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Abstract

This paper develops and applies a model of in which doctors have two dimen-

sions of skill: diagnostic skill and skill performing procedures. Higher procedural

skill increase the use of intensive procedures across the board, while better diag-

nostic skill results in fewer intensive procedures for the low risk, but more for the

high risk. Deriving empirical analogues to our theoretical measures for the case

of C-section, we show that improving diagnostic skill would reduce C-section rates

by 15.8% among the lowest risk, and increase them by 4.7% among the high risk

while improving outcomes among all women.

∗We thank Samantha Heep and Dawn Koffman for excellent research assistance, and Amitabh
Chandra, Jonathan Gruber, Amy Finkelstein, Kate Ho, Robin Lee, Jonathan Skinner and seminar
participants at Princeton, Georgetown University, Havard Medical School, Kyoto University, NYU, the
Japanese National Institute of Population and Social Security Research, Warwick University, University
College London, the London School of Economics, the Paris School of Economics, the NBER Summer
Institute, and the University of Michigan for helpful comments. This research was supported by a
grant from the Program on U.S. Health Policy of the Center for Health and Wellbeing.

2



1 Introduction

High and rising health care costs are a major source of fiscal stress in the United States

where they already account for 18% of GDP.1 Unnecessary procedure use is one driver

of increasing costs (Garber and Skinner (2008)). This problem has even been recognized

by physician groups: The Choose Wisely Campaign unveiled in April 2012 includes nine

specialty societies representing 374,000 physicians that have developed checklists and

patient-friendly guides aimed at eliminating unnecessary tests and procedures.2 Many

possible reasons have been advanced for unnecessary procedure use including patient

demand; defensive medicine (that is, fear of lawsuits); the profit motive; spillover

effects on physician practice style; and physician specialization in high tech procedures

which may be inappropriate for low risk patients (Chandra et al., 2011).This paper

explores the idea that variations in treatment arise because some physicians are better

than others at using the available information to make a decision about treatment,

a capability we dub “diagnostic skill.” Most previous analyses of physician decision

making have focused on a single dimension of physician skill, viz. physician skill in

performing procedures, and have ignored diagnosis. Instead, in one of the few attempts

to go beyond a uni-dimensional model of skill, we develop a model in which physician

skill has two dimensions: Physicians may be more or less skilled at doing procedures,

and they may be more or less skilled at diagnosis. Diagnostic skill is the ability to

reliably transform observed symptoms into an assessment of patient condition, which

in turn will affect the doctor’s decision about treatment. Building on learning models

such as Farber and Gibbons (1996) and Altonji and Pierret (2001), we model a diagnosis

as a decision problem in which the physician uses the available information to update

her prior beliefs regarding a patient’s condition. Our work also draws inspiration from

new research in management (e.g. Bloom and Van Reenen (2010)) which suggests that

1See https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/NationalHealthExpendData/downloads/proj2010.pdf, accessed Dec. 16, 2012.

2See http://www.abimfoundation.org/Initiatives/Choosing-Wisely.aspx, accessed Dec. 16, 2012.
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decision making skill is an important ingredient of performance.

Although it has been neglected in the health economics literature, diagnostic skill

has become increasingly important because of the growing complexity of medical care

and the sheer number of different treatment options available. For example, in a

world in which there was little that could be done for cancer patients, it did not

matter if physicians choose the right treatment; now it may be a matter of life or

death whether a breast cancer is correctly diagnosed as estrogen-sensitive or not. The

increased importance of diagnosis is reflected both in growing attention to medical

errors as a leading cause of morbidity and mortality (Committee on Identifying and

Preventing Medication Errors (2007)), and in growing numbers of malpractice cases

that focus on misdiagnosis (Mello and Studdert (2007)3). An important reason to try

to measure diagnostic decision making skill is that it may be possible to improve it

through mechanisms such as checklists, computer aided diagnosis, or administrative

structures that support collective decision making (Baker et al. (2008); Doi (2007);

Gawande (2009)).

We examine the role of diagnosis in the context of Cesarean section delivery. There

is a consensus that there are too many C-sections in the U.S., with rates of 35% vs.

the 15% rate that is thought to be closer to optimal. Not surprisingly, the marginal C-

section is unnecessary (Baicker et al. (2006)). For our purposes of quantifying diagnostic

decision making skill and relating it to outcomes, C-section, which is the most common

surgical procedure in the U.S., is ideal: Given the detailed records collected for each

birth, we can identify women with a high or low risk of C-section a priori, and we can

also identify a variety of negative health outcomes following delivery.

We show first, that it is theoretically and empirically possible to distinguish between

procedural and diagnostic skill. Second, we develop meaningful empirical proxies for

these concepts. Third we show that the predictions of the model are borne out in the

3They find that 70% of malpractice cases are due to errors of judgment.
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data: Improvements in diagnostic decision making skill increase the incidence of C-

sections for high risk women, but reduce C-sections for low risk women. Since low risk

women outnumber high risk ones, improving diagnosis reduces overall C-section rates.

This reduction does not result from across-the-board cuts in C-section rates. Instead,

we estimate that moving a woman from a provider at the 25th to the 75th percentile of

the distribution of diagnostic skill would reduce the probability of C-section among the

lowest risk women by 15.8%, but would increase the probability of C-section among

high-risk women by 4.7%. By way of comparison, increasing providers’ procedural

skill performing C-sections by a comparable amount would increase C-section rates

by about 3.7% among low risk women, but by only .5% among high risk women.

Moreover, since most low risk women are better off without C-sections while most high

risk women are better off with C-sections, improved diagnosis reduces the risk of bad

outcomes for all women. Our estimates suggest that improvements in diagnosis of the

magnitude described above would reduce the incidence of poor outcomes by 17.0%

among the lowest risk women, and by 8.3% among high risk women. In contrast,

improving surgical skill per se mainly benefits high risk women and may even have

negative effects on the lowest risk women by encouraging unnecessary procedure use.

By highlighting the importance of diagnostic skill in addition to procedural skill,

and suggesting empirical analogs of these empirical concepts, our paper takes a first step

towards measuring and improving diagnostic decision making. The rest of our paper

is laid out as follows. Section II provides a brief overview of the existing literature on

the reasons for unnecessary procedure use. Section III lays out our model. Section

IV provides a description of our data and empirical methods. Results are described in

Section V and Section VI concludes.

5



2 Background

One of the most common explanations for unnecessary procedure use is “defensive

medicine”, the idea that doctors do unnecessary procedures in order to protect them-

selves against lawsuits. This view persists despite being debunked by many studies.

For example, Baicker et al. (2007) argue that there is little connection between mal-

practice liability costs and physician treatment of Medicare patients, and Dubay et al.

(1999) cast doubt on such a relationship for C-section deliveries.

Currie and MacLeod (2008) conduct a theoretical and empirical examination of

the effect of tort reform on the use of C-section. They develop a model in which

patients can be ranked in terms of appropriateness for C-section, and show that the

doctor’s optimal threshold for performing C-section varies with the liability risk. They

argue that if doctors are doing C-sections in order to protect themselves from legal

liability, then tort reforms that reduced liability should reduce C-section. Instead, they

show that reducing liability increases the use of C-section. The intuition is simple: If

the marginal C-section is unnecessary, then it is likely to do more harm than good.

Reducing the liability from harming people by doing unnecessary surgeries therefore

increases the number of such unnecessary surgeries.

Currie and MacLeod’s result strongly suggests that doctors have other motives

besides fear of lawsuits for performing C-sections. The profit motive is an obvious

alternative explanation. The fee for performing C-sections exceeds the fee for perform-

ing vaginal deliveries. Moreover, C-sections take less time and can be scheduled at

a time that is convenient for doctors. Gruber and Owings (1996) and Gruber et al.

(1999) show that the incidence of C-section among Medicaid patients increases with the

gap between the fee for C-section and vaginal delivery (although Grant (2009) argues

that the effect is smaller than they had estimated). However, the profit motive does

not provide a complete model of doctor behavior. Since doctors always make more
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money doing C-sections, a simple profit motive would presumably lead to even higher

C-section rates than we already observe.

Hence, researchers have also considered other determinants of doctor behavior in-

cluding the idea of “practice style” which is often proxied by a physician fixed effect

in a model of procedure use. The origins of distinct practice styles remains a mystery:

Epstein and Nicholson (2009) use data from Florida and find little evidence of conver-

gence in practice styles over time within hospitals. They further find little effect of the

physician’s residency program. Dranove et al. (2011) use the same data from Florida

to examine the evolution of physician practice styles and find strikingly little evidence

of changes over time. They conclude that physicians in the same hospital tend to have

similar practice styles because of matching, not because they learn from each other.

Chandra and Staiger (2007) develop a model in which providers specialize in either

a high intensity or a low intensity procedure. The specific example they consider is

medical management (drugs) vs. surgery for heart attack patients. A key element of

their model is that specialization makes doctors better at what they do, but also has

an opportunity cost: High intensity providers are better at surgery, but worse at med-

ical management, whereas low intensity providers are better at medical management

but worse at surgery. One of the main implications of the model is that patients who

are good candidates for surgery will benefit from going to high intensity providers,

while patients who are bad candidates for surgery will benefit from going to low inten-

sity providers. In this model, the choice of procedure depends only on the technical

procedural skill of the physician. Taking our cue from the literature on management

effectiveness (Bloom and Van Reenan, 2010) and variations in business productivity

(Syverson, 2011, Finkelstein and Syverson, 2013), we build on Chandra-Staiger by ex-

ploring the hypothesis that part of the variation in treatment choice is due to variation

in decision making skills.

In the Chandra-Staiger world, doctors tend to do what they are good at. We
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show below that considering diagnostic skill as well as procedural skill yields additional

implications. For example, in a world with specialization in high intensity and low

intensity procedures, improving the diagnostic decision making skills of a high intensity

provider can paradoxically lead to worse outcomes for low risk patients because doctors

will do less of the high intensity procedures that they are good at, and more of the

low intensity procedures that they are bad at. We will show empirically that high

risk patients do benefit from going to a provider with excellent procedural skills as

Chandra-Staiger predict. However, in contrast to their model, low risk patients do not

suffer from going to such a physician. Rather, the low risk patients suffer if they go to

a physician with poor diagnostic skills. We also show that our measures of these two

dimensions of skill are positively correlated, as one might expect, but that it is possible

to distinguish them since the correlation is a modest .259.

Few researchers in economics have considered diagnosis and procedural skill as dis-

tinct aspects of medical practice, or attempted to model diagnosis. In a rare exception,

Afendulis and Kessler (2007) show that doctors who provide both diagnosis and spe-

cialized services are more likely to recommend their own services, which yields overuse,

but also some productive efficiencies. We explore the relationship between diagnosis,

procedural skill and outcomes more formally below.

