €y MO (X O Xy, Xy, Xe,) . (DL8)
g=0 k1=0 Kka=0 Kg=0

where the expansion coefficients are given by M(O)()\O7 %) = Myo, and for g > 1
M@ (N f0, Xy Xioeo s Xy ) = MO (A, 10, X,y X5 X))
11~
== [M(Q) (Xm, D, R X,.@g) + all permutations of k1, ..., /@g} , (D.9)
g!

i.e. M9 s obtained by total symmetrization of the last g arguments of

M(g) ()\0? foa XI617 Xﬁza"-aXﬁg)

— Z (71)p+1 Z S() ’];(1’/1) Sl2)  glp) T(ipg) SUp+1) ,
=1 vi+... p =
g l11+ oty =p
2>, >1, ;>0
(D.10)

where S 7}(1), 77{,(12,2,2, and X, are given above.

26 Here we use the round bracket notation (K1,K2,...,kg) for total symmetrization of these indices.
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(i4i) The coefficients L9) in the series expansion of Lt (B) are bounded as follows

NT‘L‘J) (A%, £%, Xprs Xiyr oo X))

_ Rgdii (A" £°)

16 dinax (A%, £\ 1 X | 11Xl 1 X, |

e D.11
- 2 ( a2, (A%, £0) ) VNT VNT ==~ /NT (D-11)
Under the stronger condition

X d2. )\0’ 0

F F 16 diax (X%, £0)

we therefore have the following bound on the remainder, if the series expansion for L7 (B) is
truncated at order G > 2:

1
‘LNT(ﬁ)—NT Z Z R AN DN A Xﬁl,Xﬁz,...,Xﬁg)‘
g=1 k1=0 Kg=0
R(G+1) a2, (V)
< 20 —a) , (D.13)
where
16 dimax (A’ £0) ( Il lell
—0 > 18— 8] =] <1 (D.14)
mm()‘ f‘O k=1
(iv) The operator norm of the coefficient M9) in the series expansion of Mj () is bounded as follows,
forg>1
[ (0 10, Xy, Xy X)) <2 (16 dmaX(AO’fO))g 2ol 12 1,
o 2\ @2, (\° 19 NT /NT VNT
(D.15)

Under the condition (D.12) we therefore have the following bound on operator norm of the
remainder of the series expansion of M (83), for G >0

G K K
G +1)aftt
M; (B) - YD e e, MO (N0 X, Xy, X)) || S (G+1a"m .
21 — )
9=0 rk1=0 Kkg=0
(D.16)

Proof.

(i,ii) We apply perturbation theory in Kato (1980). The unperturbed operator is 7 = X\°AY, the
perturbed operator is 7 = 7 +7(1) 4 7(2) (z e. the parameter x that appears in Kato is set to
1), where T = S5 e, X, fONY+ A0 fO S8 (e, X/, and T = o8 (S e e, Xy XL,
The matrices 7 and 7 are real and symmetrlc (which implies that they are normal operators),
and positive semi-definite. We know that 7(?) has an eigenvalue 0 with multiplicity N — R, and
the separating distance of this eigenvalue is d = NTd2, (A\°, f). The bound (D.3) guarantees
that

min

70 47 < N dfm(AO, 0, (D.17)

by Weyl’s inequality we therefore find that the N — R smallest eigenvalues of 7 (also counting

multiplicity) are all smaller than & dfmn()\o, f©), and they “originate” from the zero-eigenvalue
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(iii, iv)

of T(©), with the power series expansion for Ly7(3) given in (2.22) and (2.18) at p.77/78 of
Kato, and the expansion of M; given in (2.3) and (2.12) at p.75,76 of Kato. We still need to
justify the convergence radius of this series. Since we set the complex parameter x in Kato
to 1, we need to show that the convergence radius (ro in Kato’s notation) is at least 1. The
condition (3.7) in Kato p.89 reads ||[7(| < ac®™', n = 1,2,..., and it is satisfied for a =
2V NTdax (A%, fO) S el | Xull and ¢ = S5 Jexl 1 Xull/VNT /2/dinasx (A%, 2).  According
to equation (3.51) in Kato p.95, we therefore find that the power series for Lyr(5) and Mj are
convergent (rg > 1 in his notation) if

1< (2;+c>1 (D.18)

and this becomes exactly our condition (D.3).

