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Abstract

Access to antiretroviral (ARV) drugs in Sub-Saharan Africa has rapidly expanded - from fewer

than 10,000 people treated in 2000 to more than 9.7 million in 2012. To measure the impact of this

expansion, it is necessary to identify the behavioral response of individuals to drug access. This pa-

per combines geocoded information about the timing of introduction of ARVs in all Kenyan health

facilities with two waves of geocoded population surveys to estimate the impact of proximity to

an ARV provider on risky sexual behavior. Using a difference in differences strategy that matches

survey clusters geographically across waves, I find a relative increase in risky behavior as reflected in

pregnancy rates (increase of 82%) and self-reported recent sexual activity (increase of 40%) among

young women in areas in which ARVs were introduced between 2004 and 2008. The full impact of

ARV access on new infections is estimated through a simulation procedure that combines estimated

behavioral responses to ARVs with medical evidence regarding HIV transmission. An increase in

ARV drug access is predicted to reduce the rate of new infections despite the induced increase in

risk-taking.
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1 Introduction

The HIV epidemic has had an enormous impact on the well-being of millions of people in devel-

oping countries. High HIV prevalence rates are associated with falling life expectancy, substantial

reductions in human capital accumulation (Cavalcanti Ferreira and Pessoa (2003), Lorentzen et

al. (2008), Fortson (2011)), reduced intergenerational human capital transmission (Beegle et al.

(2008), Bell et al. (2004), Hunter and Williamson (2000)), and reduced economic growth (Cud-

dington and Hancock (1994), Corrigan et al. (2005)). The introduction and rapid expansion in

access to antiretroviral Drugs (ARVs), which can extend the lives of HIV positive individuals by

approximately ten years, is a substantial technological innovation that has changed the course of

the epidemic. While ARVs clearly benefit infected individuals and their dependents by delaying

the onset of symptoms and revitalize the workforces of many developing countries, ARV provision

also shapes future infection rates. Any estimation of the impact of ARVs on future HIV infections

fundamentally depends on individual behavioral responses to treatment availability. The direction

of this response is theoretically ambiguous because while the cost of infection has gone down, per-

ceptions of the likelihood of infection could increase or decrease depending on beliefs about the

impact of ARVs on transmission probabilities. As these beliefs cannot be observed directly, the

behavioral response to ARV access must be measured empirically.

This paper uses an original dataset linking individual behavior from two waves of Demographic

and Health Surveys (DHS) with a record of the roll-out of ARVs in Kenya to estimate how individual

risk-taking responds to ARV access. Using a difference in differences framework with geographically

identified survey clusters matched across rounds, I estimate the response to be an 82 percent increase

in pregnancies and a 40 percent increase in self-reported risky sexual behavior in the previous 4

weeks. As resulting new infections cannot be empirically identified directly, this paper combines

these estimates of the behavioral response to ARV access with medical evidence about a reduction in

transmission probabilities for those taking ARVs to simulate the impact of ARV introduction on new

infection rates. A sufficiently high level of ARV provision can outweigh even this substantial increase

in risk-taking, even with a conservative estimate of the reduction in transmission probability.

A simple theoretical framework demonstrates that the direction of the change in risk-taking in

response to ARV access is ambiguous. On the one hand, models of behavioral disinhibition predict
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that when individuals are faced with an exogenous decrease in the riskiness associated with an

activity over which they have some control, they may take on additional risk (e.g. Peltzman (1975)).

In the case of ARV access, individuals who learn that treatment will be available may engage in

more risky behavior. This constitutes a specific example of moral hazard associated with access

to treatment, which implies that individuals with greater expected access to ARVs would be more

likely to risk HIV infection than those who do not anticipate that treatment would be available. On

the other hand, ARV access also changes both the true and the perceived probability of becoming

infected. While ARV provision means more infected individuals are alive and presumably in the pool

of potential sexual partners (Lakdawalla et al. (2006)), the medical literature has also demonstrated

that these treated individuals have lower transmission probabilities. Perceptions of this can differ

widely as some believe that there is no reduction in transmission probability, and others believe

that the reduction is complete. This belief determines the direction of the change in the likelihood

of becoming infected when ARVs are available.

Estimating the impact of access to ARVs on risk-taking presents a few key challenges that

need to be addressed in order to obtain credible estimates. The first challenge to address is the

definition of access to ARVs. Self-reported measures of awareness of ARVs introduce endogenous

variation in individual characteristics. But proximity to an ARV facility provides an exogenous

source of variation in treatment access.1 Any measure of access based on proximity will inevitably

incorporate some misclassification. However, proximity can be thought of as an instrument for

access to information about treatment availability, although the first stage cannot be estimated

with these data. I exploit detailed geographic information and use the location of respondents

relative to health facilities providing ARVs as a proxy for access to treatment. Two measures of

proximity are used. First, distance to the nearest facility defines proximity. The primary analysis

uses a threshold of 8 kilometers (5 miles) to maximize power, although the results are robust to

alternative thresholds. Alternatively, access is defined as being within the same administrative

geographic division as a health facility that provides ARVs.2

The second challenge is to define a reasonable comparison group to serve as a counterfactual for

1In this context, an experiment may not be appropriate as informing people about the presence of ARVs in order
to measure whether this encourages additional risk-taking would raise substantial ethical concerns.