3 A Model of Diagnostic and Surgical Skill

3.1 Understanding Physician Decision Making

In this section we begin with the standard Roy model of physician decision making to

understand physician diagnosis, and then add to this model Bayesian learning.4 In our

data we observe patient characteristics, the procedure chosen, and various measures of

medical outcomes. The goal is to understand how variations in physician skill affect

4This is the model used in Chandra and Staiger (2007) and Currie and MacLeod (2008).
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procedure use and medical outcomes. In particular we explore how variations in a

physician j’s ability to process information is likely to impact procedure choice and

performance.

3.2 Physician Behavior

Suppose that the physician chooses the best action possible given her information, costs,

and patient preferences. The procedure that doctor j chooses for patient i, is denoted

by Tij ∈ {N,C}, where N and C represent the non-intensive and intensive procedures,

corresponding to natural delivery and a C-section in our data. The model we discuss

can be applied to any situation where the physician faces a dichotomous choice. When

deciding upon a procedure the physician evaluates the underlying condition of the

patient to produce two latent variable HN
i and HC

i which are the outcomes if procedure

N or C are performed. We assume that physicians care both about patient outcomes

and about the fees they can charge. In turn, the patient’s outcome depends on the

underlying condition of the patient, the procedure chosen, and on the physician’s skill.

Hence, the utility payoff of the physician is:

Uij (T ) = (HT
i )α

H
(STj )α

S
MT
j

(
P T
)αM

, (1)

where STj is the skill of physician j at doing procedure T and Mj

(
P T
)

is the expected

pecuniary consequence of this choice as a function of the price paid, P T for procedure

T . The elasticities of the interaction terms are given by αk, k = H,S,M . Taking logs

yields:

uij (T ) = log(Uij (T ))

= αH log
(
HT
i

)
+ αSlog

(
STj
)

+ αM log
(
MT
j

(
P T
))
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Without loss of generality, we can redefine the health outcome, skill, and pecuniary

returns by

hTi = αH log
(
HT
i

)
,

sTj = αSlog
(
STj
)

mT
j

(
P T
)

= αM log
(
MT
j

(
P T
))
.

We have rough proxies for price, and suppose that the gain physicians respond to

is the difference in price for the two procedures:

mj (∆P ) = mC
j

(
PC
)
−mN

j

(
PN
)
,

where ∆P = PC − PN is the price difference between a procedure C and natural

delivery. The function mj (∆P ) is assumed to be strictly increasing in ∆P .

The medical benefit of a procedure is given by

MBT
ij = hi + sTj .

And the net medical benefit is given by:

NMB
(
hi, s

C
j , s

N
j

)
= MBC

ij −MBN
ij (2)

= hi + sCj − sNj (3)

where hi = hCi − hNi .

The physician cannot directly observe patient condition hi, but rather estimates

the condition of the patient with the available information Iij . We will show presently
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that we can write:

E {hi|Iij} = h̄ij + εij ,

where εij is normally distributed with mean zero and variance σj . The physician

carries out a C-section if and only if the net medical benefit plus the pecuniary benefit

is positive:

E
{
NMB

(
hi, s

C
j , s

N
j

)
+mj (∆P ) |Iij

}
≥ 0. (4)

The probability that patient i has a procedure C with physician j is given by:

ρij = F
((
sCj − sNj +mj (∆P )− s̄ij

)
/σij

)
. (5)

This expression, combined with our assumptions regarding skill and price implies the

following well known result for the Roy model of physician behavior:

Proposition 1. Taking physician information as given, the rate of use of procedure C

increases with physician skill doing procedure C (sCj ) and with the difference in price

between procedure C and procedure N. The use of procedure C falls with an increase in

skill doing procedure N (sNj ).

This result is true both on average for the whole population and conditional upon

the patient’s risk for having procedure C. Next we consider the issue of diagnostic skill.

3.3 Understanding Diagnosis

Diagnosis means the ability to reliably transform observed symptoms into an assessment

of patient condition. Accurate diagnosis is essential to appropriate treatment, though

treatment will also depend on the costs of treatment, the doctor’s skill in performing

procedures, and on patient preferences. To the extent that diagnosis affects the course

of treatment it can lead to better or worse outcomes. In our data we cannot observe
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all the information that is available to the physician, but we do have a very rich set of

observed conditions, Xi, for patient i.

If all doctors learn and evaluate information in the same way, then, with sufficient

controls for patient characterstics, conditional upon patient condition Xi observed deci-

sions should not statistically vary between physicians. We postulate that diagnosis can

be viewed as a learning process. By this we mean that when dealing with child birth

each physician has a baseline treatment style (as in Epstein and Nicholson (2009)).

When the physician observes the patient’s condition she learns things that may lead

her to change her beliefs regarding the best course of action. We model physician

learning as a one step Bayesian updating process. The physician is assumed to have

some prior beliefs that correspond to her treatment style. She then observes Xi which

updates her beliefs regarding patient condition, and decides to perform a C-section or

not.

In order to compare diagnosis across physicians, we begin by creating a measure of

patient appropriateness for procedure Tij = C. We estimate a discrete choice model:

ρri = F (βrXi) , (6)

where F is a logistic distribution, and ρri ∈ [0, 1] is the predicted probability of proce-

dure C. Let hri = βrXi ∈ < be the corresponding index that varies over the real line.

We show that ρri is a physician-independent index of the appropriateness of the patient

receiving treatment T = C that does a good job assessing an individual patient’s need.

This measure is an average over the whole market, hence any individual physician’s

contribution to ρri is very small.

Our goal is to understand both treatment choice, and the impact upon patient

welfare. We approach this problem by supposing that there is an underlying state

of the patient, hi ∈ <, with the interpretation that this is the net medical benefit of
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doing procedure C, and that C should be carried out whenever the benefit is positive or

hi ≥ 0. Thus, we can interpret hri = βrXi as the market’s best estimate of the patient’s

condition, and we will assume that it forms a proxy for the net benefit of procedure

C. This index depends only on the patient’s medical condition and is independent of

physician characteristics and other patient characteristics (such as race and insurance

coverage).

We already know that different physicians often make different decisions with the

same data regarding a women’s condition which may be in part because they differ in

the way that they process information.

We formally capture this effect by supposing that hri , given by equation (6), is

an unbiased signal of the net benefit with variance σ2r . The physician is assumed to

observe:

hij = hri + εij/Dj , (7)

where the variance of εij is a standard normal distribution and Dj = 1
σij

is the precision

of this signal, and hence a measure of diagnostic skill.5 In terms of equation (1), we

are assuming that everyone observes the same Xi but that doctors use their personal

experiences to form βr. Since we use data for the entire state over 10 years, we are

assuming that we have a superior estimate of βr. The case in which doctors observe

additional data that we do not observe is discussed in section 3.4.2 below.

This structure follows from a rational choice framework in which doctor experiences

lead them to have prior beliefs regarding the benefit of procedure C for the average

patient. Let h0j be the mean and σ02ij be the variance of these beliefs. Let D0
j = 1

σ0
j

be

a measure of how strongly a physician holds his or her pre-existing beliefs.

5Normally the precision is the reciprocal of the variance σ2
ij , but the reciprocal of the standard

deviation σ2
ij provides a more convenient measure of diagnostic skill.
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From DeGroot (1972) we have the familiar learning rule:

E
{
hi|hij , h0j

}
= πhji + (1− π)h0j

= πhri + (1− π)h0j +
π

Dj
εij , (8)

where π =
D2

j

D2
j+(D0

j )
2 .

The point here is that the sensitivity of the updated beliefs to the observed signal

is a function of how much information is extracted from Xi.

This expression allows us to put a bit more structure on the decision function 5.

If the physician can observe hri directly, then Dj is zero and diagnosis is not an issue.

Procedure C is choosen if and only if:

hri ≥ sNj − sCj −m (∆P ) . (9)

This rule is illustrated in Figure 1a where ρ̄j = F
(
sNj − sCj −m (∆P )

)
. That is, the

doctor determines a threshold patient condition. Only patients with risk above the

threshold level receive a C-section. The threshold shifts down (indicating that more C-

sections will be performed) whenever C-sections become more lucrative or the doctor’s

skill in performing C-section increases relative to his or her skill performing natural

deliveries. Thus increases in prices for C-section and improvements in surgical skill

have their greatest impact on the use of C-section among marginal patients.

3.4 Effect of Diagnosis on Decisions and Outcomes

Let us now consider the situation when the doctor doesn’t perfectly observe patient

appropriateness. Let Iij denote all the information that a physician has when she

decides what procedure to perform on patient i. Now, instead of observing the patient’s

condition, the physician has an expectation about that patient’s condition given the
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information set. A physician will choose to perform C if and only if:

E {hi|Iij}+ sCj − sNj +mj (∆P ) ≥ 0. (10)

Here we are assuming the physician understands her skill and the pecuniary gains

from performing procedure C. Thus her information is only used to make an assessment

of patient condition, which is given by E {si|Iij}. This expected value is solved using

Bayes’ rule (8) to get:

πhri + (1− π)h0j + sCj − sNj +mj (∆P ) ≥ π

Dj
εij .

If we divide by the weight π/DJ we get the expression:

Dj (hri − aj) ≥ εij (11)

Where, given prices,

aj = −
(1− π)h0j + sCj − sNj +mj (∆P )

π
(12)

is a physician specific constant. Let the probability that a patient i with observed

condition hri who is treated by physician j receives procedure C be denoted by ρij .

Since the the error term εij is a standard normal distribution from (11) we have:

ρij = F (Dj (hri − aj)) . (13)

For notational simplicity we write ρij rather than showing explicitly that it depends

upon patient and physician characteristics. In subsequent expressions it is understood

that ρij can vary with any patient i or physician j characteristic.
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Equation 13 formalizes the sense in which our model incorporates two dimensions

of doctor’s skill rather than one dimension. In the standard Roy model, as used for

example by Chandra and Staiger (2007) and Epstein and Nicholson (2009), only the

constant term aj varies across physicians (or across regions). Here, in addition to this

doctor specific constant, there is a slope term, Dj , which we interpret as a measure of

diagnostic skill. One contribution of our work is to explore the implications of allowing

Dj to vary between doctors.

Previous work has shown that an increase in surgical skill leads to higher procedure

rates. In our model, an increase in C-section skill leads to more C-sections:

1

f (Dj (hri − aj))
∂ρij

∂sCj
=
Dj

π
> 0. (14)

However,the size of this derivative varies with diagnostic skill (and also with practice

style which comes in via π which depends on D0
j ). Since

Dj

π increases with diagnostic

skill, utilization increases with skill at a faster rate when there is greater diagnostic

skill.

