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Abstract
We propose to model individual educational investments as a rational decision, maximizing
expected utility, conditional on some characteristics observed by the student, under the
combined risks affecting future wages and schooling duration. Assuming that students’
attitudes toward risk can be represented by a CRRA utility, we show that the risk-aversion
parameter can be identified in a natural way, using the variation in school-leaving ages,
conditional on certified educational levels. Estimation can be performed by means of classic
Maximum Likelihood methods. The model can easily be compared with a non-structural,
simplified version, which is a standard wage equation with endogenous dummy variables
representing education levels, education levels being themselves determined by an Ordered
Probit model. We find small but significant values of the coefficient of relative risk aversion,
between 0.1 and 0.9. These results are obtained with a rich sample of 12,500 young men
who left the educational system in 1992, in France.
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1. Introduction

Youths investing in education are facing several kinds of risk. In the long run, there are
risks affecting the price of skilled labour of various types on the labour market. In every
period of the working life, accidents such as unemployment can reduce earnings. In the
short run, there are also non-negligible risks affecting the direct and opportunity costs
of education. In some countries at least, there is substantial variation in school-leaving
age, among individuals with the same qualifications. The number of years needed to
pass some exams, or more generally, to reach a certain certified level of achievement is
substantially dispersed: students differ in their learning ”speed”. It follows that the costs
of education, i.e., the human-capital investment-costs, are random. These costs, as well
as future earnings, are random from the point of view of each individual, because of risks
that cannot be controlled for, and because individuals have an imperfect knowledge of
their future “job market”, and “academic” abilities.

We propose to model individual educational investments as a rational decision, maxi-
mizing expected utility, conditional on some characteristics observed by the student, under
the combined risks affecting future wages and schooling duration. Assuming then that the
observed individuals’ attitudes towards risk can be represented by a CRRA utility defined
as a function of earnings, we show that the risk-aversion parameter can be identified in
a natural way, using the variation in school-leaving ages, conditional on certified educa-
tional levels. Our model has unambiguous comparative-statics properties: an increase in
risk-aversion always discourages students to push education further. Using variants of the
basic model, we typically always find a small value of the Arrow-Pratt coefficient of relative
risk aversion, between 0.1 and 0.9. We thus find that students are less risk-averse than
decision-makers endowed with a logarithmic utility function. These results are obtained
with a very rich sample, containing 12,500 young men who left the educational system in
1992, in France. As a by-product, we find estimates of the returns to education and of the
“ability bias”, that is, formally, of the correlation between the error terms of the log-wage
and educational choice equations. The instruments used for educational achievement are
the number of siblings, and birth-order indicators. We find a positive and highly significant
value of the ability bias: in other words, OLS estimates of the returns to education in a
log-earnings equation would be biased upwards.

It is important to emphasize that our approach doesn’t rely on years-of-schooling
as a measure for human capital, as in a number of classic studies. We instead carefully
distinguish education levels and schooling durations. There is a hierarchy of diplomas and
certificates that we aggregate in a number of levels (i.e., high-school drop-outs, vocational
high-school certificates, high-school diploma, two years of College, four years of College,
and graduate studies). A “theoretical duration,” or normal school-leaving age, corresponds
to each level. The observed school-leaving age is called “duration”. We exploit the ratio
of theoretical to observed school-leaving age, given the level reached. This ratio is an
individual measure of ”speed”, that captures aspects of the student’s “ability”. We call
it “Pascal-p”, because of its connection with the Pascal distribution. We assume that
this speed measure is known to the student, as it is to the econometrician, and we use
it as a control in the regression of log-wages on dummies indicating education levels.
Wages are thus explained by the educational level, observed ability — as measured by
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student “speed” — and other controls. It happens that both the levels and the speed
with which these levels have been reached do matter. Our speed measure is also used (by
the student) to predict the duration (and thus costs) of prospective studies. Again, we
show that student speed, as measured by Pascal-p, plays an important role, along with
family background, in educational investment decisions. We show that identification of
the risk-aversion parameter is based on Pascal-p variability in a very natural way.

Of secondary interest, but probably worth mentioning, is the fact that we explore a
kind of “median way”, between the most sophisticated structural approaches of returns
to education, based on dynamic optimization and nested maximum-likelihood algorithms
(e.g., Keane and Wolpin (1997), Eckstein and Wolpin (1999), Belzil and Hansen (2002)),
and the “reduced-form” approaches, based on the search for new instruments for education,
and natural experiments1. Our model has a relatively simple and transparent structure,
because it is based on static, expected (and discounted) utility maximization. In other
words, we assume that the individual chooses an educational level at the age of 16, and
faces the risks associated with this decision — and in particular, the risks due to dura-
tion randomness. Dynamic models typically permit a description of sequential choices.
Yet, notice that our model has a dynamic element, insofar as it relies on the idea that
students do not know their market ability at the time of their education decision, and
try to forecast future wages, conditional on known family-background characteristics and
known aspects of ability. At the cost of this simplification, we get a model with several
important advantages. First, the model can be estimated by straightforward maximum
likelihood techniques. Second, the model can be compared, easily and closely, with an
endogenous-dummy-variable model à la Heckman2, in which education levels are deter-
mined by a latent variable, through an Ordered Discrete Choice structure. In a sense,
our ”reduced-form” model can itself be viewed as a generalized version of Cameron and
Heckman’s (1998) Ordered Probit model. We compare our structural model with the “less
structural”, endogenous-dummy model, by means of a test of non-nested hypotheses. The
two approaches yield different results. There are clear cases in which our structural model
dominates. A third advantage of the approach is that sources of identification are clear.

Related Literature on Risk and Return to Education

A huge research effort has been devoted to returns to education in many countries, following
the pioneering contributions of Becker (1964) and Mincer (1974), but comparatively very
few contributions have focused on the riskiness of educational investments. Becker (1964,
p. 91-92), mentions the fact that wages should embody a risk and liquidity premium but
did not focus on the risk-side of human capital investment. On these questions, the real
forerunner is Weiss (1972), with a study of the American scientists’ wages. Weiss (1972)
models wages as log-normal variables and utility functions as CRRA, and proposes an
attempt to study the risk-premium element in wages. A recent echo of his approach is to
be found in the work of Hartog and Vijverberg (2002). These authors estimate risk-aversion
and prudence in a model of educational choices, and find values of relative risk-aversion

1
See the surveys of Card (1999) and Harmon et al. (2003).

2
See Heckman (1978), Lee (1983) and Maddala (1983).

3



around 0.5. They thus find the same results as us, but with a different methodology and
different data. Belzil and Hansen (2004) estimate a sophisticated dynamic-programming
model of education, in which a risk-aversion parameter can be inferred from individual
schooling decisions. In their model, individuals are heterogenous with respect to ability,
but share the same degree of relative-risk aversion. Belzil and Hansen (2004) find an
Arrow-Pratt relative risk-aversion coefficient around 0.9 — a small value again. Skyt-
Nielsen and Vissing-Andersen (2005) infer risk-aversion by means of numerical methods,
using the stochastic-process properties of labour-income time series. Their computations
lead to a much higher value of relative risk aversion, of the order of 5.

Other recent approaches of the risk in human capital investment include Belzil and
Leonardi (2005), in which measures of individual risk aversion, obtained as answers to
survey questions, are used as explanatory variables in a model of schooling attainment. A
portfolio approach, inspired by financial asset pricing and the CAPM, has led to several
recent contributions by Palacios-Huerta (2003), Hogan and Walker (2003) and Christiansen
et al. (2006).

In the following, Section 2 presents the model. Section 3 provides a description of
the data used for estimation. Section 4 presents the estimation methods, and discusses
identification. Section 5 is devoted to estimation results. Concluding remarks are gathered
in Section 6.

2. The Model

We start with the basic assumption that individual’s educational choices can be described
as the result of expected, and discounted, utility maximization. The economic agents’ Von
Neumann-Morgenstern utility functions exhibit constant relative risk aversion (CRRA),
that is, formally,

u(w) =
1− w−α

α
, (1)

where w is the agent’s earnings. The Arrow-Pratt index of relative risk aversion for this
utility function is γ = 1 + α, so that we assume α ≥ −1.

Education levels are discrete variables denoted s, i.e., s = 0, 1, ..., n. Yearly wages (or
earnings) ws are determined as a function of education s as follows,

ln(ws) = fs + X0β0 + ν, (2)

where, fs is a skill premium (depending on s), X0 is a vector of exogenous explanatory
variables, β0 is an associated vector of parameters, and ν is a random variable, representing
unobserved aspects of ”market ability” plus some noise (”luck”). To simplify the analysis,
we assume that agents expect wages to be constant during the life-cycle, i.e., do not depend
on age, but this assumption does not have important consequences.

A student-worker is also characterized by a pair of independent random characteristics
(p, ε), where p is her (his) ”talent” and ε represents unobserved effects of family background.
We view ”talent” p as a measure of ability. More precisely, p is a measure of the speed with
which the individual reaches a given educational level s. As will be shown below, this has
empirical relevance. An important assumption is that p is observed by the economic agent
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and the econometrician, while ε is observed by the agent (student) only. We thus assume
that p is an entry of vector X0. A student chooses her (his) education level s so as to
maximize the expected value of a discounted sum of utilities, knowing ”talent” p, observed
background factors X, and unobserved factor ε. The sum is over periods t = 1, ..., T , where
T is the individual’s ”life” duration, in years.