When Lyt (8) is approximated up to order G € N, Kato’s equation (3.6) at p.89 gives the
following bound on the remainder

G K K
1
‘LNT -7 SN D e e, L (N 0 Xy, Xy X))
g=1 k1=0 tg=0
< (N_R) o+l d?mn()\ohfo)
- A1 —9) ’
(D.19)
where
K 150 _ o [ IXell el
_ TP = Bl g + IR <1. (D.20)

TO(Aoa fO)

This bound again shows convergence of the series expansion, since Y9! — 0 as G — oo.
Unfortunately, for our purposes this is not a good bound since it still involves the factor N — R
(in Kato this factor is hidden since his 5\(,%;) is the average of the eigenvalues, not the sum),
which in our particular case turns out to be unnecessary.

We have [S®| = (NTd2;, (A% 1) ", 1TO) < 2V NTdinax (X0, fO)| Xa, and |2, <
| Xk, 11 Xk, || Therefore

_ le 2p—3_v;
< (NT2, (A% 1) " (2VNTdar (V. 1)) 1 X Xl X, |

Hs(h) Tw) gle)  gU) () gllp+r)
Ki1... Ry

(D.21)
We have
1<2P
vit+...+vp=g
2227‘21
2p)!
3 1< 3 1:(f’)2g41’ (D.22)
h+...+lpp1=p—-1 h+...4+lps1=p (p)
;>0 I, >0
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Using this we find?”

HM<9> (A%, 9, X, Xprooos X))

g 2 0 £0\\P
32, (N f
< (VT 00, 1)) Il | Y (B )
prarz N GminS0)
g (MmO L Pl W] D2
2\ 2, (\ 1 VNT /NT VNT

For g > 3 there always appears at least one factor SV, [ > 1, inside the trace of the terms that
contribute to L), and we have rank(S®W) = R for [ > 1. Using Tr(A) < rank(A)||A], and the
equations (D.21) and (D.22), we therefore find?® for g > 3

LX) 0 Xty Xyre oy Xie,)

w7

~9 (3242, (N )
< Ry 00, 1) (2N T, 1) 1 11, > (EgmesCT)
- Ain (A, 9)
p=[g/2] min
Rgdmm<>‘07f0) (16 dmax()‘oﬂfo)>g ||Xl€1|| HXN2|| ||X'§9|| (D24)
2 d2. (\°, f9) VNT /NT VNT
This implies for g > 3
1 K K K
N7 S enens e, LY (X 0 Xy, Xy X))
m:O K/QIO KgIO
0 0 0 0 g K 9
Rgdmm(A 7f ) (16 dmax<)\ ’f )) ( ||€KXN||> (D 25)
_— 0 .
2 dr2nln()‘ 7f0) k=0 VNT
Therefore for G > 2 we have
1 &K K
0 40
‘LNT *ﬁ; ZO ZO €ry - (A f XKUX"€27"'7XH9)’
- fg—

K

oo
zﬁ Z Z Z Z s Emn o en, LO (00, 10, X, X X))

g=G+1 rk1=0 k2=0 Kg=0

io: Rga dIIlln(A07vfo)

<
g=G+1 2
R(G+1)aT a2, (X f°)
T , (D.26)
where
— 16 dmax )\O fO Z ||€NX ”
- 0
d12n1n A f‘O k=0
16 dmax )\O ( 0 ||Xk|| || ||
— —0 > 188 = Byl <1, (D.27)
d?mn()\ fO k=1

27The sum over p only starts from [g/2], the smallest integer larger or equal g/2, because v + ... + vp = g can not
be satisfied for smaller p, since v; < 2.
28The calculation for the bound of L(9) is almost identical to the one for M(9). But now there appears an additional

factor R from the rank, and since 3_1; = p — 1 (not p as before), there is also an additional factor NT'd2,, (A%, f0).
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Using the same argument we can start from equation (D.23) to obtain the bound (D.16) for the

remainder of the series expansion for Mj (53).

Note that compared to the bound (D.19) on the remainder, the new bound (D.26) only shows con-

2 0 0
vergence of the power series within the the smaller convergence radius dyin XS

16 dimax (A%, f0)

< 7“0(/\0, fo)

However, the factor N — R does not appear in this new bound, which is crucial for our approx-

imations.

We can now proof the key theorem of the main text.
Proof of theorem 3.1. Assumption 1 implies that
Amax (A0, f7) — d% >0, Amin(\%, f0) — 2%, > 0.
p p

min

Therefore also (A%, f0) —p 75° > 0. Assumptions 1, 2, and 3 furthermore imply that

N 121 _
v 0,(1), T Op(1)
)\OIAO -1 fO/fO -1
H( v) o, H( =) | o,
P -0, o).