We can also derive the effect of diagnosis upon procedure use holding skill, prices

and practice style fixed. Taking the derivative of 13 with respect to diagnostic skill we

get:

1

f (Dj (hri − aj))
∂ρij
∂Dj

= hri − bj , (15)

where bj is the intercept term plus it’s elasticity with respect to diagnostic skill:

bj = aj +Dj
∂aj
∂Dj

. (16)

The elasticity of the constant term aj with respect to diagnosis is:

Dj
∂aj
∂Dj

=
{(

(1− π)2 + π
)
h0j + sCj − sNj +mj (∆P )

} 2 (1− π)

π
. (17)
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This derivative is ambiguous in sign. In general 1 > π > 0 which means that the

derivative is positive if and only if:

h0j ≥ −

sCj − sNj +mj (∆P )(
(1− π)2 + π

)
 . (18)

However, given that the value of bj does not vary with the condition of the patient and

hri can take any real valued expression 15 implies:

Proposition 2. The probability that the physician uses procedure C increases with

diagnostic skill if and only if patient condition is above a fixed, physician specific,

threshold (hri > bj).

This expression implies that high risk patients will experience an increase in the

use of C-section when the physician has better diagnostic skills, and low risk patients

will experience decreases in the use of C-section with increases in diagnostic skill.

Propositions 1 and 2 are illustrated in Figures 1b and 1c. In these figures, the

probability of C-section rises with patient appropriateness, but it rises more smoothly

than in Figure 1a reflecting uncertainty about the actual state of the patient. In Figure

1b an increase in surgical skill or price increases procedure use everywhere (Proposition

1). In contrast, Figure 1c shows that a change in diagnostic skill causes the relationship

between C-section and appropriateness to twist and to approach the decision rule given

in Figure 1a. These results illustrate that it is possible to disentagle diagnostic skill

from surgical skill. An increase in surgical skill should result in an increase in C-sections

for all patient types; in contrast, an increase in diagnostic skill increases C-sections for

the high risk and reduces them for the low risk.

3.4.1 Outcomes

For high risk patients, the effect of physician characteristics upon the C-section rate is

small since most of these patients both need and receive a C-section. Thus, we can use
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variations in medical outcomes among these patients as a proxy for sCj . Similarly we

can use outcomes for low risk cases as a proxy for sNj (since most low risk patients have

natural deliveries). The use of these proxy measures allows us to examine the effect of

procedural skill on the physician’s propensity to perform C-sections.

Next, let us consider the effect of diagnostic skill, as given by Dj , the precision of

the measure of the patient’s condition. Our analysis is done in terms of the net medical

benefit of C-section relative to natural delivery, which we assume is given by:

hri + sCj − sNj .

The physician observes a signal hij and decides on the procedure following rule 11. We

can write the net medical benefit as function of observed medical appropriateness for

procedure C as:

NMBj (hri ) = ρij
(
hri + sCj − sNj

)
− (1− ρij)

(
hri + sCj − sNj

)
= (2ρij − 1)

(
hri + sCj − sNj

)
(19)

Hence, the effect of diagnostic skill upon net medical benefit is given by:

∂NMPj
∂Dj

= 2
∂ρij
∂Dj

(
hri + sCj − sNj

)
Recall that hri takes values over the whole real line. When hri is sufficiently large

then
∂ρij(hri )
∂Dj

> 0, and the term (hri + sCj − sNj ) is positive; hence diagnositic skill has a

positive effect upon outcomes. Similarly, when hri is sufficiently small,
∂ρij(hri )
∂Dj

< 0, and

the term (hri + sCj − sNj ) is negative, and hence the total effect is still positive. These

results suggest that when patients are either high risk or low risk, improvements in

diagnosis will make patients better off. For patients of medium risk, diagnosis interacts

18



with other factors to affect patient outcomes. For example, if a doctor is much better

at doing C-sections than natural deliveries, and too many C-sections are being done,

then improvements in diagnosis could conceivably make the patient worse off.

The effect of surgical skill on outcomes is given by:

∂NMPj

∂sCj
= 2

∂ρij

∂sCj

(
hri + sCj − sNj

)
+ (2ρij − 1) .

Better surgical skill (relative to natural delivery) always increases the number of C-

sections. For high risk patients, hri > max
{
aj , s

N
j − sCj

}
, so both

(
hri + sCj − sNj

)
and

(2ρij − 1) are positive. Hence, the effect of skill is positive. We have a negative sign

when hri < min
{
aj , s

N
j − sCj

}
, and hence skill has a negative effect on net benefits for

the lowest risk patients. Again, there is some indeterminacy about the sign for those

at medium risk for whom it is not clear which term predominates.

These effects are illustrated in Figure 2. The figure shows that the marginal benefit

from increased diagnostic skill is U-shaped in patient appropriateness for C-section,

and that it is positive for patients at both low risk and high risk of C-section. In

the middle, the sign of the effect is indeterminant (and it is relatively small). That

is, for cases that are marginal medically, it will not do too much harm to make the

“wrong” decision. In contrast, the benefit from increased surgical skill (relative to skill

at natural deliveries) is increasing in patient appropriateness, and is highest for high

risk cases.

Proposition 3. The effect of diagnostic skill, surgical skill and price on medical out-

comes is summarized in the following table:

Appropriateness for Procedure C

Low Middle High

Diagnostic Skill + ? +

Surgical Skill - ? +
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In the standard Roy model increases in surgical skill can lead to some mis-match

between the patient and proceedure, an effect highlighted by Chandra and Staiger.

Here we show that this effect can be offset by an increase in diagnostic skill which

increases match quality for most patients. The effect is ambiguous for the marginal

cases, but these are also the cases for which both procedures have similar benefits, and

hence errors in diagnosis would have a small effect. As a consequence we would expect

that on average an increase in diagnostic skill would improve outcomes.

An explicit policy instrument is procedure price. The effect of price is quite straight-

forword and given by:

∂NMPj
∂∆P j

= 2
∂ρij
∂∆P j

(
hri + sCj − sNj

)
.

An increase in the price of C relative to N always increases the rate of procedure

C, hence it improves outcomes if and only if hri + sCj − sNj > 0. In other words, for high

risk patients an increase in the price of C increases the use and hence makes individuals

better off. The converse is true for low risk patients.

3.4.2 Alternative Information Structures

We have assumed that not all doctors interpret patient conditions hri in the same way.

That is, different doctors have different values of Dj . An alternative assumption is

that all doctors interpret hri in the same way but some doctors observe additional

information. In this case, variations in decisions would be due to the additional in-

formation that is collected rather than to physicians processing the same information

in different ways. In this alternative scenario, a Bayesian decision maker would put

less weight upon hri as she acquired additional information. This in turn would imply

that sensitivity to hri would decrease with improvements in a physician’s diagnostic

skills. Recall that in our model a sensitivity tohri is captured by the slope term, Dj .
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Hence, this alternative scenario implies that decreases (rather than increases) in Dj

would improve outcomes, a result that is derived more formally in the appendix. That

is, suppose that we judged a woman to be at very low risk of C-section, but the doctor

was able to discern private information that indicated a C-section was necessary, or

conversely, suppose we judged a woman to be very high risk, but the doctor was able

to ascertain that a normal delivery was safe. In these cases, the relationship between

our measure of the woman’s health status and C-section risk would be flatter for the

skilled diagnositican than for a less skilled colleague, and this flatter relationship would

be associated with better outcomes.

As we show below, we find exactly the opposite result. That is, a stronger relation-

ship between our measure of patient risk and the doctor’s propensity to do a C-section

is predictive of better outcomes. This result suggests that many doctors do not use

the information contained in our measures of patient condition,hri , efficiently. Another

way to think about this issue is to reflect on the fact that measures of patient risk that

we estimate reflect the combined experience of all physicians in New Jersey over a ten

year period, whereas any individual doctor has much less experience and hence may

be less able to infer the correct level of patient risk from the underlying information

about patient condition.

4 Data and Methods

The data for this project come from approximately a million Electronic Birth Cer-

tificates, (EBC) spanning 1997 to 2006, from the state of New Jersey. These records

have several important features. First, in addition to information about the method

of delivery including whether a C-section was planned or not, they include detailed in-

formation about the medical condition of the mother which enables us to predict, with

a fair degree of accuracy, which mothers are likely to need C-sections. In particular,

21



we know the mother’s age, whether it is a multiple birth, whether the mother had a

previous C-section, whether the baby is breech, whether there is a medical emergency

such as placenta previa or eclampsia which calls for C-section delivery, and whether

the mother had a variety of other risk factors for the pregnancy such as hypertension

or diabetes.

Second, the birth records include unusually detailed information about birth out-

comes. Birth records usually record information about complications of labor and

delivery. Infant deaths are of particular interest, but are thankfully rare. When we

look at deaths, we focus on neonatal deaths (deaths in the first 30 days) as these are

more likely than later deaths to be caused by events at the delivery. In addition to

these measures, the New Jersey data also includes information about late maternal

complications such as fever and hemorrhage that occur after the delivery. In most of

our analyses we will combine these measures and look at the probability that there

was “any bad outcome.” Our comprehensive measure of bad outcomes includes late

maternal complications, neonatal death, selected complications of labor and delivery

(excessive bleeding, fever, seizures) and selected abnormal conditions of the infant (bra-

choplexis, fracture, meconium, birth injury, neurological damage in full term infant).

We did not include neurological damage in preterm infants as this might be a result of

prematurity itself rather than events at the time of the birth.

Third, the data has information about the latitude and longitude of each woman’s

residence, as well as codes for doctors and hospitals. We found, as a practical matter,

that very few doctors practiced in more than one hospital in a single year, hence the

choice of doctor also defines the choice of hospital. In our analysis, we focus on doctors

and exclude midwives since only doctors can perform C-sections.

Finally, the data includes demographic information about the mother such as race,

education, marital status, and whether the birth was covered by Medicaid which have

been shown to be related both to the probability of C-section and to birth outcomes.
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The inclusion of these variables may help us to control for variations in demand for

C-sections by different demographic groups.

We use these data to construct analogs of the key concepts in our model. We define

ρri , the mother’s risk of C-section, by estimating a logit model of the probability of

C-section given all of the purely medical risks recorded in the birth data, as in equation

(1). The model we use is shown in column 1 of Table 1. Table 1 shows that the model

predicts well, with a pseudo R-squared of almost .32. One issue with this model is

that it reflects actual practice, but not necessarily best practice. Since ρri is a device

for ranking women according to their medical risk, the level is less important than the

ordering. We have experimented with several alternative models and found that the

correlation between the ranking produced by our model, and the ranking produced

by the alternatives is above .95. These alternatives included a model with fewer risk

factors, a model that used births from 1997-1999 only, and a model that used only

doctors who were below the 25th percentile in terms of the fraction of births with

negative outcomes in their practices. Estimates of the latter model are also shown in

Table 1. One can see that the estimated coefficients for these “good doctors” are similar

to those for all doctors suggesting that there is not a lot of controversy about which

women are the best candidates for C-section. Rather, the controversy about C-section

can be interpreted as a matter of where the cutoff for C-section should occur.