We represent education costs as a forgone fraction of the individual potential earnings,
given the level already reached. The opportunity and direct costs of spending one more
year in school, when the education level is already s, are expected to be a fraction 1 −
hs+1(X1, p, ε) of the wage ws, that is, (1−hs+1(X1, p, ε))ws, where 0 ≥ hs(.) ≥ 1, and hs(.)
is a function of talent p, ε, and of the vector of exogenous variables X1, for all s = 1, ..., n.
It follows that education costs increase with s if the wage ws itself increases with s, ceteris
paribus. Let finally ds denote the number of years required to reach level s. An agent thus
expects to spend ∆ds = ds−ds−1 years in school to increase his (her) education level from
s−1 to s. Durations ds can be viewed as random variables. We assume for simplicity that
durations ds and wages ws are independent, conditional on (X, p , ε), and we later add the
assumption that the conditional expected durations d̂s = E(ds | X, p , ε) are deterministic
functions of observable characteristics (X, p). A more complex version of the model would
of course view the d̂s as random, and specify the joint distribution of talent p, unobservable
family factors ε, and ds. We can now define the expected discounted sum of utilities of
choosing level s, knowing p and ε, as follows,

V (s | p , ε) = E




T∑

t=1+ds

δtu(ws) +
s∑

z=1

t=dz∑

t=1+dz−1

δtu(hzwz−1)

∣∣∣∣∣ p , ε


 , (3)

where δ is a psychological discount factor.
We also assume that the joint distribution of ν and ε is normal, with correlation

coefficient ρ, and independent of p. The variance of ε is normalized to one. We can admit
the possibility that ν also captures unobserved aspects of ability or talent, provided that
these aspects be independent of those captured by the other talent variable p. Formally,

(ν, ε) ∼ N
(

0,

(
σ2 σρ
σρ 1

))
. (4)

Using the identity,
t=dz∑

t=1+dz−1

δt = δ(1+dz−1)

(
1− δ∆dz

1− δ

)
,

and the conditional independence property of wages and durations, it is possible to simplify
the expression of V above. We get,

V (s | p , ε) = E

[
δ1+ds

(
1− δT−ds

1− δ

) ∣∣∣∣∣ p , ε

]
E [u(ws) | p, ε]

+
s∑

z=1

E

[
δ1+dz−1

(
1− δ∆dz

1− δ

) ∣∣∣∣∣ p , ε

]
E [u(hzwz−1) | p , ε] .
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2.1. Computation of ∆V

Define ∆V (s + 1 | p , ε) = V (s + 1 | p , ε) − V (s | p , ε). To simplify notation, if (x, y) are
random variables, define then the mapping

φ(x, y) = E

[
δ1+x

(
1− δy

1− δ

) ∣∣∣∣∣ p , ε

]
. (5)

Simple computations then yield,

∆V (s + 1 | p , ε) = φ(ds+1, T − ds+1)E [u(ws+1) | p , ε]
−φ(ds, T − ds)E [u(ws) | p , ε] + φ(ds, ∆ds+1)E [u(hs+1ws) | p , ε] (6)

Notice that φ has the following useful property,

φ(ds+1, T − ds+1)− φ(ds, T − ds) + φ(ds, ∆ds+1) = 0. (7)

We need to compute terms of the form E [u(κws) | ε], with κ = 1 or κ = hs+1. Denote now
Ws = fs +X0β0, to simplify notation. Using (1),(2) and (4), i.e., the CRRA and normality
assumptions, combined with linearity of log-wages, and the assumed independence of p and
(ε, ν), we obtain

E [u(κws) | p , ε] =E
[
(1/α)

(
1− κ−α exp(−α ln(ws))

) | p , ε
]

=
1
α

(
1− κ−αE [exp(−α(Ws + ν)) | p , ε]

)

=
1
α

(
1− κ−αe−αWsE

[
e−αν | ε]) .

Given (4), we have E[ν | ε] = ρσε and V ar[ν | ε] = σ2(1− ρ2). A well-known property of
the expectation of a log-normal random variable then yields,

E[e−αν | ε] = exp
{
−α

[
ρσε− α

2
σ2(1− ρ2)

]} ≡ exp[−αC(ε)], (8)

and from this latter expression we derive,

E [u(κws) | ε] =
1
α

(
1− κ−α exp[−α(Ws + C(ε)]

)
, (9)

for κ = 1 or κ = hs+1, where C(ε) is defined by (8).
Using equations (5) to (9) yields an expression of ∆V (s | ε). Easy algebra shows, after

some simplifications, that ∆V (s + 1 | p , ε) ≤ 0 is equivalent to,

1
α

[
φ(ds, T − ds)− φ(ds+1, T − ds+1)e−α∆fs+1

φ(ds+1,∆ds+1)

]
≤ (hs+1)−α

α
, (10)
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where, by definition,
∆fs+1 = fs+1 − fs.

Expression (10) is crucial, since the choice of level s is optimal for an agent with unobserved
family factors ε only if ∆V (s + 1 | p , ε) ≤ 0 and ∆V (s | p , ε) ≥ 0.

We specify and estimate the function hs directly as follows.

hs ≡ exp(−X1β1 − cs) exp(ε). (11)

The cs can be interpreted as cost parameters, for the following reason: it is not difficult
to check that, using the definitions given above,

∆ ln(hs+1ws) = −∆cs+1 + ∆fs,

for s ≥ 1. We also assume that there is no constant in X1, and β1 is a vector of parameters.
Our model is therefore determined by (2), giving wages as a function of schooling

and labor market ability, and (10), which characterizes the optimal schooling choice as
a function of expected skill premia ∆fs, observable characteristics X1, and unobservable
family factors ε. But to complete the model, we need to specify the distribution of durations
ds — this is done below, in particular cases.

We can now derive several variants of the model. The parameters to be estimated are
α (the risk aversion), β0, β1, δ (the discount factor), the fs (the skill premia), the cs (cost
parameters), σ (the standard deviation of log-wages), ρ (the correlation of ν and ε), and
the d̂s (the conditionally expected number of years required to reach level s), which can
be viewed as functions of exogenous variables (X, p). Parameters β0, β1, fs, σ and ρ will
not pose any particular identification problem. In contrast, δ and α might be difficult to
estimate or identify.

One possibility is to let T go to infinity and study the infinite horizon version of the
model with a fixed, given value of δ. A second possibility would of course be to estimate δ
in the infinite horizon model with a fixed value of the risk-aversion parameter α. Finally,
a third possibility is to fix a finite value of T , say, T = 65. It is then possible to set δ = 1,
and we will show that the maximum likelihood procedure can estimate (and thus identify)
α in a relatively natural way. In this variant, α is estimated, on top of the β, fs, cs, σ and
ρ.

2.2. The Finite Horizon, δ = 1 Case

Let us now consider the finite-horizon, fully patient version of the model. We set δ = 1
and T < ∞. By l’Hôpital’s rule, we get for any x, y > 0,

lim
δ→1

φ(x, y) = E

[
lim
δ→1

δ1+x

(
1− δy

1− δ

) ∣∣∣∣∣ p , ε

]
= E [y | p , ε] . (12)

Then, inequality (10), combined with (11) and (12), yields the following:

1
α

(
(T − d̂s)− (T − d̂s+1)e−α∆fs+1

∆d̂s+1

)
≤ eα(X1β1+cs+1−ε)

α
, (13)
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where d̂s = E[ds | p , ε]. This is, in a sense, remarkably simple, because if we assume that
d̂s is not a function of ε, the unobserved family factor ε intervenes in this expression only
indirectly, through its effect on costs hs. For any positive value of α, and for negative
values of α which are sufficiently close to zero, taking logarithms yields,

ε ≤ X1β1 + ks+1 + cs+1, (14a)

an expression which is equivalent to (13), where,

ks = −(1/α) ln

(
(T − d̂s−1)− (T − d̂s)e−α∆fs

∆d̂s

)
(14b)

It follows that the necessary condition for an optimal choice s, that is, ∆V (s + 1 | p , ε) ≤
0 ≤ ∆V (s | p , ε) is now equivalent to

X1β1 + ks + cs ≤ ε ≤ X1β1 + ks+1 + cs+1. (15)

Level s is chosen by an individual if her (his) unobserved family factor ε falls in the interval
[X1β1 + ks + cs, X1β1 + ks+1 + cs+1]. Therefore, our theory boils down to an Ordered
Discrete Choice model, with a particular functional form imposed on the cuts ks + cs.

2.3. The Pascal Model of Expected Durations

Our model will now be complete if we specify the d̂s, i.e., the expected number of years
needed to reach education level s. A difficulty is that, for each individual i, we only observe
individual i’s observed school-leaving age, i.e., dis, for s = si. But we need the expected
number of years that would have been needed by i had he or she decided to stay in the
educational system. In other words we need to specify the expected durations d̂s of every
individual for every education level s. We adopt a simple formulation derived from the
Pascal distribution. Let τs be the theoretical number of years needed to reach level s.
For instance, if s is the high-school diploma (i.e., baccalauréat) then τs = 18, and so on.
Assume that each year, an individual i is promoted to the next grade with a constant
probability pi, and (1 − pi) is the probability of repeating a grade — or the probability
of being “held back”. These parameters do vary substantially in our sample. If pi is
constant across years for each individual, the probability of reaching level s in k years,
with k ≥ τs, is given by the Pascal distribution (number of independent trials needed to
obtain τs successes, when the probability of success is constant equal to p), that is,

Pr(ds = k) =
(

k − 1
τs − 1

)
pτs(1− p)k−τs .

Using next the formula for the mean of a Pascal distribution, we get the expected duration
of studies of level s for an individual who left school at level z, as follows,

d̂s = E[ds | X] =
τs

p
.
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This suggests that for each individual, an empirical measure of ”talent” pi —which is in
fact a measure of ”speed”— is given by the ratio

pi =
τsi

disi

(16)

where τsi
is the ”theoretical” school-leaving age of i, given that individual i’s observed

educational level is si, and disi
is i’s observed school-leaving age (at level si). So we

simply take (16) as defining the observed talent variable pi, and will refer to it as i’s
Pascal-p. Given that this is an observation, we can control for its possible direct effect on
wages and costs, including pi in the list of controls X — and thus, these effects are neither
in ν nor in ε. We assume in addition that each individual i forms duration expectations
with the help of this model. Hence, for all s, we set

d̂si =
τs

pi
. (17)

We will show below that there is enough variability in the d̂si to identify the risk-aversion
parameter 1+α by means of variations in the ks functions, in the Ordered Probit structure
defined by (14) above.