(D.28)

(D.29)

For ||8 — ﬁOH < nyp we have |3 — ﬁOH = 0,(1) and also |3, — ﬁg‘ =o0,(1), k=1... K. We thus find
a = 0p(1), i.e. the condition to apply theorem D.2 part (iii) is asymptotically satisfied. Using the
inequality (D.11), the linearity of L(¢) ()\O, O Xy Xuoy oo ,X,Qg) in the arguments X, and the fact

that g Xg = e we find

1 B llell 7"
— () "LO (N £ Xy X, X, .., Xo) = .
NT (60) ()‘ ) f ) ki ) ) 0, ’ 0) Op \/ﬁ
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Applying the inequality (D.13) for G = G, then gives
| Ge X K
TR 55 i o1

()‘O fO Xﬂl?X:‘Q?
Ge

®

2 Xk,) + Op (aH)

2‘)—!
N

2

€0 L(Q) (>‘07 f07 XOa X07
g

LX)

Q

e

(]

)3 08

e LW (N, £ Xy, Xo,
k=1

Q
I|
N

LX)

K K
-1) Z Z (B, = Bry) (Bry = Bra) €6~
k1=1 ko=1

Q
[|
N

g

+
Z‘H Z‘H Z‘H
~ ~ N~
MQ
Q

MQ

(A07 f07 Xk:u Xk27 XOa e aXO)
- Y0, [ Bl I (0 1, X,
r=3

) Xk,,,; X07'--,X0):|
Ge+1
’ B, IXell el
k \/7 \/7 9

1 & K
—ﬁzg;

ﬁk L(g) ()\0 fO Xka €,

g

+

S

Mw

P

e)
2 K K
T L 2 (=) (= 0) L (£, X, X
1=1 =1
1 1
+ NT It + NT Ryt (D.31)
where
& u H Gett
Ingp=>_ L9 (X% f0 e e )+ NT O, < ) ,
g=2
Ryt (8) =RinT(8) + RanT(8) + Ra. N1 (
Ge+1
anﬂm=ﬂw’zjop(ﬁ0—mF ‘”‘ )
g lel] \*"
Ronr(8 2;0mw%@>,
Ryt (f <H6 T JLUT) ) | (D.32)
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We find that Inr is independent of 3, while Ry n7(8), R2 nr(8) and Rs n1(5) satisfy

sup |R1, v (B)] < su |R1, N (6)]
#15-31<nnr (14 VNT |18 - 50”)2 " sl <nwr NT |6 - 6°)°

= OP (\)%) = Op(l) ’
sup |Re, N ()] o< - |R2, N ()] i
Bil|B—B° | <nyr (1 +VNT ||5 - 50||) p:a-pl<nne NT ||B = B°|

=0, (77NT) = Op(l) )
sup | B3, v ()] - sup |R3, v (B)]
B8 <nwr (1 +VNT |6 - ﬁo”)2 T g l<nne 2VNT ||B = 8|

lell \“
=VNT 0O, ((\/W) )zop(l), (D.33)

with nyp — 0. In the last line we used assumption 3’ to show that the term is 0,(1). Since the
condition (3.4) is satisfied for R1 n7(8), Re,n7(8) and Rs n7(5) separately, it is also satisfied for the
total remainder Ryr(0).

Proof of theorem 3.3. The general expansion of Mj is given in theorem D.2, and here we just make
this expansion explicit up to a particular order. To obtain the bound on the remainder we make us
of equation (D.23) in the proof of theorem D.2. The result for M i is just obtained by symmetry
(NeoT, A f,e— €, Xy < X},). For the residuals é we have

é= M, (Y—Z Bka>
k=1

K
= Mj [e - (Bk - ﬂ%) Xk + Aofo’] : (D.34)

k=1
and plugging in the expansion of Mj gives the expansion of é. I

Proof of Corollary 3.4. Having the expansion of the profile quasi likelihood function in theorem 3.1,
and in particular the bounds on the remainder terms given there, we only have to verify that asymp-
totically the smallest eigenvalue of the K x K denominator matrix W(A°, f0, X;) (which appears
in the second order term in the likelihood expansion) is bounded from below. This guarantees that
W(A?, f°, X}.) is invertible and that the norm of its inverse |[W~=1(A%, fO, X})| is bounded from
above as N, T — oo. Once this is verified, we can apply the results in e.g. Andrews (1999) to obtain
the equation for B and the corollary is proven.
Remember that

1
Tr(Mjo X}, Myo Xy,) - (D.35)

Wik, (A0, 0, X3) = NT
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The smallest eigenvalue of the symmetric matrix W(A?, f0, X}.) is given my

ad W, 2, X a

Eigval, [W(X°, f°, X1)] = min
gvalic (WO 75 X0 = it oy ™ TalP
1 K K
M ¢o ap, X Mo gy Xk
{aERK,Oﬁ’fO} NT||aH2 [ d (klz_:l ' kl) A (l@z_:l ’ ’
. Tr [Mfo (Xllow7a + Xllnigh,u) M)\O (Xlow,a + Xhigh,ﬂ):|
= min )
{0 € RE1, 4 € RK NT ([lefl® + [[l?)
a#0, p#0}