Figure 3 provides another way of gauging the accuracy of the model’s predictions.

It shows that those who did not have a C-section generally had values of ρri less than .5,

while those with C-sections generally had values of ρri greater than .5. More particularly,

the figure shows that those who had values of ρri less than .06 were very unlikely to have

C-sections, while those with ρri greater than .8 were highly likely to have C-sections. In

what follows, we will designate these two groups as the “very low risk” and the “high

risk” respectively, and consider those with values of ρri between .06 and .2 and between

.2 and .8 as “low risk” and “medium risk,” respectively. Of the women deemed high
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risk, 89% received a C-section, while among the women deemed very low risk only 6%

received a C-section.

For a given level of medical risk, the probability of C-section increased over our

sample period at all but the highest risk levels as shown in Appendix Figure 1. In fact,

at the start of our sample period, New Jersey, with a rate of 24%, had a lower C-section

rate than several other states, including Arkansas, Louisiana, and Mississippi, while by

the end of our sample period, New Jersey had pulled ahead to have the highest C-

section rate of any state, at almost 40%. Appendix Figure 2 shows that this increase

was not due to a change in the underlying distribution of medical risks. The figure

shows only a slight increase in the number of high risk cases, which is attributable to an

increase in the number of older mothers, mothers with multiple births, and increasing

numbers of women with previous C-sections (itself driven by the increasing C-section

rate).

It remains to define measures of diagnostic skill, procedural skill, and prices. In

the model, diagnostic skill is captured by the variable Dj . An empirical analog can

be obtained for each doctor by using the estimated β’s from (1) to create the index of

maternal condition hri (this is simply βrXi) and then estimating a regression model for

each doctor’s propensity to perform C-sections as a function of hri . The coefficient on

hi, denoted by DiagSkillj , is an indicator of how sensitive the doctor is to this index

of observable indicators of patient risk and thus captures diagnostic skill.

We measure procedural skill by first calculating the rate of bad outcomes among

very low risk births, and the rate of bad outcomes among high risk births for each

doctor, and then taking the difference between them. This measure is a good proxy

for skill because, as noted above, the vast majority of high risk women get C-sections

and most very low risk women do not. At the same time, because the high risk and

very low risk groups are defined only in terms of underlying medical risk factors, the

measure is not contaminated by the endogeneity of the actual choice of C-section. This
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measure is less than zero since bad outcomes are less likely for the low risk than the

high risk, but we have defined it that way so that it becomes larger as the rate of bad

outcomes falls among the high risk (i.e. with greater surgical skill).

For prices, we use data from the Health Care Utilization Project (HCUP). HCUP

includes hospital list charges for every discharge. For each hospital and year, we take

the mean price of all C-section deliveries that did not involve any other procedures, less

the mean price of normal deliveries without other procedures. This differential varied

from $2,250 to $8,490 real 2006 dollars, with a median of $4,756.6

Having constructed these measures, we estimate models of the following form:

Outcomeijt = f(DiagSkillj , s
C
j − sNj ,∆Pjt, Zit,month, year), (20)

where Outcomeijt ∈ {0, 1}, where 0 is a Natural delivery (or good birth outcome)

and 1 is a C-Section (or bad birth outcome), i indexes the patient, j indexes the doctor,

and t indexes the year. The vector Zit includes maternal age (less than 20, 20-24, 25-29,

30-34, 35 and over), education (less than 12, 12, 13-15, 16 or more), marital status,

race/ethnicity (African-American, Hispanic), and whether the birth was covered by

Medicaid, as well as the child’s gender and indicators for birth order. We include

month and year effects in order to control for seasonal differences in outcomes and for

longer term trends affecting all births in the state (e.g. due to other improvements in

medical care). The standard errors are clustered at the level of the physician in order

to allow for unobserved correlations across a physician’s cases.

Sample means are shown in Table 2. The estimation sample is slightly smaller than

in Table 1 because while we used all births to calculate the probability of C-section,

in the rest of the paper we exclude births that were not attended by a doctor, as well

6It is important to note that physician charges are generally separate from hospital charges. In using
this measure, we are implicitly assuming that physicians who practice in expensive hospitals charge
more.
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as those for whom we cannot calculate our measure of diagnostic skill (because there

are too few births per provider).7 These exclusions leave us with approximately 1,000

providers, who together deliver the vast majority of the babies in New Jersey over the

sample period. The first panel shows how the outcome variables vary across the four

risk groups. As expected, higher risk women have more C-sections, a higher risk of a

bad outcome, and higher neonatal death rates compared to lower risk women.

The second panel explores the characteristics of doctors and provides some initial

evidence with regard to an important question: The extent to which higher risk patients

see doctors with particular characteristics. Table 2 suggests that the doctors who treat

low, medium, and high risk patients are remarkably similar in terms of number of

deliveries in the sample, diagnostic skill, procedural skill, and price differentials. There

is however a clear gradient in the share of high risk patients in the practice, with high

risk patients being more likely to see doctors who are relatively more specialized in

high risk patients. The lowest risk patients appear to see doctors who are slightly less

skilled and who see more patients than average. Perhaps surprisingly, there is little

difference in the fraction of a doctor’s patients who have had bad outcomes. That is,

although high risk women are more likely to have bad outcomes, there is no evidence

that they are likely to see doctors who have either high or low fractions of patients

with bad outcomes in their practices.

The third panel of the table provides an overview of selected maternal and child

characteristics including race and ethnicity, maternal education, marital status, and

whether the birth is covered by Medicaid. The table suggests that the lowest risk

women are disproportionately minority women who have already had at least one birth,

whereas women at high risk for C-section tend to be older, married women.

The main empirical difficulty involved in estimating (20) is that women choose

their doctors. If women with high risk pregnancies choose better doctors, then the

7We also exclude a very small number of doctors who did not have at least one high risk patient
and at least one low risk patient.
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estimated effect of doctor skill on birth outcomes will be biased towards zero. Table

2 suggests that there is some evidence of this type of selection, particularly for the

lowest risk group. We do not see any evidence that high risk women go to the least

skilled doctors, which would lead estimates of (20) to overstate the beneficial effect of

skill on birth outcomes. Although there is no perfect solution to the problem of doctor

selection, we address it in several ways.

First, we examine correlations between the probability of C-section (ρri ) and doctor

characteristics in Table 3. Table 3 shows that the correlation between a high risk of C-

section and our measures of diagnostic skill and procedural skill are quite low (.055 and

-.033, respectively). However, there is a correlation of .160 between ρri and the share

high risk in the practice, suggesting once again that high risk women tend to choose

doctors who specialize in high risk cases. Table 3 also shows that there is a positive

correlation between diagnostic skill and surgical skill, though it is a modest .259. And

there are sizable negative correlations between the rate of bad outcomes in a practice

and our two skill measures, which is reassuring: The correlation between the rate of

bad outcomes and our measure of diagnostic skill is -.283, while the correlation between

bad outcomes and our measure of procedural skill is -.446. This analysis suggests that

controlling for the share high risk in the practice is one way to control for an important

observable aspect of selection.

The other ways that we address the selection issue are as follows: (1) We estimate

our models excluding planned C-sections (C-sections where there was no trial of labor).

The logic behind this test is that women who know that they will have a C-section may

have a stronger incentive to select a good surgeon; and (2) we estimate models defining

provider characteristics at the market level rather than at the doctor level, which will

help if markets are less selected than individual doctors within those markets.

Following Kessler and McClellan (1996) our definition of a hospital market is defined

with referenct to the hospitals actually selected by women in a particular zip code in a
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particular year. Specifically, we include all hospitals within ten miles of the woman’s

residence, plus any hospital used by more than three women from her zip code of

residence in the birth year.8 Thus, there is a distinct market, or set of hospital choices,

facing each woman at the time of each birth.

Figure 4 shows the distribution of hospitals and illustrates this way of defining

markets. The figure shows that most women choose nearby hospitals, but that some

women bypass nearby hospitals in favor of hospitals further away. In some cases, these

are regional perinatal centers which are better equipped to deal with high risk cases.

For example, women from Princeton New Jersey could give birth in the hospital in

town, but many travel as far away as Morristown (two counties to the north) to deliver

in other hospitals.9

Finally, in the appendix we also estimate models using only first births. The idea

behind these models is that mothers (and doctors) have much less information about

likely outcomes for a first birth than for subsequent births and so may be less selective

about physicians.

5 Results

Table 4 shows estimates of equation (20), where the dependent variable is whether

there was a C-section. Table 4 indicates that diagnostic skill and procedural skill have

distinct effects. When providers are relatively good at C-section, all women are more

likely to have C-sections. However, better diagnosis significantly reduces the probability

of C-section for the two lowest risk groups and increases it for the two other groups

with an especially large effect in the highest risk group. A larger price gap between

8In the crowded northern New Jersey hospital market, we included only hospitals within five miles
of the zip code centroid.

9The figure also illustrates that the common practice of drawing a circle around a location in order
to define a market is likely to be seriously misleading: A circle wide enough to include all the hospitals
actually chosen would include hospitals that were never chosen, and a circle wide enough to include
most hospitals could miss specialty hospitals that were further away and yet within the choice set.
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C-sections and natural deliveries increases C-sections for low risk women, but has the

largest effect for women at medium risk as the model predicts. The intuition is that

price is more likely to be determinative when the medical case is close to the margin.

One useful way to think about the magnitudes of these effects is to consider moving

a woman from a doctor at the 25th percentile of the relevant measure to a doctor at the

75th percentile and then compute percentage changes using the mean C-section rates

from Table 2. Percentage changes calculated in this way are shown in Appendix Table 3.

For the index of diagnostic skill, this movement (of .215 units) would reduce C-section

rates by 15.8% among the lowest risk, and by 10.7% among the low risk, but would

increase them by 3.8% and 4.7% among medium and high risk women respectively.

These figures imply a large overall decrease in C-section rates with better diagnosis.

Specifically, they imply a net decrease of 35,507 women receiving C-sections, which is

about 3.7% of the births in our sample.

For the index of procedural skill, a movement from the 25th to the 75th percentile

of the distribution (a movement of .062 units) would increase the probability of C-

section by 3.7%, 3.8%, .8% and .5% for very low, low, medium, and high risk women,

respectively. Finally, the estimates for prices imply that a one standard deviation

increase (about $2,600) in the gap between prices for C-section and normal delivery

would increase C-section rates by 5.4% in the very low risk group, 8.8% among the

low risk, and 3.2% among the medium risk, but would have no impact on the high

risk, where medical necessity is a much more important determinant of C-sections than

price.