2.4. Comparative Statics

It is now possible to show that the cuts ks are monotonically increasing functions of risk
aversion (i.e., of α). To see this, define

A =
T − (T − d)e−αf

d
. (18a)

It is sufficient to show that K(α) ≡ (−1/α) ln(A) is an increasing function of α for 0 <
d < T and f > 0. Simple calculus yields,

∂K

∂α
=

(
1
α2

)[
ln(A)−A−1

(
T − d

d

)
αfe−αf

]
. (18b)

Using the concavity of the logarithm function, we get ln(1)− ln(A) ≤ A−1(1−A), which is
equivalent to ln(A) ≥ 1− A−1. The term between square brackets at the right-hand side
of (18b) can then be bounded below as follows,

ln(A)−A−1

(
T − d

d

)
αfe−αf ≥ 1−A−1

[
1 +

(
T − d

d

)
αfe−αf

]
≡ B, (19)

and, using (18a), the bound B itself boils down to

B =
(T − d)(1− e−αf − αfe−αf )

T − (T − d)e−αf
. (20)
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Given that we assume A > 0, it follows from (20) that B ≥ 0 if and only if 1 − e−αf ≥
αfe−αf , or equivalently, if and only if 1 − e−x ≥ xe−x, but the latter inequality is true,
because −e−x is concave. We conclude that ∂K/∂α ≥ 0: when risk aversion increases, it
takes a better unobservable family background (i.e., an increased ε) to study more. The
number of students enrolled in a given level s > 0 should therefore tend to fall when risk
aversion goes up.

There are some other clear-cut consequences of our theory. The number of years sep-
arating two educational levels, denoted d in (18a), has a positive impact on the thresholds
Ks, that is,

∂K

∂d
=

T

αAd2
(1− e−αf ) ≥ 0.

Thresholds are also decreasing with respect to the “duration of working life” T , i.e., we
easily get,

∂K

∂T
=

−1
αAd

(1− e−αf ) < 0.

This means that an increase in the duration of studies will always discourage some of the
individuals with the weakest unobserved family backgrounds, who used to chose level s,
and as a consequence, the average value of the enrolled students’ unobserved family factors
will increase. An increase in the working-life duration raises the value of education, and
therefore will attract more individuals to higher education levels.

Our approach suffers from the same limitations as all studies of, say consumption or
asset prices, based on an additively separable, intertemporal expected utility maximization
problem: risk aversion and intertemporal substitution parameters cannot be disentangled.
A more sophisticated model, using a recursive utility structure, could help separating the
two. On this question, see Epstein (1992). But our model has the advantage of exhibiting
unambiguous comparative statics properties. The theoretical literature on risk aversion and
human capital seems limited; see however the classic contributions of Lehvari and Weiss
(1974), Williams (1979) and Eaton and Rosen (1980). As far as we know, this classic
literature doesn’t yield unambiguous predictions of the effects of increased risk-aversion on
human capital.

In addition, we must ensure that cs +ks < ks+1 + cs+1 for all s > 0 to ensure that the
model’s probability distributions are well-defined. This latter monotonicity property will
be satisfied if ∆fs+1 ≤ ∆fs (i.e., “concave” returns), ∆ds+1 > ∆ds (i.e., “convex” oppor-
tunity costs), and cs+1 ≥ cs but, these latter conditions are not necessary. Monotonicity
of the cuts ks still holds if the returns to education are increasing, (i.e., if ∆fs+1 > ∆fs),
provided that they don’t increase too much.

2.5. The Logarithmic Utility Case (i.e., α = 0)

An interesting particular case is obtained by letting α → 0. Using l’Hôpital’s rule again,
we get with (13)-(14),

lim
α→0+

1
α

ln

[
(T − d̂s−1)− (T − d̂s)e−α∆fs

∆d̂s

]
=

∆fs(T − d̂s)

∆d̂s

.
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This yields the logarithmic utility model, which is characterized by the inequalities,

cs + X1β1 − (T − d̂s)∆fs

∆d̂s

≤ ε ≤ X1β1 − (T − d̂s+1)∆fs+1

∆d̂s+1

+ cs+1.

The analytic expression of the cutoff points ks is easily interpreted. Since agents are very
patient, i.e., δ = 1, the marginal skill-premium gain (per year) of jumping from level s

to level s + 1 is ∆fs+1/∆d̂s+1, multiplied by the number of years to go after the end of
studies, i.e., T − d̂s+1. This expression of marginal benefit must be compared with an
expression of marginal costs, which is simply cs + X1β1 − ε here.

In the logarithmic utility case, the monotonicity condition ks+1 > ks is equivalent to

∆d̂s+1

∆d̂s

>
∆fs+1

∆fs

(T − d̂s+1)

(T − d̂s)
,

showing that the cutoff monotonicity condition cs+1+ks+1 > cs +ks will be satisfied under
”return concavity”, and ”cost convexity”. But one can allow for increasing returns, i.e.,
for ∆fs+1/∆fs > 1, if T is not too large, and if ∆d̂s+1 is large enough, for then the ratio
(T−d̂s+1)

(T−d̂s)
is sufficiently smaller than 1. These remarks continue to hold true, by continuity,

for values of α which are close to 0, even if α < 0.

2.6. The Infinite Horizon, Discounted Utility Case

To understand the potential of our model, consider the case in which T → +∞ and δ < 1.
To simplify the analysis, assume that the ds are deterministic functions of (X, p). Then,
inequality (10), combined with (11), yields,

1
α

(
1− δ∆ds+1e−α∆fs+1

1− δ∆ds+1

)
≤ eα(X1β1+cs+1−ε)

α
(21)

For any positive value of α, and for negative values of α which are sufficiently close to zero,
taking logarithms yields an expression which is equivalent to (21),

ε ≤ X1β1 + ls+1 + cs+1 (22a)

where,

ls = − 1
α

ln
(

1− δ∆dse−α∆fs

1− δ∆ds

)
(22b)

It follows that the necessary condition for an optimal choice s, that is, ∆V (s + 1 | ε) ≤
0 ≤ ∆V (s | ε) is equivalent to

X1β1 + ls + cs ≤ ε ≤ X1β1 + ls+1 + cs+1. (23)

We again obtain an Ordered Discrete Choice structure, with a particular functional form
imposed on the cuts ls + cs.
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3. The Data

To realize the estimations presented below, we used ”Génération 92”, a large scale survey
conducted in France. The survey and associated data base have been produced by the
CEREQ (Centre d’Etudes et de Recherches sur les Qualifications), a public research agency,
working under the aegis of the Ministry of Education3. Génération 92 is a sample of 26,359
young workers of both sexes, whose education levels range from the lowest (i.e., high school
dropouts) to graduate studies, and who graduated in a large array of sectors and disciplines.
Observed individuals have left the educational system between January 1rst and December
31rst, 19924. They have left the educational system for the first time, and for at least one
year, in 19925. The labor market experience of these individuals has been observed during
5 years, until 1997. The survey provides detailed observations of individual employment
and unemployment spells, of wages and occupation types, as well as geographical locations
of jobs. The personal labor market history of each survey respondent has been literally
reconstructed, month after month, during the period 1993-1997, by means of an interview.
Before 1992, the individual’s educational achievement is also observed. In the present
paper, we concentrate on the male sub-sample below6.

For the purpose of estimation, we have merged education levels into six categories,
1) the high-school dropouts; 2) the vocational high-school degree holders7; 3) those who
reached8 grade 12; 4) those who completed two years of College9; 5) those who completed
four years of college; 6) graduate studies (including professional schools, Masters’, etc...).
For descriptive statistics, see Table 1.

On top of this, the survey provides information on family background: the father’s
and the mother’s occupation, the father’s and the mother’s education levels are the most
important of these variables. We also know if the parents are unemployed, inactive, retired
or deceased, if they work in the public or private sectors. Are also observed, notably: the
age at which the individual left the educational system, the number of sisters, the number
of brothers, and the rank among siblings (i.e., birth order).

A difficulty with wages is that we do not observe the hours worked (but we know if the
individual worked full-time or part-time). We therefore decided to select the individuals

3
Articles and descriptive statistics, concerning various aspects of the survey, are available at www.cereq.fr.

4
To fix ideas, the number of inhabitants of France who left school for the first time in 1992 is estimated to

be of the order of 640,000.
5

They did not return to school for more than one year after 1992, and they had not left school before 1992

except for compulsory military service, illness, or pregnancy.
6

For results on women, see Gary-Bobo et al. (2006), Brodaty et al. (2005).
7

i.e., the so-called Certificats d’Aptitude and Brevet d’Etudes Professionnelles.
8

We take grade 12 students in the US to correspond (roughly) to the French classe terminale. There is

a high proportion of high-school diploma holders among this group. The national high-school degree is called

Baccalauréat)
9

The corresponding exam is called DEUG (Diplôme d’Etudes Universitaires Générales), which is the equiv-

alent of an Associate’s degree, or DUT (Diplôme Universitaire de Technologie), which is the equivalent of a

technical or vocational Associate’s. There are exams at the end of each of the college years in French universities,

and the DEUG or DUT corresponds (roughly) to the level reached at the end of grade 14.
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who experienced at least a full-time employment spell during the five years observation
period. More precisely, we first removed 717 individuals who had never worked (no employ-
ment spell recorded during 5 years). The remaining 25642 individuals are the addition of
14213 men and 11429 women who worked at least once during the observation period. We
then selected the males who experienced at least one full-time employment spell during the
five years. As a consequence, we lost 11.7% of the male sub-sample, but we still have 12,538
men. The possible bias introduced by this selection procedure is thus limited in the case
of men. On the other hand, this procedure permits us to compare earnings more precisely,
given that full-time employment means 39 hours a week for most wage-earning employees
(given the heavily regulated French labor market), and more importantly, it tends to se-
lect a relatively homogenous population of young people who really want to work full-time
(which has some advantages when it comes to estimate structural parameters).