(D.36)

where we decomposed a’ = (o, i), with o and p being vectors of length K; and Ko, respectively, and

as in assumption 4 we defined corresponding linear combinations of high- and low-rank regressors’
Ky
Xlow,oz = Z g Xk ) Xhigh,p, = Z 123 Xk . (D37)
k=1 k=K;+1

We have Myo = Mo =)+ P, ,5), where 2 = (X1,..., Xk, ) is the matrix that combines all low-rank
regressors. Using this we obtain

Eigval [VV()\O7 1O, Xk)]

1
= min Tr (Mo (X{oy o + Xis Myo =y (Xiow.a + Xni
{a eRX1L, perF2 NT (||| + ||M||2){ [ Fo ( low, hgh,u) \°.B) (Xiow, hgh,u)]
a#0, u#0}
+ Tr [Mo (Xiow.a +Xllligh,,u) P,oz) (Xiow,a + Xhighyu)] }
1
= min Tr (Mo Xis00 0 Mxo =) Xni
e, s T | 4 K M2 Y
a#0, u#0}
+Tr [Mfo (Xllow,a +Xllligh,,u) P(M)\OE) (Xlow,a + Xhigh,/t)] }
. 1 5 )
> min = 1C + max |0, col|a||” — e3]|c
(o € BR1, 4 € RK> Ha||2+||li||2{ || [ of || 3| HHM”“
a#0, u#0}
2
Co C1C5
= D.38
min ( 2’ c% + c%) ( )

where the inequalities hold in probability as N,T — oo, and ¢y, ¢ and c3 are appropriate positive
constants (independent of N, T). Here we used that as N,T — oo we have in probability that

1
7 Mo X Moo 2 Xnign ] = erllull®
1
WTI‘ [Mfo (Xllow,a + X}’liglhﬂ) P(M 0Z) (XIOW at Xhlgh’“ ]
1
T [Mro Xiow o Poroz) Xiowa] 2 @HaH2
1
WTI‘ [Mfo XlowaP(M 0=) Xhlgh u] Z ||a||||/u’||
1
?Vi;TT[A4f°JYﬁthLfik@oE)jghthJ 20, (D-39)

29 As in assumption 4 the components of y are denoted K, +1 to pg to simplify notation.
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which we want to justify now. The second and the last equation in (D.39) are true because e.g.
Tr [Mfo Xiigh Par,0z) Xhigh,#} = Tr [Mfo Xiigh,u P(01,02) Xnigh,u Mfo}, and the trace of a sym-
metric positive semi-definite matrix is non-negative. The first inequality in (D.39) is true because
rank(f°) + rank(\°, Z) = 2R + K, and using theorem B.3 and assumption 4(i) we have

1

WT}? [MfO Xllligh,;l, M()\O,E) Xhigh,/_t] Z

1
————FEigval Xhi Xi; D.4
NT”’U,”Q 18Valopt i +1 [ high,p hlgh,u] >0 ) ( 0)

in probability as N,T — oo, which justifies the existence of the constant ¢;. The third inequality in
(D.39) is true because according theorem B.2 (v) we have

1 Ky
~ T [Mfo Xllow7a P(M/\OE) Xhigh,u] 2 = ﬁ ||X10W7(1|| HXhigh,u

NT
> o Xl | Xl
> — K1 K1 K || ||l oy AKX H\j(% » ka=E f1. K H \;(% 7
> = ol Il (D-41)

where we used that assumption 2 (iii) implies that HX k/VN THF < C holds in probability for some con-

stant C' as N, T — oo (which is stronger than ‘

Xk/\/NTH = 0,(1)), and we set c5 = K1 K K C2.
F
Finally, we have to argue that the third inequality in (D.39) holds. Note that X, , P, 0=) Xiow,a =

Xiow.a Mo Xiow,a, i-e. we need to show that
1
~7 [Mpo Xpy 0 Myo Xiow,a] > c2 ]l (D.42)

Using part (vi) or theorem B.2 we find

LS [Myo X{ s 0 Myo Xiow,a] = Ly [Myo Xiow,a Mo X{yy o Myo]

NT NT
1
> T | Mo Xiow,a Mpo Xioy o Myol| (D.43)
and according to lemma C.3 this expression is bounded by some positive constant times ||«||? (in the
lemma we have ||| = 1, but all expressions are homogeneous in ||«||). This concludes the proof. I
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