Table 4 also shows the coefficients on the measures of personal characteristics that

are included in our models. Most of these characteristics have statistically significant

effects on the probability of C-section. As a group, they tend to belie the idea that

high C-section rates are a response to demand from white, college-educated women.

Instead, conditional on medical risk, it appears that African-American and Hispanic
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women are more likely to have C-sections, as are less educated women. We also see that

married women are less to have C-sections while those on Medicaid are more likely.

Table 5 examines birth outcomes. Recall that while the model implies that C-

sections decrease for the low risk and increase for the high risk, better diagnosis is

predicted to improve outcomes for everyone. Table 5 shows that this is in fact the

case. An improvement in diagnosis that moved the doctor from the 25th to the 75th

percentile of the distribution would reduce the incidence of any bad outcome by 17.0%,

9.9%, 10.6%, and 8.3% among the very low, low, medium, and high risk, respectively.

The incidence of neonatal death also declines significantly (though since neonatal deaths

are a rare outcome, the implied percentage changes should be taken with a grain of

salt). Improvements in surgical skill relative to skill doing normal deliveries is also

estimated to improve outcomes: Changing from a provider at the 25th percentile of

the procedural skill distribution to one at the 75th percentile would be associated with

reductions of 6.5%, 17.7%, 20.4%, and 55.7% in the probability of a bad outcome, sug-

gesting especially large effects of surgical skill for the difficult cases. The corresponding

estimates for the effects of improvements in surgical skill on neonatal death are also

large and increasing in medical risk. An increase in the price gap of $2,600 has no

statistically significant effect on the probability of any bad outcome (though the point

estimate is positive), but is estimated to increase the risk of neonatal death among all

but the highest risk group. A price increase is estimated to have no effect on the risk

of death among the high risk, which is consistent with the evidence that the choice of

procedure is not affected by price in the high risk cases.

5.1 Accounting for Selection

To this point, we have ignored the possible impact of doctor selection on our estimates.

As discussed above, if women with difficult cases are more likely to choose skilled

doctors, then we will tend to under-estimate the effects of skill on outcomes. High risk
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women being matched with the least skilled doctors, the opposite type of selection, is

a more serious potential problem as it has the potential to generate spurious effects

of skill. Fortunately, our analysis of observable characteristics of doctors and patients

suggests that any selection that is occuring is of the first type, and therefore that

our estimates are likely to understate the effects of doctor skill. While there is no

perfect answer to this selection problem, in this section we explore several alternative

estimation strategies.

Table 3 suggested that the main observable difference between doctors treating low

risk and high risk patients is that the later are more likely to specialize in high risk

patients. Accordingly, in Table 6, we add this observable characteristic of doctors to

the model. Controlling for the share of high risk patients in the practice has very little

effect on the estimated coefficients on the other doctor characteristics. Specialization

itself is associated with a higher probability of C-section, especially among the medium

risk group, and with a higher probability of bad outcomes. This later result could

reflect the selection we are trying to account for: If high risk women are both more

likely to have bad outcomes and more likely to see doctors who specialize in high risk

patients, then we would expect this effect. The results are quite similar if we break

the share high risk in the practice into quartiles and include those rather than the

continuous measures.

Table 7 shows the results of a second experiment in which we exclude planned C-

sections from the sample on the grounds that women planning to have a C-section may

be more selective in their choice of physician than those who are not. Comparing the

first panel of Table 7 to Table 4 indicates that the estimated effect of diagnosis on the

probability of C-section remains statistically significant though the magnitude of the

estimates are affected by the exclusion of planned C-sections. Some of the planned

C-sections may be the cases where diagnostic criterion that we do not observe dictate

a C-section. In all but the highest risk group the effect of diagnostic skill is reduced
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by the exclusion of planned C-sections. In the high risk group, the estimated effect of

diagnostic skill is much higher when planned C-sections are excluded.

In contrast, the estimated effects of procedural skill on the incidence of C-section are

not much affected, and the estimated effect of the price gap is reduced, suggesting that

planned C-sections are more sensitive to price than unplanned C-sections. Comparing

the remaining panels of Table 7 to Table 5 indicates that excluding planned C-sections

has little impact on the estimated effects of diagnostic skill, procedural skill, or price

on bad outcomes.

Table 8 shows the results of estimating models where the measures of diagnostic

skill, procedural skill, and price are calculated at the market level. As discussed above,

a market includes nearby hospitals as well as all of the hospitals in which at least three

women from the index woman’s zip code delivered in a given year. Since the type of

medical services could be correlated with other characteristics of residential location,

we include controls for the zip code of residence in these models. Hence, the implicit

assumption in these models is that women do not choose their residence on the basis of

year-to-year changes in the type of medical services offered in the area. We also cluster

the standard errors at the zip code level.

In these market-level models, diagnostic skill is measured using the second proxy

discussed in the model section: The difference between the risk adjusted C-section rate

for high risk patients and the risk adjusted C-section rate for very low risk patients.10

In order to compute this measure, we take the mean C-section rate for high risk patients

in the market, and the mean C-section rate for very low risk patients in the market and

subtract. This measure has a mean of 0.830 in the whole sample and increases when

either the C-section rate for high risk patients increases or when the C-section rate for

low risk patients falls.

The measure of the procedural skill differential is defined analogously to the way it

10Appendix Table 2 shows models similar to Tables 4 and 5 except that they use this diagnosis
measure for physicians. The results are quite similar to those discussed above.
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was defined above (the incidence of poor outcomes for low risk patients in the market

minus the incidence of poor outcomes for high risk patients in the market). Price is de-

fined by taking the price for uncomplicated C-section minus the price for uncomplicated

natural delivery and averaging over all of the births in each market.

Although the market-level measures throw away a good deal of the variation across

providers and the coefficients of interest are generally less precisely estimated, the

results are remarkably similar to those discussed above. Better diagnosis (moving from

a market at the 25th percentile of the distribution to the 75th) would be associated

with an 19.1% decline in C-sections among the very low risk and with an increase of

4.2% in the probability of C-sections among the high risk. At the same time, better

diagnosis is estimated to significantly decrease the probability of bad outcomes among

all risk groups. The point estimates on the measure of diagnostic skill suggest that

an improvement of this magnitude would also lower neonatal deaths, especially among

the very low risk and the very high risk groups, but these coefficients are not precisely

estimated.

An improvement in surgical skill relative to skill at natural delivery that moved a

physician from the 25th to the 75th percentile of the distribution is estimated to increase

the probability of C-section (by 5.4% for the very low risk, 1.4% for the next two risk

groups, and by 0.8% for the highest risk group). It would also reduce the incidence of

bad outcomes for all but the very low risk group, where it would increase the risk of

bad outcomes (presumably by encouraging unnecessary C-sections and risking surgical

complications). An increase in the price gap between C-sections and natural deliveries

is estimated to have the greatest effect on C-sections among those in the two lower risk

groups, increasing the incidence of C-section by 5% and 7%.

Appendix Table 1 shows the results of estimating our models only on the sample

of first births. The idea is that doctors and patients may have less basis for selecting a

physician at a first birth than for subsequent births. As Table 2 showed, very few first
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births are in the lowest risk category, hence we do not estimate the model separately

for this risk category. Appendix Table 1 shows that the results are qualitatively similar

to those in Tables 4 and 5. The effect of procedural skills and prices on the probability

of C-section are somewhat higher than in the full sample. For outcomes, the estimates

are quite similar to those in Tables 4 and 5, while prices seem to have a smaller impact

on first births than in the full sample.

Overall, the results in this subsection suggest that our results are not driven by the

matching of high risk patients to low skilled doctors (which is the only type of selection

that could generate a spurious relationship between doctor skill and good outcomes).

6 Discussion and Conclusions

The previous literature on treatment choice emphasizes that it is affected by physician

skill, but only allows physician skill to vary along a single dimension which can be

thought of as technical skill in executing procedures. Taking a cue from the literature

on managerial decision making (Bloom and Van Reenen (2010)) we develop a model

that includes an additional dimension of skill: Diagnostic decision making. In our

model, a good doctor is one who is not only technically skilled, but is also able to draw

the correct inferences from the available data in order to match patients correctly to

the procedures that are most likely to benefit them. This simple framework yields rich

predictions and allows us to distinguish between the two types of skill. The model

shows that better procedural skill leads to higher use of intensive procedures across the

board, for both high and low risk patients. This finding yields the possibility, confirmed

in our data, that improvements in procedural skill could actually harm the lowest risk

patients by making it more likely that they will be subjected to unnecessarily intensive

procedures that can only harm them. In contrast, better diagnostic skill results in

fewer procedures for the low risk, but more procedures for the high risk. That is,
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better diagnostic skill improves the matching between patients and procedures and

thus leads to better health outcomes in both groups.

We provide an application of our model using data on C-sections, the most common

surgical procedure performed in the U.S.. We show that improving diagnostic skills

from the 25th to the 75th percentile of the observed distribution would reduce C-section

rates by 15.8% among the very low risk, and increase them by 4.7% among the high risk.

Since in our application there are many more low risk women than high risk women,

improving diagnosis would reduce overall C-section rates without depriving high risk

women of necessary care. Moreover, we show that an increase in diagnostic skill would

improve health outcomes for both high risk and low risk women, while improvements

in surgical skill have much larger benefits for high risk women.