Each individual’s curriculum on the job market is an array of data including a number
of jobs, with their corresponding wages and durations in months, and unemployment spells,
again with a length in months. To estimate the returns to education, we rely on a single,
scalar index of earnings for each worker. To estimate the model, we constructed two
different wage variables with the help of the data. The first statistic is simply the arithmetic
average of the full-time wages earned during full-time employment spells, weighted by their
respective spell durations. In the following, this index is called the “mean wage”. The mean
wage variable ignores the length of unemployment spells, and the difficulties faced by the
individual to find a stable (and well-paid) job. To take the probability of unemployment
into account, as well as to capture the effect of job instability on average earnings, we
employed a second index, simply called the individual’s “earnings”. To compute this
average, wages and unemployment benefits are weighted by the corresponding employment
or unemployment spell duration10. Table 2 gives descriptive statistics relative to the two
wage indices. See Figure 1 for a plot of the density of mean wages and earnings.

The last important piece of information that we have is school-leaving age and edu-
cation level reached, for each individual. as emphasized in the introduction we distinguish
educational achievement, measured by levels, from school-leaving age. Clearly, we depart
from the classic studies in which education is measured by means of a number of years of
schooling. Table 3 shows the distribution of school-leaving age, conditional on education
level (highest level reached). There is a substantial variability in the data, which is in
part due to peculiarities of the French educational system: repeated grades are frequent in
school and high school. Freshmen repeating the first and second years of college are also
quite common. The summation of these random sources creates the observed variability.

4. Estimation Method and Identification of Risk Aversion

We now describe our estimation procedures for the model with T < +∞ and δ = 1.
There is a structural and a “reduced-form” version of the model. With the “reduced-
form” version of the model, we get estimates of β0, β1, σ, ρ, the fs parameters, and of the
cuts ms ≡ ks + cs, but neither α nor the cs will be identified. To estimate the structural

10
A worker is eligible for unemployment benefits if he or she has worked in the recent past. Students thus

get zero before their first job. The unemployment benefits are roughly a half of the lost job’s wage.
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version of the model, we construct expected durations d̂s as described above. Technically,
all durations d̂s are deterministic functions of the exogenous variables pi, disi and τsi . It
happens that this is enough to identify α and the cs, together with all the other parameters
β0, β1, σ, ρ, and fs. Individuals are indexed by i = 1, ..., N . For each i, we observe the
education level si, the wage

yi = ln(wi),

and the exogenous variables Xi = (X0i, X1i), which include pi as a control. Let νi and εi

be i’s (jointly normal) unobserved ”market ability” and family background variables. For
each individual i, Pr(s = si and y = yi) = Pr(y = yi) Pr(s = si | y = yi). Using (2), we
get,

Pr(s = si | y = yi) = Pr(si | νi = yi −X0iβ0 − fs). (24)

Using (15) above, we can then express this conditional probability with respect to εi, as
follows,

Pr(si | yi) = Pr(csi +ksi +X1iβ1 ≤ εi ≤ csi+1+ksi+1+X1iβ1 | νi = yi−X0iβ0−fsi). (25)

Given (4) above, the theoretical regression of ε on ν can be written,

εi =
ρ

σ
νi + ξi

where ξi is normally distributed, E(ξi) = 0, E(νiξi) = 0. We also get the classic results,
E(εi | νi) = ρσ−1νi, and V ar(εi | νi) = V ar(ξi) = 1− ρ2. With the help of these relations,
the conditional probability of choosing s can again be reformulated as follows,

Pr(si | yi) =

Pr
[
csi + ksi + X1iβ1 − ρνi

σ
≤ ξi ≤ csi+1 + ksi+1 + X1iβ1 − ρνi

σ

∣∣∣∣ νi = yi −X0iβ0 − fsi

]

(26)

Let φ(z) = (2π)−1/2 exp(−z2/2) denote the normal density and let Φ(z) =
∫ z

−∞ φ(ζ)dζ
denote the normal cdf. Since ξi is normally distributed, we obtain,

Pr(s = si | y = yi) = Φ̃s+1(yi, si, Xi)− Φ̃s(yi, si, Xi), (27a)

where

Φ̃s(yi, si, Xi) ≡ Φ

[
cs + ks + X1iβ1 − (ρ/σ)(yi −X0iβ0 − fsi)√

1− ρ2

]
. (27b)

Define the indicator variables χ as follows: χis = 1 if si = s and χis = 0 otherwise. Since
yi is normal with variance σ2, its density is simply,

1
σ

φ

(
yi −X0iβ0 −

∑
s fsχis

σ

)
. (28)
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Now, the contribution of individual i to likelihood can be expressed as,

Li =
1
σ

φ

(
yi −X0iβ0 −

∑
s fsχis

σ

) n∏
z=0

(
Φ̃z+1(yi, si, Xi)− Φ̃z(yi, si, Xi)

)χiz

, (29)

where, conventionally, we set k0 = −∞ and kn+1 = +∞, education levels being numbered
from 0 to n. The likelihood function is therefore L =

∏N
i=1 Li.

Several variants of the model can now be estimated by maximizing (29) with different
specifications of the ks. We have estimated the model when the cuts ks assume the form
given by (14b) above (but estimation could of course also be performed, in principle, with
the cuts defined as ls (i.e., expression (22b)), and with a fixed value of δ < 1). This also
allows for a grid-search maximum-likelihood estimation of δ. The cuts ks are nonlinear
functions of the risk aversion parameter α, to be estimated. In the following, this structural
model will be called Model A.

From this, we can easily see that our structural model is a generalization of a more
standard, latent-variable model with endogenous qualitative variables à la Heckman (1978).
To see this, assume that the choice of education level s is determined by a latent variable

zi = −X1iβ1 + εi, (30)

where ε is still the unobservable family factor (or just unobserved ”school ability”). Assume
in addition that log-wages y are still determined by the regression function yi = X0iβ0 +∑

s fsχis + νi, and finally that the dummy variables χ satisfy the property,

Pr(χis = 1) = Pr(si = s) = Pr(ms ≤ zi ≤ ms+1). (31)

The χs are then determined by an ordered discrete choice structure with endogenous
thresholds ms. Expression (29) above is precisely the contribution to likelihood of this
model, if we forget the fact that the cuts can be decomposed as ms = ks + cs and that the
ks satisfy (14b). We can therefore define a model in which the ms are estimated freely,
along with ρ, σ, the fs, and the β parameters. We then ignore the structural preference
parameter α. In the following, this model à la Heckman will be called Model B. Model
B is fully justified insofar as it is derived from our theoretical human-capital investment
model.

With these definitions, we are able to compare the results of the structural and
“reduced-form” estimation methods, i.e., Models A and B, as closely as possible.

Which sources of exogenous variability identify the skill-premia parameters ∆fs (i.e.,
the returns to levels of education)? As in many studies of returns to education, the
endogeneity of education-level dummies is taken care of by some exclusions, i.e; by zero
restrictions in the Mincerian log-wage equation. The excluded variables — and thus the
instruments for “years of schooling” — here, are, in essence, the birth-order and number-
of-siblings variables. We have shown elsewhere that these variables do matter to explain
educational achievement with the same data (see Gary-Bobo et al. (2006) and Brodaty et
al. (2005)). This has been shown by others too (see e.g., Black et al. (2005). We also think
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that these variables are not — or very weakly — correlated with the wage-equation error-
term ν, and are thus valid instruments: it seems that the fact of having many brothers
and sisters (when many other family-background variables are used as controls) has no
strong and compelling reason to influence wages directly. All the model parameters except
of course risk aversion 1 + α can be identified without any problem by a “reduced-form”
model à la Heckman, i.e., Model B. Model A therefore shows that risk aversion can be
identified by using the variability of school-leaving age ds, conditional on educational levels
s. Intuitively, the risk affecting the direct and opportunity costs of education is due to
grade repetitions in an important way, and this kind of risk is itself a source of variability
that can be exploited to identify a risk-aversion parameter.

To sum up, our structural approach is relatively simple and transparent; it has a closely
comparable ”reduced-form” counterpart, and the sources of identification of structural
parameters are clear.

5. Estimation Results

We start our discussion of empirical results with some comments on the Pascal-p variable.
Figure 2 displays the empirical density of Pascal-p values in the sample, conditional on the
student’s educational achievement (i.e. level s). There is a remarkable pattern, showing
that the expected value of p, knowing s, is increasing. In contrast, the variance of p
conditional on s seems to be roughly constant, so that Figure 2 gives the impression
that the distributions of p knowing s are obtained by successive translations of the same
density function. The Pascal-p is well-dispersed, and as will be shown below, conveys
much information. Notice that the empirical Pascal-p takes values greater than one: this is
because a non-negligible fraction of students pass their exams sooner than the standard, or
“theoretical” age τs. The observed dispersion in turn comes from the substantial variance
in school-leaving ages, conditional on education level s, as shown in Table 3. Next, Figure
3 shows the results of nonparametric regressions of “theoretical” age τs on Pascal-p, in
sub-samples determined by different levels of parental educational achievement. Mother’s
and father’s education are observed separately and fall in 6 categories11. With the help of
these observations, we constructed cells with the mother’s and the father’s characteristics,
such as ”(father: went to college (or more)) times (mother: high school graduate)” . We
merged the cells of some of these cross-categories in which the numbers of observations
were relatively small. This led to the parental education variables listed in Fig. 3. The
strong positive correlation of p and s, or τs, is again visible. It is also striking to see that
there is strict dominance-ranking of the regressions plotted on Figure 3, the higher parental
education, the higher the chosen τs, for all values of p. The interaction of Pascal-p and
parental education seems to have a strong, unambiguous effect on completed education.