Our work highlights the importance of diagnostic decision making skill in medicine

and suggests an empirical approach to measuring it. As such, it constitutes a first

step towards improving diagnostic decision making skill. Future research into the

mechanisms that could best accomplish this goal is warranted.
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Figure 3: Predicting C-sections Using the Logit Model   



 

Figure 4: Illustrating the Definition of a Market 

 

  



Table 1: Logistic Regression Model of C‐section Risk (rho) 

              All Doctors                   Good Doctors Only     

Marginal Marginal

Coeff. S.E. Effect Coeff. S.E. Effect

Age<20 ‐0.337 0.013 ‐0.075 ‐0.428 0.029 ‐0.095

Age >=25&<30 0.262 0.008 0.058 0.311 0.018 0.069

Age >=30&<35 0.434 0.008 0.096 0.483 0.017 0.107

Age >=35 0.739 0.009 0.164 0.840 0.018 0.186

2nd Birth ‐1.347 0.007 ‐0.298 ‐1.448 0.015 ‐0.321

3rd Birth ‐1.645 0.009 ‐0.364 ‐1.787 0.019 ‐0.396

4th or Higher Birth ‐2.140 0.012 ‐0.474 ‐2.317 0.027 ‐0.513

Previous C‐section 3.660 0.008 0.810 3.885 0.018 0.860

Previous Large Infant 0.139 0.029 0.031 0.293 0.065 0.065

Previous Preterm  ‐0.293 0.025 ‐0.065 ‐0.311 0.061 ‐0.069

Multiple Birth 2.879 0.014 0.638 3.278 0.032 0.726

Breech 3.353 0.016 0.742 3.810 0.040 0.844

Placenta Previa 3.811 0.054 0.844 3.843 0.116 0.851

Abruptio Placenta 2.048 0.030 0.454 2.196 0.072 0.486

Cord Prolapse 1.761 0.047 0.390 1.668 0.100 0.369

Uterine Bleeding 0.026 0.035 0.006 0.259 0.099 0.057

Eclampsia 1.486 0.096 0.329 1.047 0.230 0.232

Chronic Hypertension 0.745 0.025 0.165 0.754 0.060 0.167

Pregnancy Hypertension 0.639 0.013 0.142 0.696 0.029 0.154

Chronic Lung Condition 0.064 0.014 0.014 0.110 0.032 0.024

Cardiac Condition ‐0.121 0.020 ‐0.027 ‐0.175 0.042 ‐0.039

Diabetes 0.558 0.011 0.124 0.547 0.025 0.121

Anemia 0.131 0.018 0.029 0.203 0.043 0.045

Hemoglobinopathy 0.116 0.047 0.026 0.067 0.092 0.015

Herpes 0.461 0.024 0.102 0.558 0.049 0.124

Other STD 0.052 0.017 0.012 0.064 0.039 0.014

Hydramnios 0.616 0.018 0.136 0.645 0.042 0.143

Incompetent Cervix 0.043 0.035 0.010 ‐0.119 0.093 ‐0.026

Renal Disease ‐0.024 0.031 ‐0.005 ‐0.057 0.067 ‐0.013

Rh Sensitivity ‐0.045 0.040 ‐0.010 ‐0.082 0.109 ‐0.018

Other Risk Factor 0.276 0.006 0.061 0.210 0.013 0.047

Constant ‐1.414 0.007 ‐0.313 ‐1.374 0.015 ‐0.304

# Observations 1169654 262174

Pseudo R2 0.32 0.322

Notes: The model also included indicators for missing age, parity, and risk factors.

The correlation between rho estimated using the two different models is .99.



Table 2: Means by Probability of C‐Section

                    Medical Risk: All Very Low Low Medium High

Outcomes

C‐Section Rate 0.331 0.06 0.115 0.439 0.891

Any Bad Outcome 0.066 0.038 0.048 0.085 0.086

Neonatal death (per 1000) 4.082 3.222 2.380 4.778 7.850

Doctor Characteristics

# Deliveries in Sample 1019.45 1048.14 1025.22 1008.63 1011.13

(650.15) (737.95) (655.31) (625.62) (627.24)

Diagnostic Skill  1.033 1.005 1.034 1.039 1.037

(0.089) (0.191) (0.183) (0.180) (0.181)

Procedural Skill Differential ‐0.049 ‐0.055 ‐0.049 ‐0.047 ‐0.050

(0.065) (0.071) (0.066) (0.064) (0.064)

Price Differential ($1000) 4.755 5.066 4.748 4.694 4.702

(2.678) (2.850) (2.675) (2.635) (2.643)

Share High Risk 0.122 0.107 0.118 0.124 0.137

(0.043) (0.040) (0.041) (0.043) (0.048)

Rate of Bad Outcomes 0.066 0.067 0.065 0.066 0.069

(0.042) (0.045) (0.041) (0.041) (0.045)

Mother & Child Characteristics

African American 0.158 0.257 0.164 0.132 0.134

Hispanic 0.210 0.315 0.224 0.179 0.180

Married 0.713 0.533 0.678 0.770 0.796

High School Dropout 0.128 0.289 0.145 0.082 0.082

Teen mom 0.030 0.026 0.060 0.008 0.013

Mom Age 35 or More 0.238 0.139 0.244 0.197 0.439

Smoked 0.081 0.129 0.079 0.013 0.074

Child Male 0.513 0.514 0.514 0.513 0.514

Child First Born 0.398 0.016 0.252 0.676 0.284

Medicaid 0.206 0.389 0.223 0.156 0.152

# of Observations 968748 104902 364268 381745 117833

Notes: The analysis sample excludes birth attendants who were not physicians, and 

birth attendants who had too few deliveries for a measure of diagnositic skill to be 

computed.  Standard deviations in parentheses.



Table 3: Correlations Between P(C‐section) and Doctor Characteristics, 

Overall and Within Risk Categories

Diagnostic  Procedural Price Share

P(C‐section) # Deliveries Skill Skill Difference High Risk

P(C‐section) 1

# Deliveries ‐0.009 1

Diagnostic Skill 0.016 0.044 1

Procedural Skill Diff. ‐0.003 0.053 0.259 1

Price Difference ‐0.005 0.048 ‐0.017 ‐0.032 1

Share High Risk 0.161 ‐0.036 0.055 ‐0.033 ‐0.119 1

Rate of Bad Outcomes 0.034 ‐0.096 ‐0.283 ‐0.446 0.013 0.199

Note:  All of the correlations are statistically significant at the 95% level of confidence.



Table 4: Effect of Doctor Variables on Probability of C‐Section 

                    Medical Risk: Very Low Low Medium High

Diagnostic Skill ‐0.044 ‐0.057 0.077 0.194

(0.008) (0.009) (0.013) (0.010)

Procedural Skill Difference 0.036 0.071 0.055 0.072

(0.017) (0.021) (0.037) (0.029)

Price Differential (x 100) 0.125 0.389 0.537 ‐0.018

(0.051) (0.063) (0.095) (0.054)

C‐section Risk 0.190 1.062 0.870 0.794

(0.090) (0.037) (0.010) (0.021)

African‐American 0.023 0.057 0.065 0.025

(0.004) (0.003) (0.006) (0.005)

Hispanic 0.009 0.027 0.057 0.037

(0.004) (0.003) (0.005) (0.004)

Less than High School 0.013 0.023 0.030 0.015

(0.004) (0.003) (0.004) (0.005)

High School 0.019 0.026 0.039 0.021

(0.004) (0.002) (0.003) (0.003)

Some College 0.010 0.012 0.018 0.006

(0.004) (0.002) (0.002) (0.003)

Married ‐0.009 ‐0.011 ‐0.009 0.005

(0.002) (0.002) (0.002) (0.003)

Medicaid 0.002 0.009 0.0000 0.012

(0.002) (0.003) (0.004) (0.003)

Teen Mom ‐0.017 ‐0.024 0.007 0.015

(0.005) (0.004) (0.010) (0.010)

Mother 25‐34 0.022 0.038 0.015 0.005

(0.002) (0.004) (0.004) (0.004)

Mother 35+ 0.044 0.042 0.035 0.006

(0.004) (0.005) (0.004) (0.004)

Mother Smoked 0.007 0.012 0.005 ‐0.003

(0.002) (0.002) (0.003) (0.004)

Child Male 0.010 0.021 0.033 0.005

(0.001) (0.001) (0.002) (0.002)

Child 2nd Born ‐0.111 ‐0.032 0.091 0.001

(0.009) (0.006) (0.005) (0.004)

Child 3rd Born ‐0.126 ‐0.029 0.063 ‐0.032

(0.009) (0.006) (0.005) (0.004)

Child 4th Born or Higher ‐0.124 0.002 0.025 ‐0.050

(0.010) (0.007) (0.007) (0.004)

R‐squared 0.015 0.041 0.219 0.059

# Observations 104902 364268 381745 117833

Notes: Standard errors clustered by physician.  Regressions also included month and year of 

birth indicators, and indicators for missing educaton, marital status, Medicaid, smoking,

prices, and parity.



Table 5: Effect of Doctor Variables on Probability of Negative Outcomes

Any Bad Outcome                Neonatal Death                 

                    Medical Risk: Very Low Low Medium High Very Low Low Medium High

Diagnostic Skill ‐0.030 ‐0.022 ‐0.042 ‐0.033 ‐0.005 ‐0.003 ‐0.010 ‐0.017

(0.007) (0.005) (0.008) (0.011) (0.001) (0.001) (0.001) (0.002)

Procedural Skill Difference 0.040 ‐0.137 ‐0.280 ‐0.772 0.007 ‐0.008 ‐0.016 ‐0.057

(0.025) (0.021) (0.031) (0.034) (0.004) (0.002) (0.004) (0.008)

Price Differential (x 100) 0.082 0.040 ‐0.003 0.029 0.013 0.008 0.025 ‐0.014

(0.053) (0.041) (0.052) (0.054) (0.007) (0.003) (0.007) (0.012)

C‐section Risk 0.076 0.293 ‐0.038 0.378 ‐0.108 0.014 ‐0.013 0.0470

(0.068) (0.022) (0.006) (0.019) (0.026) (0.006) (0.002) (0.007)

R‐squared 0.006 0.013 0.010 0.053 0.004 0.004 0.008 0.016

# Observations 104902 364268 381745 117833 104902 364268 381745 117833

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 6: Effect of Doctor Variables Including Share High Risk

                    Medical Risk: Very Low Low Medium High

C‐Section

Diagnostic Skill ‐0.05 ‐0.063 0.076 0.197

(0.007) (0.009) (0.013) (0.010)

Procedural Skill Difference 0.045 0.083 0.079 0.092

(0.016) (0.021) (0.036) (0.029)

Price Differential (x 100) 0.154 0.42 0.599 0.013

(0.050) (0.062) (0.092) (0.053)

C‐section Risk 0.156 1.034 0.864 0.772

(0.090) (0.036) (0.010) (0.021)

Share High Risk in Practice 0.299 0.332 0.561 0.264

(0.035) (0.044) (0.077) (0.037)

R‐squared 0.0178 0.043 0.221 0.061

Any Bad Outcome

Diagnostic Skill ‐0.034 ‐0.024 ‐0.042 ‐0.031

(0.006) (0.005) (0.007) (0.010)

Procedural Skill Difference 0.044 ‐0.132 ‐0.272 ‐0.760

(0.024) (0.020) (0.029) (0.033)

Price Differential (x 100) 0.096 0.054 0.017 0.047

(0.052) (0.040) (0.051) (0.053)

C‐section Risk 0.060 0.280 ‐0.040 0.365

(0.068) (0.022) (0.006) (0.018)

Share High Risk in Practice 0.145 0.151 0.194 0.149

(0.030) (0.023) (0.033) (0.040)

R‐squared 0.007 0.014 0.011 0.053

Neonatal Death

Diagnostic Skill ‐0.006 ‐0.003 ‐0.010 ‐0.017

(0.001) (0.001) (0.001) (0.002)

Procedural Skill Difference 0.007 ‐0.008 ‐0.015 ‐0.056

(0.004) (0.002) (0.004) (0.008)

Price Differential (x 100) 0.014 0.009 0.028 ‐0.012

(0.007) (0.004) (0.006) (0.012)

C‐section Risk ‐0.108 0.013 ‐0.013 0.045

(0.026) (0.006) (0.002) (0.007)

Share High Risk in Practice 0.005 0.010 0.026 0.017
(0.007) (0.004) (0.007) (0.010)

R‐squared 0.004 0.004 0.009 0.016

# Observations 104902 364268 381745 117833

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 7: Effect of Doctor Variables Excluding Planned C‐Sections from Sample

                    Medical Risk: Very Low Low Medium High

C‐Section

Diagnostic Skill ‐0.022 ‐0.033 0.019 0.342

(0.005) (0.007) (0.013) (0.020)

Procedural Skill Difference 0.020 0.057 0.057 0.098

(0.013) (0.016) (0.029) (0.052)

Price Differential (x 100) 0.062 0.232 0.373 ‐0.219

(0.037) (0.048) (0.095) (0.130)

C‐section Risk 0.211 0.530 0.508 2.269

(0.066) (0.029) (0.010) (0.049)

R‐squared 0.012 0.046 0.037 0.192

Any Bad Outcome
Diagnostic Skill ‐0.027 ‐0.020 ‐0.040 ‐0.051

(0.006) (0.005) (0.008) (0.015)

Procedural Skill Difference 0.037 ‐0.129 ‐0.229 ‐0.831

(0.025) (0.021) (0.031) (0.044)

Price Differential (x 100) 0.008 0.004 ‐0.036 ‐0.077

(0.053) (0.041) (0.057) (0.102)

C‐section Risk 0.057 0.268 0.020 0.369

(0.067) (0.023) (0.007) (0.034)

R‐squared 0.006 0.013 0.006 0.045

Neonatal Death

Diagnostic Skill ‐0.004 ‐0.002 ‐0.009 ‐0.026

(0.001) (0.001) (0.001) (0.004)

Procedural Skill Difference 0.007 ‐0.008 ‐0.012 ‐0.083

(0.004) (0.002) (0.004) (0.015)

Price Differential (x 100) 0.013 0.007 0.035 ‐0.014

(0.007) (0.003) (0.008) (0.030)

C‐section Risk ‐0.110 0.003 ‐0.006 0.071

(0.025) (0.005) (0.002) (0.016)
R‐squared 0.004 0.004 0.012 0.025

# Observations 104902 364268 381745 117833

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.



Table 8: Effect of Market Level Variables

                    Medical Risk: Very Low Low Medium High

C‐Section

Diagnostic Skill ‐0.166 ‐0.157 0.062 0.542

(0.051) (0.034) (0.050) (0.068)

Procedural Skill Difference 0.111 0.054 0.207 0.248

(0.055) (0.049) (0.065) (0.075)

Price Differential (x 100) 0.116 0.311 0.300 ‐0.158

(0.049) (0.056) (0.066) (0.050)

C‐section Risk 0.175 1.074 0.870 0.783

(0.085) (0.035) (0.010) (0.021)

R‐squared (0.024) (0.048) (0.224) (0.057)

Any Bad Outcome

Diagnostic Skill ‐0.103 ‐0.116 ‐0.102 ‐0.122

(0.038) (0.025) (0.029) (0.048)

Procedural Skill Difference 0.080 ‐0.124 ‐0.181 ‐0.543

(0.047) (0.036) (0.043) (0.068)

Price Differential (x 100) 0.093 0.060 0.132 0.163

(0.054) (0.045) (0.051) (0.065)

C‐section Risk 0.024 0.300 ‐0.040 0.402

(0.065) (0.019) (0.006) (0.018)

R‐squared 0.020 0.019 0.013 0.037

Neonatal Death

Diagnostic Skill ‐0.006 0.000 ‐0.007 ‐0.014

(0.013) (0.004) (0.007) (0.014)

Procedural Skill Difference 0.019 0.006 0.003 ‐0.047

(0.013) (0.006) (0.011) (0.021)

Price Differential (x 100) 0.011 0.009 0.032 ‐0.006

(0.012) (0.005) (0.007) (0.019)

C‐section Risk ‐0.118 0.015 ‐0.013 0.051

(0.026) (0.005) (0.002) (0.006)

R‐squared 0.017 0.005 0.010 0.018

# Observations 104902 364268 381745 117833

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.
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1 Appendix

In the text we provide a new, empirical measure of diagnostic skill defined by the extent to which
a physician’s treatment decision varies with observed patient condition, hri . If the variations in
diagnostic skill are due to variations in the ability to use the information in hri then an increase
in sensitivity to hri results in better outcomes for the patient. We find that this interpretation is
consistent with the evidence.

This is not the only interpretation possible. In fact, a standard economic model would typically
assume that since hri is defined using information from the medical record which is available to
physicians, then physicians use this information efficiently. In that case, physicians with better
diagnostic skill observe hri plus some other information that we cannot see. In this appendix we
show that this model has the opposite prediction to what we find in the data.

To see this suppose that hri is very low, and hence from our data the patient is a poor candidate
for a C-section. During labor the physician may observe conditions that are not reported in our
data, but indicate that a C-section would be appropriate. This would imply that the physician
should ignore hri and put more weight on this private information. Empirically this would imply
a decrease in the sensitivity of the doctor’s decision about procedure choice with respect to hri .
Hence, in the case considered in this appendix, a physician with better diagnostic skill should be
less sensitive to hri to achieve better outcomes. The next subsection derives this implication formally.

1.1 Effect of Diagnostic Skill When hri is Perfectly Observed

As before, suppose that the physician’s ex ante distribution for the true patient (log) condition, hi,
has distribution:

hi ∼ N
(
h0
j , 1/ρ

0
j

)
,

where ρ0
j = (D0

j )
2 is the precision of these beliefs, and D0

j is what we have denoted above as the
strength of physician beliefs, or the “dogmatism” of the physician. From our data we have a signal
regarding the condition of the patient given by:

hri = hi + εri ,

where εri ∼ N
(
0, σ2

r

)
. Here hir is an unbiased signal of patient condition (C-section appropriateness)

that we have estimated using the data from all of New Jersey which has precision D2
r = ρr = 1/σ2

r .
In the text (equation 7) we suppose that the physician observes:

hij = hri + εij/Dj . (1)

In addition, let us suppose that this doctor has some additional information we do not see:

h̄ij = hi + ε̄ij/D̄j ,

where ε̄ij ∼ N (0, 1), and the precision of this estimate is ρ̄j = D̄2
j . In this case the doctor has

information set:
Iij =

{
hij , h̄ij

}
.

1



The model in the text is a special case of this model whereD̄j = 0, that is, the physician has no
additional information. In that case our measure of diagnostic skill is identical to Dj .

In order to contrast the effect of this new information, let us suppose that the physician observes
hri perfectly - this corresponds to Dj →∞, while D̄j ∈ (0,∞) is allowed to vary between physicians.
We will now derive the effect of D̄j upon our measure of diagnostic skill, and show that our proposed
measure is still a clean measure of information processing skill that is independent of procedural
skill. Second, we show that in this case an improvement in information processing leads to a fall in
the diagnostic skill measure.

With this information we can now apply the rule for Bayesian learning to compute the physicians’
beliefs regarding patient condition. From DeGroot (1972) we have the familiar learning rule:

E
{
hi|h̄ij , h0

j , h
r
i

}
=

ρ̄j
ρ∗j
h̄ij +

ρ0
j

ρ∗j
h0
j +

ρr

ρ∗j
hri (2)

where ρ∗j = ρ̄j + ρ0
j + ρr is the posterior precision of the physician’s estimate of patient condition.

Notice that this posterior precision - effectively how sure the doctor is regarding the patient’s status
- varies with both prior beliefs and the quality of her personal information as measured by D̄j .

From expression 10 procedure C is chosen if and only if:

E
{
hi|h̄ij , h0

j , h
r
i

}
+ sCj − sNj +mj (∆P ) ≥ 0.

Hence we observe procedure C if and only if:

ρ̄j
ρ∗j
h̄ij +

ρ0
j

ρ∗j
h0
j +

ρr

ρ∗j
hri + sCj − sNj +mj (∆P ) ≥ 0. (3)

Since we have panel data on physician decision making we suppose that we can estimate physician
specific parameters. However we cannot observe h̄ij . Rather, observe:

h̄ij = hi + εij/D̄j (4)
= hri − εri + εij/D̄j . (5)

Thus, the decision rule can be rewritten as:

ρ̄j
ρ∗j
hri +

ρ0
j

ρ∗j
h0
j +

ρr

ρ∗j
hri + sCj − sNj +mj (∆P ) ≥ ρ̄j

ρ∗j

(
εri /Dr − εij/D̄j

)
.

This expression can be rewritten as:

vj
(
D̄j

) (
hri + bj

(
D̄j

))
≥ ε2ij , (6)

where ε2ij has a standard normal distribution that is independent across observations. (Compare
this with expression 11 above). The function vj

(
D̄j

)
corresponds to our measure of diagnostic

skill, while the intercept term bj
(
D̄j

)
is the cutoff point at which a patient is more likely to get a

C-section.
Recalling that D̄2

j = ρ̄j the effect of D̄j upon our measure of diagnostic skill is given by:

vj
(
D̄j

)
=

1 + ρr/ρ̄j
1 + ρ̄j

,

=
1 + ρr/D̄2

j

1 + D̄2
j

.
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Notice that this implies that dvj (Dj) /dDj < 0, and hence when the physician has private infor-
mation her decisions about procedure choice are less sensitive to hri . The intercept term is given
by:

bj
(
D̄j

)
=

ρ0
jh

0
j + ρ∗j

(
sCj − sNj +mj (∆P )

)
ρ̄j + ρr

, (7)

=
ρ0
jh

0
j +

(
D2
j + ρ0

j + ρr
)(

sCj − sNj +mj (∆P )
)

D̄2
j + ρr

, (8)

=
ρ0
j

D̄2
j + ρr

(
h0
j + sCj − sNj +mj (∆P )

)
(9)

+
(
sCj − sNj +mj (∆P )

)
. (10)

It is readily verified that we cannot sign the effect of D̄j upon the intercept term. Thus we have:

Proposition 1. Holding all else fixed, the observed probability that the physician uses procedure
C decreases with the precision with which they observe true patient condition (hi) if and only if
observed patient condition (hri ) is above a fixed, physician specific, threshold (hri > −bj (Dj)).

This result shows that when the physician has better information than the information reported
on the birth record, then our measure of diagnostic skill falls as this information is improved.

The next issue is the effect of this information upon patient outcomes. We work this out by
considering the problem from the perspective of a patient who has condition hi and is attended to by
physician j. The issue is whether or not an increase in the precision of this physician’s information
(Dj), will improve the expected medical outcome.