The estimation results for Model A and Model B are displayed by Tables 4 and 5.
Each table presents the results obtained for Models A and B with one of the two different
earnings statistics defined above: mean (full-time) wages, and mean earnings. Recall that

11
1) No qualification; 2) Elementary school certificate; 3) Vocational high-school degree; 4) High-school degree

(baccalauréat); 5) Went to college; 6) Missing. There exists in France an elementary school certificate (Certificat

d’Etudes Primaires) which is becoming rare but used to be very important in the past.
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our structural model is Model A. Model B is the “reduced-form” version “à la Heckman”,
obtained when the cuts of the ordered schooling choice model are estimated freely, and
when no structural connection between cuts, durations and wages is imposed. Model B
cannot provide an estimation of risk-aversion, but yields an estimation of the error terms’
correlation ρ.

Table 4 gives the results obtained with mean wages. Table 4(i) lists the estimates for
the parameters of the Ordered Probit structure; that is, the estimated values of β1, and
the “cuts”. These cuts are the cs in the case of Model A and the ms in the case of Model
B. Risk-aversion γ = 1 + α is estimated by Model A only through the ks functions, while
the Pascal-p is introduced as a control in X1 in Model B only. Model A and Model B
cuts are thus difficult to compare since in Model B, ms + βpp plays the role of Model A’s
cs + ks(α, ∆fs, d̂s(p)). The rest of the β1 parameters are very similar.

Mother’s and father’s occupations are observed separately, and fall in one of 8 cate-
gories12. With the help of these observations, we constructed interaction dummies with
the mother’s and the father’s characteristics, such as ”(father: middle manager) times
(mother: white collar)”. We merged (i.e. added the dummies of) some of these cross-
categories in which the numbers of observations were too small. This led to the parental
occupation variables listed as controls in Tables 4-813.

The variables used as instruments are birth-order dummies, the number of brothers,
and the number of sisters. Of these, only birth-order dummies are fairly significant in the
first-stage regression. This result is close to those of Black et al. (2005), Gary-Bobo et
al. (2006). But it is not the last word about the impact of family size, as will be seen
below: the non-significant number-of-siblings parameters are hiding from us a contrasted
situation, in which these parameters are positive in some groups, and negative in some
others. In any case, the use of birth order as an instrument for education levels is a
success.

Notice that risk aversion is small, with a significant value of 1 + α = .41: this means
that individuals are on average less risk-averse than decision-makers endowed with log-
arithmic utility functions —but they are not risk neutral. The very strong and highly
significant coefficient on Pascal-p in Model B shows the empirical relevance of this variable
as a control for education levels.

We now turn to Table 4(ii) which summarizes the log-wage equation estimates. This
second sub-table also has a number of striking features. First of all, the β0 parameters,
appearing in the middle (parental occupation, parental employment) are roughly similar,
not always very significant. A notable difference is the positive direct impact of parents
in the executive (and highly educated professionals) category on wages, which is much
stronger and precise in Model A than in Model B. But then, in spite of exactly similar
specifications, the Model A and Model B wage-equations give very different pictures of
the returns to education. According to Model B, returns to education are high — in fact,

12
1) Farmers; 2) Craftsmen, Tradesmen and Owners-Managers; 3) Executives, Doctors, Lawyers, Engineers

and Teachers; 4) Middle managers, technicians; 5) White Collars; 6) Blue Collars; 7) Missing observations; 8)

Deceased or unemployed.
13

”Father and Mother: white collars” is the reference group. F stands for father and M stands for mother in

the names given to controls.
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they’re a bit higher than the equivalent OLS estimates — and as a consequence, there
is a negative “ability bias”, as shown by the correlation of ν and ε, which is ρ = −.075.
The Pascal-p variable has a negative, significant, and direct effect on wages: it seems
that returns to education are smaller for those who finish school quickly (relative to the
chosen education level). In sharp contrast, the Model-A estimate of the same error-term
correlation is high, very significant, and positive: we find ρ = +.36, indicating a strong
“ability bias” effect. According to Model A, OLS estimates of the returns to education
are biased upwards, and the Pascal-p variable has a positive effect on wages: our ability
measure has a significant coefficient with the expected sign.

Table 4(ii) lists the ∆fs coefficients directly. It is readily seen that the typical estimate
of these skill-premia parameters is 6.5% for Model A and 12 to 14% for Model B, except
for the highest level. The value of graduate studies14 seems to be grossly overstated by
Model B. This is a likely result of Model A’s nonlinear specification, which is very sensitive
around the estimated risk-aversion coefficient. But in an essential way, Model A captures
something that is overlooked by Model B, namely, the fact that there are interactions of
the skill-premia ∆fs with expected durations d̂s in the ks cut-functions. These non-trivial
and non-negligible interactions represent the effect of the student’s expectations, and are
likely to be responsible for part of the differences in estimated returns to education. Now,
recalling that the ∆fs coefficients are the value of a jump from level s− 1 to level s, and
this jump takes typically ∆d̄s years, where d̄s denotes average duration, we should in fact
compute,

(1 + ∆fs)
1/∆d̄s − 1 ≈ ∆fs

∆d̄s
.

Given that ∆d̄s is approximately 2 years, we see that the per annum returns ∆fs/∆d̄s are
of the order of 3.25% in Model A and 6 to 7% in Model B (except for graduate studies,
which last one additional year only, in many cases).

The last lines of Table 3 show the Vuong test of non-nested hypotheses, which is
based on the likelihood ratio (see Vuong (1989)). In the present case, given the number of
variables and observations, the test reads as an ordinary t-statistic: a value greater than
1.96 indicates that Model A is better than Model B, a smaller value says only that Model
A doesn’t statistically dominates Model B. This is precisely the case with the estimations
of Table 3 — but we will find a strict domination of Model A when earnings are used
instead of wages.

Table 5 displays the estimation results in the case of the average earnings statistic; it
is organized exactly as Table 4. We will briefly comment on the most important similarities
and differences with Table 4. On Table 5(i), risk aversion is even smaller, with a value of
1 + α = .17 in Model A, and Pascal-p is still very strong as a control, in Model B. Birth
order also works well as an instrument for education levels. On Table 5(ii), we find the
same opposite signs for the Pascal-p control coefficient in Models A and B and the same
opposite sign of the ability bias: correlation ρ is still negative and significant in Model B
and positive around 34%, and very precisely estimated in Model A. As a consequence, we

14
Many graduate students spend in fact only one more year at the University, to get a DESS or DEA (i.e.,

the equivalent of a Master’s degree).
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find that the Model-A returns to education are small as compared to that of Model B.
This time, Vuong’s test rejects Model B very clearly in favor of Model A, with a t-value
around 8.38. The reason for such a sharp contrast lies in the difference of the average log-
likelihoods, logLA− logLB say, which is of the order of .003 in Table 4, but approximately
7 times greater, around .02, in Table 5.

We conclude that there are many indications, both quantitative and qualitative or
intuitive, which seem to indicate that Model A is a better description of the world than
Model B. Table 6 below summarizes the key findings15.

TABLE 6
Comparison of Models A and B

Wages Earnings
Model A Model B Model A Model B

∆f1 0.065** 0.149** 0.048** 0.467**
∆f2 0.066** 0.126** 0.049** 0.205**
∆f3 0.068** 0.184** 0.051** 0.309**
∆f4 0.066** 0.123** 0.051** 0.150**
∆f5 0.034** 0.270** 0.026** 0.354**
Pascal-p 0.529** -0.497* 0.659** -1.595**
ρ 0.362** -0.075 0.340** -0.171*
1 + α 0.411** — 0.176* —
Likelihood -1.410 -1.423 -2.041 -2.060
Vuong test 1.046 — 8.386 —

As a robustness check for some of the features of our theory, we re-estimated Model
A in sub-samples determined by parental education. We contrast the results obtained
with the sub-sample of individuals whose parents have no qualification on the one hand,
and the sub-sample of students whose parents are at least high-school graduates, on the
other hand. The results are reported in Table 7 for mean wages, and in Table 8 for mean
earnings. Table 7(i) shows that risk aversion varies with parental education: we get a
highly significant 1 + α = .91 when parents are not educated, but only 1 + α = .20 when
parents are at least high-school graduates. Note in passing that the effect of a higher
number of siblings on educational achievement is positive and significant in the educated
parents’ families; this confirms results obtained elsewhere (see Gary-Bobo et al. (2006)).
Table 7(ii) shows that the effects of Pascal-p on wages are always significant, but with

15
Notice that in Table 6, the Pascal-p line gives the coefficient of Pascal-p in the log-wage equation. Likelihood

is in fact mean log-likelihood. The Vuong statistic tests Model A against Model B here: a positive value higher

than 1.96 says that Model A is preferred; a negative value smaller than -1.96 says that Model B is preferred;

none of the models dominates the other if the test value is in between.
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different signs: the coefficient’s sign is negative in the uneducated parents’ sub-sample,
whereas it is positive in the other sub-sample. Finishing quickly has a positive effect on
wages for the sons of educated parents, but negative effect for the others. This could
simply be the mechanical result of the fact that low educational-background students who
stay longer at school command a higher wage than the early dropouts, even if they take
more time to reach a given level, whereas in educated families, being a laggard is a bad
signal. The same sign-pattern holds for the correlation of error terms ρ: the ability bias
is positive and significant only in the case of the educated parents’ sons, and accordingly,
returns to education are low for the latter, but high for the former.

Table 8 displays the results obtained with the mean earnings statistic: the risk-aversion
coefficient has very low and non-significant values. But zero is a possible value of risk-
aversion, corresponding to risk-neutrality. The fact that earnings are more dispersed than
wages is an explanation for the fact that a small value of α is enough to fit the individual’s
educational choices, whereas a higher value is needed in the case of the wage statistic,
because it is less risky. Table 8(ii) does not exhibit the strange opposite signs of the ability
bias that we have found in Table 7: this bias is always positive and highly significant,
albeit smaller in size in the case of the uneducated parents’ sons.
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Table 1 : Completed schooling 
 
 

Level s numbers % 
High school dropouts 0 710 6%
Vocational degree 1 4799 38%
High school graduates (grade 12)  2 2770 22%
Two years of college (grade 14) 3 2139 17%
Four years of college (grade 16) 4 698 6%
Graduate studies 5 1422 11%

 
 
 
Table 2 : Summary statistics; wages for each level of education; euros 
 
 

  mean standard deviation min max 
1. Mean earnings 873 461 14 6943 
High school dropouts 566 335 14 4955 
Vocational degree 707 305 20 6943 
High school graduates (grade 12)  798 348 16 3773 
Two years of college (grade 14) 967 371 51 3714 
Four years of college (grade 16) 1103 498 64 3932 
Graduate studies 1475 626 35 5495 
2. Mean wages 1153 450 83 9520 
High school dropouts 878 284 83 4955 
Vocational degree 950 223 101 4915 
High school graduates (grade 12)  1069 317 214 3773 
Two years of college (grade 14) 1251 344 366 3714 
Four years of college (grade 16) 1420 430 305 4171 
Graduate studies 1860 612 183 9520 

 
 
 
Table 3 : Empirical distribution of school-leaving age, conditional on education level reached 
 
 
 Age while leaving 
school 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
High school dropouts 1 17 24 33 16 7 1 1 0 0 0 0 0 0 0 0 0 0
Vocational degree 0 0 3 30 37 21 6 2 1 0 0 0 0 0 0 0 0 0
High school graduates 
(grade 12)  0 0 0 2 12 31 32 15 6 2 1 0 0 0 0 0 0 0
Two years of college 
(grade 14) 0 0 0 0 0 13 27 28 19 8 2 1 1 0 0 0 0 0
Four years of college 
(grade 16) 0 0 0 0 0 0 4 17 20 27 13 9 4 3 1 1 1 1
Graduate studies 0 0 0 0 0 0 0 4 24 29 15 11 7 4 2 2 1 0



Table 4 : Mean Wages 
 
Table 4(i) : Ordered  schooling choice 
 
       Model A Model B 

School leaving choice (s) Coefficient Student-t Coefficient Student-t 
          

Parental occupation         
(F=Farmer) x (M = Farmer) 0.106 1.959 0.140 2.584
(F=Farmer) x (M = Other)  0.037 0.359 0.073 0.701
(F=Craftsman) x (M = Farmer, Craftsman, Blue C,) 0.063 1.077 0.059 1.009
(F=Craftsman) x (M = Exec,, Middle, White C,) 0.120 2.557 0.123 2.606
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.746 17.435 0.741 17.358
(F=Executive) x (M = Exec,) 1.083 22.236 1.057 21.796
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C,) 0.283 4.482 0.281 4.464
(F=Middle Manager) x (M = Exec,) 0.417 5.971 0.433 6.207
(F=Middle Manager) x (M = White C,) 0.309 6.073 0.308 6.071
(F=White Collar) x (M = Farmer, Blue C,) -0.147 -2.944 -0.147 -2.942
(F=White Collar) x (M = Craftsman, Exec,, Middle) 0.375 4.441 0.378 4.487
(F=White Collar) x (M =White C,), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C,) -0.310 -7.972 -0.318 -8.177
(F=Blue Collar) x (M = Exec,, Middle, White C,) -0.189 -4.727 -0.186 -4.659
(F=Missing or deceased) x (M = Crafts,, Exec,) -0.137 -1.334 -0.126 -1.232
(F=Missing or deceased) x (M = Missing or deceased) -0.348 -3.587 -0.331 -3.407
         
Parental employment      
Both parents in private sector , Reference group      
(F=Private sector) x (M=Public s,) 0.131 3.404 0.135 3.500
(F=Public sector) x (M=Private s,) 0.007 0.151 0.005 0.089
Both parents in public sector 0.106 2.558 0.106 2.552
(F=Private sector) x (M=Unemployed) 0.135 4.629 0.149 5.096
(F=Public sector) x (M=Unemployed) 0.098 2.365 0.109 2.627
(F=Employed) x (M=Deceased or Missing) -0.320 -3.354 -0.327 -3.424
(F=Unemployed) x (M=Deceased or Missing) 0.070 0.922 0.076 1.003
Both parents unemployed 0.174 2.430 0.201 2.797
(F=Retired) x (M=Employed,) 0.829 11.712 0.844 11.948
(F=Retired) x (M=Unemployed,) 0.899 20.530 0.953 21.715
(F=Deceased or Missing) x (M=Employed,) 0.301 2.730 0.298 2.701
(F=Deceased or Missing) x (M=Unemployed,) 0.511 4.925 0.527 5.066
(F=Unemployed, retired or deceased) x (M=Deceased or Miss)  0.296 2.662 0.294 2.633
         
Number of brothers 0.000 0.037 -0.008 -0.716
Number of sisters -0.001 -0.043 -0.014 -1.151
         
Birth order      
Only child 0.492 7.082 0.567 7.794
1rst 0.409 6.101 0.456 6.458
2nd 0.346 5.378 0.410 6.071
3rd 0.244 3.760 0.264 3.843
4th 0.169 2.362 0.207 2.731
5th and higher, Reference group        
         
Pascal-p     9.492 54.743
         
Estimated Risk Aversion 1+α 0.411 8.751    
      
         
Cut1 1.727 10.736 7.415 41.100
Cut2 3.247 21.067 9.197 49.851
Cut3 3.979 25.055 9.940 53.266
Cut4 4.125 30.507 10.650 56.499
Cut5 4.346 32.928 10.970 57.950

 



Table 4(ii) : Log-mean-wages equation 
 
       Model A Model B 
Log-mean-wages Coefficient Student-t Coefficient Student-t 
       
Constant 8.234 174.078 9.019 96.360
σ 0.282 117.500 0.260 136.947
       
Completed Education      
High school dropouts, Reference group      
Vocational degree 0.065 14.705 0.149 5.795
High school graduates (grade 12)  0.066 14.886 0.126 7.308
Two years of college (grade 14) 0.068 14.870 0.184 14.240
Four years of college (grade 16) 0.066 16.146 0.123 8.877
Graduate studies (grade 17 or more) 0.034 16.800 0.270 15.970
       
Parental Occupation      
(F=Farmer) x (M = Farmer) -0.083 -5.873 -0.086 -6.477
(F=Farmer) x (M = Other)  -0.026 -0.942 -0.035 -1.395
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.015 0.993 0.006 0.408
(F=Craftsman) x (M = Exec., Middle, White C.) 0.031 2.520 0.008 0.704
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.129 11.017 0.030 2.000
(F=Executive) x (M = Exec.) 0.192 14.459 0.048 2.565
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) 0.057 3.419 0.027 1.673
(F=Middle Manager) x (M = Exec.) 0.086 4.659 0.030 1.674
(F=Middle Manager) x (M = White C.) 0.061 4.519 0.025 1.864
(F=White Collar) x (M = Farmer, Blue C.) -0.017 -1.290 0.000 -0.033
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.030 1.347 -0.008 -0.377
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) -0.035 -3.480 -0.003 -0.327
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.017 -1.615 0.000 -0.030
(F=Missing or deceased) x (M = Crafts., Exec.) 0.012 0.433 0.014 0.546
(F=Missing or deceased) x (M = Missing or deceased) -0.068 -2.665 -0.033 -1.364
        
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) -0.008 -0.752 -0.022 -2.358
(F=Public sector) x (M=Private sector) -0.009 -0.713 -0.012 -1.033
Both parents in public sector -0.019 -1.722 -0.030 -3.010
(F=Private sector) x (M=Unemployed) -0.006 -0.800 -0.021 -3.028
(F=Public sector) x (M=Unemployed) -0.021 -1.963 -0.034 -3.434
(F=Employed) x (M=Deceased or Missing) -0.035 -1.401 -0.010 -0.442
(F=Unemployed) x (M=Deceased or Missing) -0.032 -1.596 -0.039 -2.104
Both parents unemployed -0.057 -3.086 -0.071 -4.152
(F=Retired) x (M=Employed) 0.068 3.629 -0.026 -1.308
(F=Retired) x (M=Unemployed) 0.042 3.684 -0.055 -3.753
(F=Deceased or Missing) x (M=Employed) -0.017 -0.578 -0.042 -1.559
(F=Deceased or Missing) x (M=Unemployed) -0.018 -0.680 -0.068 -2.659
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.029 -0.979 -0.048 -1.756
       
Pascal-p 0.529 9.441 -0.497 -3.629
       
Estimated correlation ρ 0.362 21.076 -0.075 -1.251

Sample size 12,538 12,538 

Mean Log-Likelihood  -1.41995 -1.42307 

Vuong Test (Model A vs Model B) 1.0463 

Note: Vuong's model selection test for non-nested models statistics is (LR-K)/(n1/2ω) where LR is the log-likelihood ratio, n is the 
sample size, ω is the estimated standard error of the log-likelihood ratio and K=0 because of identical number of parameters. 
A significant positive (resp. negative) t-value indicates that model A is preferred to B (resp. B is preferred to A); non significant t-
value (positive or negative) indicates that no model is preferred to the other. T-value for significance at the 95%-level is around 1.96. 