The expected medical outcome can be written as a function of patient condition and the likeli-
hood of procedure C or N:

NBj(hi) =
(
hi + sCj − sNj

)
Prj [C|hi]

−
(
hi + sCj − sNj

)
Prj [N |hi]

=
(
hi + sCj − sNj

)
(2Prj [C|hi]− 1) .

Notice that if the health condition of the patient were observed perfectly, then procedure C is
performed if and only if

(
hi + sCj − sNj

)
≥ 0.

Using expression 6 we can compute the probability of procedure C as a function of hi. Substi-
tuting in the random terms we get that procedure C carried out if and only if:

ρ̄j(hi + εij/Dj) + ρ0
jh

0
j + ρr(hi + εri /Dr) + ρ∗j

(
sCj − sNj +mj (∆P )

)
≥ 0.

This is rewritten as:

(ρ̄j + ρr)hi + ρ0
jh

0
j

ρ∗j
+
(
sCj − sNj +mj (∆P )

)
≥ (Djεij +Drε

r
i )

ρ∗j
.
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The term on the right is an i.i.d. normally distributed random variable with mean zero and

variance
(
ρ̄j+ρr

(ρ∗j)
2

)
. From this we conclude that:

Prj [C|hi] = F

(
ρ∗j

(
hi +

ρ0
j

ρ̄j + ρr
h0
j + sCj − sNj +mj (∆P )

))
. (11)

Notice that as diagnostic information increases (ρ̄j →∞), then the decision rule approaches one in
which procedure C is chosen if and only if:

hi + sCj − sNj +mj (∆P ) ≥ 0,

which is the optimal choice when the cost of care mj (∆P ) is taken into account.
An increase in precision D̄j improves the medical outcome if and only if:

(
hi + sCj − sNj

) ∂Prj [C|hi]
∂D̄j

≥ 0.

This is positive if and only if:

(
hi + sCj − sNj

)
F ′

(
hi + sCj − sNj +

(
mj (∆P ) +

ρ0
j

ρ̄j + ρr
h0
j

(
1− 1

ρ̄j + ρr

)))
≥ 0. (12)

From this we get the following proposition.

Proposition 2. When the patient condition is either very appropriate for procedure C (hi+sCj −sNj
is sufficiently positive) or very appropriate for procedure N (hi + sCj − sNj is sufficiently negative)
then increasing physician information (precision D̄j) improves patient outcome.

This proposition follows immediately from (12) and the fact that F ′ > 0. As in the case where
the physician cannot perfectly observe hri we have that in the extreme cases improved information
makes matters better. Condition (12) gives the precise conditions under which improvements in
information improve outcomes. Observe that if there are no pecuniary rewards to procedure choice
(mj (∆P ) = 0) and h0

j then improvements in information always improve outcomes.
This analysis has a number of implications. First, it shows that changes in the quality of

information that the physician has regarding a patient, but not her procedural skill, affect our
measure of diagnostic skill. The difference now is with regards to the sign of the effect. In the
case considered in this Appendix, our measure of diagnostic skill is negatively correlated with both
physician information and health outcomes. This prediction is rejected by the data since we find
that our measure of diagnostic skill is positively correlated with patient outcomes. Hence we can
reject the hypothesis that variations in physician decision capabilities arise solely because of superior
information relative to the information we have in hri . If confirmed by future research this result
has important practical implications. In particular it suggests that physician performance may be
improved with the use of system wide data collected from a large sample of physicians.
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Appendix Figure 1: Shift in Probability of C-section Given Medical Risk Over Time 

 

Appendix Figure 2: Shift in Medical Risks over Time 

 



Appendix Table 1: Models Estimated Using First Births Only

                    Medical Risk: Very Low* Low Medium High

C‐Section

Diagnostic Skill ‐0.057 ‐0.016 0.145

(0.017) (0.014) (0.013)

Procedural Skill Difference 0.116 0.071 0.130

(0.034) .036) (0.044)

Price Differential (x 100) 0.513 0.674 0.084

(0.103) (0.104) (0.088)

C‐section Risk 0.518 0.950 0.692

(0.071) (0.016) (0.063)

R‐squared 0.023 0.057 0.025

Any Bad Outcome

Diagnostic Skill ‐0.020 ‐0.030 ‐0.032

(0.009) (0.008) (0.017)

Procedural Skill Difference ‐0.173 ‐0.223 ‐0.809

(0.036) (0.032) (0.050)

Price Differential (x 100) 0.020 ‐0.060 ‐0.051

(0.075) (0.055) (0.094)

C‐section Risk 0.198 0.136 0.707

(0.048) (0.010) (0.066)

R‐squared 0.005 0.007 0.042

Neonatal Death

Diagnostic Skill ‐0.003 ‐0.005 ‐0.024

(0.001) (0.001) (0.004)

Procedural Skill Difference ‐0.006 ‐0.011 ‐0.065

(0.003) (0.003) (0.016)

Price Differential (x 100) 0.009 0.027 ‐0.018

(0.007) (0.006) (0.025)

C‐section Risk ‐0.024 0.022 ‐0.100

(0.014) (0.003) (0.024)

R‐squared 0.004 0.005 0.025

# Observations 1691 91802 258083 33491

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.

* Since there were only 1691 first births in the lowest risk category we do not show

estimates for this category.



Appendix Table 2: Effect of Alternative Diagnostic Skill Measure

                    Medical Risk: Very Low Low Medium High

C‐Section

Diagnostic Skill ‐0.068 0.032 0.184 0.558

(0.018) (0.016) (0.035) (0.031)

Procedural Skill Difference 0.020 0.030 0.071 0.113

(0.017) (0.021) (0.038) (0.029)

Price Differential (x 100) 0.135 0.404 0.538 ‐0.008

(0.051) (0.063) (0.094) (0.054)

C‐section Risk 0.182 1.074 0.869 0.778

(0.090) (0.037) (0.010) (0.020)

R‐squared 0.015 0.041 0.219 0.067

Any Bad Outcome

Diagnostic Skill ‐0.036 ‐0.024 ‐0.064 ‐0.090

(0.010) (0.009) (0.016) (0.021)

Procedural Skill Difference 0.027 ‐0.147 ‐0.296 ‐0.779

(0.025) (0.021) (0.030) (0.032)

Price Differential (x 100) 0.090 0.044 0.003 0.028

(0.053) (0.041) (0.052) (0.054)

C‐section Risk 0.068 0.295 ‐0.038 0.380

(0.068) (0.022) (0.006) (0.019)

R‐squared 0.006 0.013 0.010 0.053

Neonatal Death

Diagnostic Skill ‐0.008 ‐0.002 ‐0.012 ‐0.035

(0.003) (0.001) (0.003) (0.005)

Procedural Skill Difference 0.005 ‐0.010 ‐0.021 ‐0.063

(0.004) (0.002) (0.004) (0.008)

Price Differential (x 100) 0.015 0.009 0.027 ‐0.014

(0.007) (0.004) (0.007) (0.012)

C‐section Risk ‐0.109 0.014 ‐0.013 0.048

(0.026) (0.006) (0.002) (0.007)

R‐squared 0.004 0.004 0.008 0.016

# Observations 104902 364268 381745 117833

Notes: Standard errors are clustered on the physician and shown in parentheses. 

Regressions also included all of the variables listed in Table 4.  The alternative 

diagnostic measure is the share of high risk patients who receive a C‐section less the 

share low risk who receive a C‐section.  The mean is .825 and the difference between  

75th and 25th p'tile is .086.   The coefficient of ‐.068 in the first column implies that a 

change of this magnitude would reduce C‐sections by ‐.068*.086=‐.006 pp on a 

baseline of .06.



Appendix Table 3: Calculating Percent Changes

C‐Section                     Bad Outcomes             Neonatal Death           

V. Low Low Med High V. Low Low Med High V. Low Low Med High

Base rate of outcome 0.06 0.115 0.439 0.891 0.038 0.048 0.085 0.086 0.00322 0.00238 0.00478 0.00785

Physician Level Estimates

Coeff on Diagnostic Skill ‐0.044 ‐0.057 0.077 0.194 ‐0.030 ‐0.022 ‐0.042 ‐0.033 ‐0.005 ‐0.003 ‐0.010 ‐0.017

Coeff on Procedural Skill 0.036 0.071 0.055 0.072 0.040 ‐0.137 ‐0.280 ‐0.772 0.007 ‐0.008 ‐0.016 ‐0.057

Coeff on Price (*100) 0.125 0.389 0.537 ‐0.018 0.082 0.040 ‐0.003 0.029 0.013 0.008 0.025 ‐0.014

%ch w 25‐75 Diagnostic Skill ‐0.158 ‐0.107 0.038 0.047 ‐0.170 ‐0.099 ‐0.106 ‐0.083 ‐0.334 ‐0.271 ‐0.450 ‐0.466

%ch w 25‐75 Procedural Skill 0.037 0.038 0.008 0.005 0.065 ‐0.177 ‐0.204 ‐0.557 0.135 ‐0.208 ‐0.208 ‐0.450

%ch w $2600 Price Increase 0.054 0.088 0.032 ‐0.001 0.056 0.022 ‐0.001 0.009 0.105 0.087 0.136 ‐0.046

Market Level measures

Coeff on Diagnostic Skill ‐0.166 ‐0.157 0.062 0.542 ‐0.103 ‐0.116 ‐0.102 ‐0.122 ‐0.006 0.000 ‐0.007 ‐0.014

Coeff on Procedural Skill 0.111 0.054 0.207 0.248 0.08 ‐0.124 ‐0.181 ‐0.543 0.019 0.006 0.003 ‐0.047

Coeff on Price (*100) 0.116 0.311 0.300 ‐0.158 0.093 0.060 0.132 0.163 0.011 0.009 0.032 ‐0.006

%ch w 25‐75 Diagnostic Skill ‐0.191 ‐0.094 0.010 0.042 ‐0.187 ‐0.167 ‐0.083 ‐0.098 ‐0.128 0.000 ‐0.101 ‐0.123

%ch w 25‐75 Procedural Skill 0.054 0.014 0.014 0.008 0.061 ‐0.075 ‐0.062 ‐0.183 0.171 0.073 0.018 ‐0.174

%ch w $2600 Price Increase 0.050 0.070 0.018 ‐0.005 0.064 0.033 0.040 0.049 0.089 0.098 0.174 ‐0.020

Notes:  The difference between the 75th and 25th percentiles of diagnostic skill are .215 and .069 for the physician‐level and 

market‐level measures respectively.  The corresponding differences for procedural skills are .062 and .029. 

Coefficients for physician‐level measures come from Tables 4 and 5.  Coefficients for market‐level measures come from

Table 8.