 



Table 5 : Mean Earnings 
 
Table 5(i) : Ordered schooling choice 
 
       Model A Model B 

School leaving choice (s) Coefficient Student-t Coefficient Student-t 
          

Parental occupation         
(F=Farmer) x (M = Farmer) 0.106 1.947 0.141 2.610
(F=Farmer) x (M = Other)  0.030 0.287 0.071 0.681
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.061 1.048 0.058 1.002
(F=Craftsman) x (M = Exec., Middle, White C.) 0.117 2.473 0.123 2.613
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.733 17.124 0.742 17.372
(F=Executive) x (M = Exec.) 1.064 21.885 1.056 21.763
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) 0.280 4.448 0.282 4.480
(F=Middle Manager) x (M = Exec.) 0.406 5.824 0.431 6.195
(F=Middle Manager) x (M = White C.) 0.305 6.006 0.309 6.099
(F=White Collar) x (M = Farmer, Blue C.) -0.148 -2.956 -0.146 -2.924
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.377 4.461 0.378 4.483
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) -0.313 -8.051 -0.317 -8.178
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.189 -4.763 -0.185 -4.656
(F=Missing or deceased) x (M = Crafts., Exec.) -0.145 -1.411 -0.127 -1.242
(F=Missing or deceased) x (M = Missing or deceased) -0.361 -3.706 -0.327 -3.369
         
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) 0.128 3.319 0.135 3.504
(F=Public sector) x (M=Private sector) 0.002 0.037 0.005 0.111
Both parents in public sector 0.102 2.446 0.106 2.553
(F=Private sector) x (M=Unemployed) 0.132 4.507 0.150 5.158
(F=Public sector) x (M=Unemployed) 0.093 2.251 0.110 2.647
(F=Employed) x (M=Deceased or Missing) -0.325 -3.386 -0.326 -3.410
(F=Unemployed) x (M=Deceased or Missing) 0.069 0.899 0.077 1.017
Both parents unemployed 0.166 2.313 0.203 2.827
(F=Retired) x (M=Employed) 0.821 11.632 0.845 11.983
(F=Retired) x (M=Unemployed) 0.888 20.316 0.952 21.737
(F=Deceased or Missing) x (M=Employed) 0.302 2.721 0.299 2.712
(F=Deceased or Missing) x (M=Unemployed) 0.518 4.971 0.524 5.048
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  0.302 2.705 0.291 2.618
         
Number of brothers -0.002 -0.162 -0.010 -0.881
Number of sisters 0.001 0.099 -0.018 -1.479
         
Birth order      
Only child      
1rst 0.495 6.947 0.552 7.635
2nd 0.414 6.025 0.438 6.220
3rd 0.342 5.198 0.405 6.055
4th 0.243 3.702 0.252 3.689
5th and higher, Reference group 0.159 2.189 0.208 2.775
         
Pascal-p     9.488 54.716
         
Estimated Risk Aversion 1+α 0.176 3.343    
       
         
Cut1 1.161 8.268 7.394 41.054
Cut2 2.768 21.274 9.175 49.782
Cut3 3.483 26.605 9.917 53.203
Cut4 3.770 32.419 10.627 56.439
Cut5 4.029 34.918 10.947 57.891

 



Table 5(ii) : Log-mean-earnings equation 
 
       Model A Model B 
Log-mean-wages Coefficient Student-t Coefficient Student-t 
       
Constant 7.803 107.929 9.305 49.079
σ 0.522 153.618 0.497 87.246
       
Completed Education      
High school dropouts, Reference group      
Vocational degree 0.048 16.586 0.467 8.860
High school graduates (grade 12)  0.049 17.500 0.205 5.849
Two years of college (grade 14) 0.051 17.586 0.309 11.934
Four years of college (grade 16) 0.051 18.741 0.150 5.595
Graduate studies (grade 17 or more) 0.026 18.500 0.354 10.634
       
Parental Occupation      
(F=Farmer) x (M = Farmer) -0.010 -0.361 -0.020 -0.793
(F=Farmer) x (M = Other)  0.061 1.203 0.042 0.861
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.027 0.965 0.012 0.433
(F=Craftsman) x (M = Exec., Middle, White C.) 0.097 4.278 0.062 2.845
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.181 8.796 -0.006 -0.198
(F=Executive) x (M = Exec.) 0.262 11.351 -0.003 -0.073
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) 0.089 2.889 0.022 0.734
(F=Middle Manager) x (M = Exec.) 0.093 2.740 -0.013 -0.379
(F=Middle Manager) x (M = White C.) 0.107 4.324 0.032 1.262
(F=White Collar) x (M = Farmer, Blue C.) 0.012 0.494 0.049 2.094
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.049 1.166 -0.039 -0.937
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) -0.053 -2.886 0.022 1.069
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.026 -1.396 0.012 0.647
(F=Missing or deceased) x (M = Crafts., Exec.) 0.024 0.467 0.041 0.855
(F=Missing or deceased) x (M = Missing or deceased) -0.131 -2.762 -0.048 -1.041
        
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) -0.030 -1.604 -0.059 -3.253
(F=Public sector) x (M=Private sector) -0.046 -1.929 -0.049 -2.149
Both parents in public sector -0.038 -1.896 -0.061 -3.155
(F=Private sector) x (M=Unemployed) -0.041 -2.929 -0.070 -5.140
(F=Public sector) x (M=Unemployed) -0.078 -3.960 -0.098 -5.163
(F=Employed) x (M=Deceased or Missing) -0.100 -2.179 -0.032 -0.727
(F=Unemployed) x (M=Deceased or Missing) -0.096 -2.627 -0.105 -3.009
Both parents unemployed -0.143 -4.196 -0.165 -5.031
(F=Retired) x (M=Employed) 0.071 2.100 -0.113 -2.915
(F=Retired) x (M=Unemployed) 0.012 0.605 -0.177 -6.055
(F=Deceased or Missing) x (M=Employed) -0.072 -1.314 -0.122 -2.359
(F=Deceased or Missing) x (M=Unemployed) -0.110 -2.163 -0.200 -4.096
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.094 -1.725 -0.138 -2.672
       
Pascal-p 0.659 8.479 -1.595 -5.697
       
Estimated correlation ρ 0.340 33.683 -0.171 -2.672

Sample size 12,538 12,538 

Mean Log-Likelihood  -2.04099 -2.06049 

Vuong Test (Model A vs Model B) 8.3865 

Note: Vuong's model selection test for non-nested models statistics is (LR-K)/(n1/2ω) where LR is the log-likelihood ratio, n is the 
sample size, ω is the estimated standard error of the log-likelihood ratio and K=0 because of identical number of parameters. 
A significant positive (resp. negative) t-value indicates that model A is preferred to B (resp. B is preferred to A); non significant t-
value (positive or negative) indicates that no model is preferred to the other. T-value for significance at the 95%-level is around 1.96. 

 



Table 7 : Mean Wages for Various Parental Education Levels 
 
Table 7(i) : Ordered schooling choice 
 
 Parental Education: 

No qualification At Least High-School Degree 
School leaving choice (s) Coefficient Student-t Coefficient Student-t 

          
Parental occupation         
(F=Farmer) x (M = Farmer) -0.152 -0.935 0.466 2.346
(F=Farmer) x (M = Other)  -0.762 -2.220 0.728 3.636
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.170 0.735 0.497 3.353
(F=Craftsman) x (M = Exec., Middle, White C.) -0.321 -1.951 0.427 4.196
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.336 1.525 0.726 9.088
(F=Executive) x (M = Exec.) 0.343 0.821 0.982 11.937
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) -0.130 -0.460 0.516 4.246
(F=Middle Manager) x (M = Exec.) 0.046 0.142 0.610 5.003
(F=Middle Manager) x (M = White C.) 0.106 0.502 0.333 3.116
(F=White Collar) x (M = Farmer, Blue C.) -0.289 -1.885 -0.046 -0.297
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.712 1.431 0.318 2.321
(F=White Collar) x (M =White C.), Reference group       
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) -0.362 -2.978 -0.499 -3.254
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.334 -2.598 -0.169 -1.569
(F=Missing or deceased) x (M = Crafts., Exec.) -0.091 -0.315 -0.125 -0.523
(F=Missing or deceased) x (M = Missing or deceased) -0.348 -1.466 0.217 0.789
         
Parental employment       
Both parents in private sector, Reference group       
(F=Private sector) x (M=Public sector) 0.116 0.738 0.143 2.007
(F=Public sector) x (M=Private sector) -0.242 -1.071 0.000 -0.004
Both parents in public sector 0.002 0.008 0.201 2.770
(F=Private sector) x (M=Unemployed) 0.170 1.959 0.220 3.239
(F=Public sector) x (M=Unemployed) -0.102 -0.800 0.360 4.269
(F=Employed) x (M=Deceased or Missing) -0.403 -1.004 0.036 0.141
(F=Unemployed) x (M=Deceased or Missing) -0.013 -0.059 0.013 0.079
Both parents unemployed 0.283 2.032 0.417 1.333
(F=Retired) x (M=Employed) 0.542 2.392 0.898 6.544
(F=Retired) x (M=Unemployed) 0.792 7.132 0.962 9.137
(F=Deceased or Missing) x (M=Employed) 0.043 0.137 0.668 2.521
(F=Deceased or Missing) x (M=Unemployed) 0.266 0.996 1.255 4.663
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.091 -0.326 0.484 1.597
         
Number of brothers -0.019 -0.744 0.064 2.556
Number of sisters -0.029 -1.032 0.089 3.395
         
Birth order       
Only child 0.463 3.163 0.460 2.333
1rst 0.413 2.919 0.395 2.041
2nd 0.384 2.839 0.311 1.652
3rd 0.293 2.170 0.262 1.347
4th 0.367 2.596 0.419 1.781
5th and higher, Reference group        
         
Estimated Risk Aversion 1+α 0.910 24.149 0.202 2.418
        
         
Cut1 3.815 7.751 1.551 5.219
Cut2 4.792 13.217 2.761 9.688
Cut3 6.005 14.253 3.506 12.368
Cut4 5.212 13.708 3.725 13.985
Cut5 5.423 12.351 4.010 15.242

 



Table 7(ii) : Log-mean-wages equation 
 
 Parental Education: 

No qualification At Least High-School Degree 
Log-mean-wages Coefficient Student-t Coefficient Student-t 
       
Constant 9.219 55.606 7.824 82.014
σ 0.250 42.407 0.334 65.431
       
Completed Education      
High school dropouts, Reference group      
Vocational degree 0.195 6.662 0.050 10.617
High school graduates (grade 12)  0.178 8.184 0.051 10.563
Two years of college (grade 14) 0.204 6.990 0.052 10.714
Four years of college (grade 16) 0.164 7.870 0.052 11.304
Graduate studies (grade 17 or more) 0.081 7.017 0.027 11.565
       
Parental Occupation      
(F=Farmer) x (M = Farmer) -0.040 -1.064 0.007 0.120
(F=Farmer) x (M = Other)  0.007 0.097 0.081 1.299
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.025 0.468 0.128 2.754
(F=Craftsman) x (M = Exec., Middle, White C.) 0.083 2.150 0.129 4.063
(F=Executive) x (M = Farmer, Craftsman, Middle) -0.023 -0.427 0.176 6.980
(F=Executive) x (M = Exec.) 0.151 1.527 0.219 8.477
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) -0.009 -0.138 0.119 3.117
(F=Middle Manager) x (M = Exec.) 0.239 3.204 0.129 3.397
(F=Middle Manager) x (M = White C.) 0.046 0.916 0.088 2.616
(F=White Collar) x (M = Farmer, Blue C.) 0.030 0.852 0.052 1.060
(F=White Collar) x (M = Craftsman, Exec., Middle) -0.037 -0.317 0.064 1.482
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) 0.033 1.152 -0.102 -2.144
(F=Blue Collar) x (M = Exec., Middle, White C.) 0.008 0.267 0.026 0.762
(F=Missing or deceased) x (M = Crafts., Exec.) 0.142 2.063 0.092 1.208
(F=Missing or deceased) x (M = Missing or deceased) 0.036 0.657 0.194 2.237
        
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) -0.029 -0.818 -0.012 -0.552
(F=Public sector) x (M=Private sector) -0.067 -1.315 -0.012 -0.411
Both parents in public sector -0.083 -1.775 -0.026 -1.173
(F=Private sector) x (M=Unemployed) -0.081 -4.159 0.032 1.514
(F=Public sector) x (M=Unemployed) -0.066 -2.290 0.004 0.155
(F=Employed) x (M=Deceased or Missing) 0.000 -0.004 -0.070 -0.871
(F=Unemployed) x (M=Deceased or Missing) -0.040 -0.800 -0.059 -1.133
Both parents unemployed -0.127 -4.068 -0.038 -0.388
(F=Retired) x (M=Employed) -0.025 -0.465 0.133 3.236
(F=Retired) x (M=Unemployed) -0.106 -3.809 0.083 2.730
(F=Deceased or Missing) x (M=Employed) -0.154 -2.034 -0.022 -0.265
(F=Deceased or Missing) x (M=Unemployed) -0.112 -1.806 0.022 0.260
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.093 -1.470 -0.127 -1.330
       
Pascal-p -0.786 -3.547 1.005 9.960
       
Estimated correlation ρ -0.188 -1.878 0.495 24.384

Sample size 1,508 2,848 

Mean Log-Likelihood  -1.29288 -1.59962 
 



Table 8 : Mean Earnings for Various Parental Education Levels 
 
Table 8(i) : Ordered schooling choice 
 
 Parental Education: 

No qualification At Least High-School Degree 
School leaving choice (s) Coefficient Student-t Coefficient Student-t 

          
Parental occupation         
(F=Farmer) x (M = Farmer) -0.160 -0.999 0.466 2.343
(F=Farmer) x (M = Other)  -0.743 -2.184 0.735 3.674
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.208 0.903 0.506 3.408
(F=Craftsman) x (M = Exec., Middle, White C.) -0.304 -1.860 0.432 4.235
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.320 1.455 0.730 9.077
(F=Executive) x (M = Exec.) 0.378 0.919 0.987 11.914
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) -0.063 -0.220 0.520 4.268
(F=Middle Manager) x (M = Exec.) 0.001 0.002 0.613 5.014
(F=Middle Manager) x (M = White C.) 0.128 0.609 0.333 3.107
(F=White Collar) x (M = Farmer, Blue C.) -0.281 -1.849 -0.044 -0.274
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.600 1.227 0.331 2.411
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) -0.362 -3.028 -0.471 -3.068
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.328 -2.580 -0.168 -1.552
(F=Missing or deceased) x (M = Crafts., Exec.) -0.133 -0.442 -0.136 -0.564
(F=Missing or deceased) x (M = Missing or deceased) -0.401 -1.679 0.221 0.799
         
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) 0.092 0.588 0.136 1.922
(F=Public sector) x (M=Private sector) -0.275 -1.228 -0.008 -0.089
Both parents in public sector -0.029 -0.144 0.197 2.731
(F=Private sector) x (M=Unemployed) 0.136 1.576 0.218 3.244
(F=Public sector) x (M=Unemployed) -0.131 -1.033 0.360 4.297
(F=Employed) x (M=Deceased or Missing) -0.366 -0.914 0.030 0.115
(F=Unemployed) x (M=Deceased or Missing) 0.002 0.012 0.008 0.051
Both parents unemployed 0.245 1.768 0.449 1.426
(F=Retired) x (M=Employed) 0.525 2.307 0.900 6.572
(F=Retired) x (M=Unemployed) 0.713 6.357 0.967 9.197
(F=Deceased or Missing) x (M=Employed) 0.082 0.248 0.679 2.559
(F=Deceased or Missing) x (M=Unemployed) 0.249 0.909 1.307 4.841
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.064 -0.228 0.514 1.686
         
Number of brothers -0.015 -0.579 0.054 2.065
Number of sisters 0.001 0.050 0.091 3.353
         
Birth order      
Only child 0.386 2.673 0.531 2.582
1rst 0.420 3.066 0.465 2.307
2nd 0.301 2.256 0.375 1.906
3rd 0.294 2.245 0.354 1.749
4th 0.339 2.474 0.500 2.049
5th and higher, Reference group        
         
Estimated Risk Aversion 1+α 0.189 0.873 0.129 1.534
       
         
Cut1 1.059 2.181 1.430 4.846
Cut2 2.606 6.582 2.717 9.689
Cut3 3.254 8.023 3.480 12.481
Cut4 3.389 10.571 3.753 14.140
Cut5 3.667 11.333 4.060 15.408

 



Table 8(ii) : Log-mean-earnings equation 
 
 Parental Education: 

No qualification At Least High-School Degree 
Log-mean-earnings Coefficient Student-t Coefficient Student-t 
       
Constant 8.032 36.792 7.597 49.491
σ 0.532 52.186 0.540 72.919
       
Completed Education      
High school dropouts, Reference group      
Vocational degree 0.049 4.058 0.046 11.244
High school graduates (grade 12)  0.049 4.384 0.047 11.167
Two years of college (grade 14) 0.051 4.331 0.049 11.302
Four years of college (grade 16) 0.049 4.861 0.049 12.125
Graduate studies (grade 17 or more) 0.025 5.020 0.025 12.450
       
Parental Occupation      
(F=Farmer) x (M = Farmer) -0.004 -0.055 0.082 0.816
(F=Farmer) x (M = Other)  0.152 0.939 0.238 2.355
(F=Craftsman) x (M = Farmer, Craftsman, Blue C.) 0.073 0.641 0.218 2.905
(F=Craftsman) x (M = Exec., Middle, White C.) 0.152 1.880 0.280 5.456
(F=Executive) x (M = Farmer, Craftsman, Middle) 0.036 0.328 0.257 6.354
(F=Executive) x (M = Exec.) 0.461 2.208 0.296 7.197
(F=Middle Manager) x (M = Farmer, Craftsman, Middle, Blue C.) 0.055 0.395 0.214 3.456
(F=Middle Manager) x (M = Exec.) 0.358 2.271 0.221 3.608
(F=Middle Manager) x (M = White C.) 0.218 2.064 0.157 2.890
(F=White Collar) x (M = Farmer, Blue C.) 0.091 1.222 0.130 1.657
(F=White Collar) x (M = Craftsman, Exec., Middle) 0.208 0.854 0.113 1.605
(F=White Collar) x (M =White C.), Reference group      
(F=Blue Collar) x (M = Farmer, Craftsman, Blue C.) 0.006 0.103 -0.124 -1.613
(F=Blue Collar) x (M = Exec., Middle, White C.) -0.008 -0.125 0.075 1.369
(F=Missing or deceased) x (M = Crafts., Exec.) 0.291 1.975 0.090 0.748
(F=Missing or deceased) x (M = Missing or deceased) 0.022 0.186 0.176 1.264
        
Parental employment      
Both parents in private sector, Reference group      
(F=Private sector) x (M=Public sector) -0.145 -1.908 -0.040 -1.124
(F=Public sector) x (M=Private sector) -0.369 -3.429 -0.050 -1.055
Both parents in public sector -0.126 -1.274 -0.030 -0.834
(F=Private sector) x (M=Unemployed) -0.166 -4.019 0.018 0.522
(F=Public sector) x (M=Unemployed) -0.213 -3.529 -0.014 -0.345
(F=Employed) x (M=Deceased or Missing) -0.069 -0.357 -0.018 -0.137
(F=Unemployed) x (M=Deceased or Missing) -0.161 -1.535 -0.106 -1.273
Both parents unemployed -0.235 -3.566 -0.131 -0.826
(F=Retired) x (M=Employed) -0.064 -0.579 0.130 1.958
(F=Retired) x (M=Unemployed) -0.161 -3.120 0.091 1.866
(F=Deceased or Missing) x (M=Employed) -0.274 -1.699 -0.025 -0.185
(F=Deceased or Missing) x (M=Unemployed) -0.252 -1.893 0.079 0.593
(F=Unemployed, retired or deceased) x (M=Deceased or Miss.)  -0.161 -1.198 -0.125 -0.816
       
Pascal-p 0.434 1.855 0.842 5.279
       
Estimated correlation ρ 0.281 8.634 0.420 23.071

Sample size 1,508 2,848 

Mean Log-Likelihood  -2.01820 -2.11142 

 



Figure 1: Wage distributions (in euros)
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