2A division is the smallest administrative unit in Kenya, with an average size of 2181 km2. The average size of
divisions that are not excluded and contain at least 2 DHS clusters is 2007 km2
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those with access. I use a difference in differences identification strategy with geographic matching

to deal with unobserved time-invariant differences across areas. As different villages were surveyed

in each wave of the DHS, I use location to match observations across rounds. In the main specifi-

cation, I match clusters of observations from each wave with those from the nearest clusters from

the other wave. With multiple matches, this presents a reasonable counterfactual with which to

estimate the treatment effect. This will be explained in more detail in Section 4. A simpler speci-

fication is also presented that compares within administrative divisions, using division fixed effects

to address time-invariant unobserved differences.

The third challenge is that endogenous placement of ARV facilities raises concerns about omit-

ted variables. Based on policy documents from the Kenyan Ministry of Health, I control explic-

itly for various factors that were used in targeting facilities for ARV introduction, including HIV

rates, urban-rural status, and proximity to other health facilities. Difference in difference estima-

tion addresses time-invariant differences across areas, but it relies on the assumption that in the

counterfactual world without ARVs, trends in the control and treatment areas would have been

comparable. I use a historical birth register to show that trends in pregnancy rates in treated and

control areas were parallel for two decades before ARVs were introduced.

The fourth challenge to be addressed is that, while the outcome of interest in this study is

sexual risk-taking, sexual behavior is notoriously misreported (e.g. Jamison and Karlan (2011),

Minnis et al. (2009)). To address this, I rely primarily on pregnancy as a proxy for unprotected

sexual activity. Pregnancy is a particularly appropriate proxy in this country for a few reasons.

First, unlike in many developed countries, in Kenya, as in most of Sub-Saharan Africa, HIV is

a generalized epidemic, predominantly spread through heterosexual sex. Second, while abortion

exists, it is illegal, and therefore relatively less common. Indeed, the use of pregnancy as a marker

of unprotected sex is a commonly used strategy (e.g. Duflo et al. (2011), Dupas (2011)). Still, I

will also report impacts on self-reported recent sexual activity.

I estimate a statistically significant relative increase in pregnancy and self-reported sexual ac-

tivity in areas where ARVs were introduced among women aged 15-18. The point estimate of

the treatment effect on pregnancies is 6.56 percentage points, or an increase of approximately 82

percent relative to the fertility rate in control areas. The impact on sexual activity in the previous

four weeks is estimated to be a 5.72 percentage point increase or a change of 40 percent. I focus
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predominantly on this young demographic as they are the least likely to be in stable relationships,

and therefore the most likely to change their willingness to have unprotected sex in response to

changes in the threat of HIV infection. This result is consistent across different age and distance

thresholds.

A final concern to address is the extent to which alternative mechanisms could explain the ob-

served relationship between ARV access and fertility. In particular, a change in fertility preferences

from an increase in life expectancy could generate the observed changes in pregnancy. However,

if this were the case, we would expect to also see changes in fertility among married women, yet

there is no evidence of a change in behavior among those who are married and no changes in other

measures of fertility preferences or access to family planning. Another alternative mechanism relies

on an increase in HIV testing that facilitates sero-sorting, namely matching among individuals with

the same HIV infection status. I show that the results hold for those who have not been tested and

that the size of the population that could sero-sort is sufficiently small that this cannot drive the

primary empirical results.

It is not currently possible to empirically estimate the impact of ARV provision on new HIV

infections with a purely quasi-experimental approach for reasons related to the biology of HIV

transmission and infection. First, the full change in new infections will not be realized imme-

diately, and it is therefore too soon after the introduction of ARVs to measure the full impact.

Second, estimating the impact on new infections would require distinguishing between new and

old infections. As ARVs keep those with HIV alive longer, there will be a mechanical relationship

between their introduction and the prevalence of HIV in the population, even if there is no impact

on new infections. Yet distinguishing between new and old infections is infeasible.

A simulation, incorporating both medical evidence and the behavioral estimates of this paper

can provide a reliable prediction of the impact of ARVs on new infection rates. It combines a range

of estimates of the reduction in transmission probabilities found in the medical literature with a

substantial increase in risk-taking as drugs are made available.3 I find that even a conservative

estimate of the reduction in transmission probabilities can outweigh the effects of a large increase

3Previous simulations undertook a similar exercise, but without estimates of either the reduction in transmission
rates or of a change in behavior, they were somewhat inconclusive, although the authors suggested that an increase
in risky behavior had a significant chance of outweighing the reduction in transmission probabilities (e.g.: Blower et
al. (2000), Law et al. (2001)).
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in risk-taking if a sufficient fraction of those who are positive are treated, predicting reductions in

HIV infection from an expansion in ARV access.

This paper provides a test of the theory of risk homeostasis (Peltzman (1975)), which posits

that individuals may respond to a decrease in the riskiness of an action by increasing their choice

of that action. This risk offset hypothesis is similar to theories of behavioral disinhibition due to

changes in risk, to theories of risk compensation4 mentioned in the public health literature, and

moral hazard associated with treatment access. Previous empirical work has found evidence for risk

homeostasis in the context of drivers’ response to auto safety innovations (Winston et al. (2006)).

However, in the context of HIV risk-taking, empirical tests of theories of risk offsetting have

found surprisingly little supporting evidence. For example, studies have found no expected re-

sponses in risk-taking from information about male circumcision and HIV risk (Godlonton et al.

(2011), Wilson et al. (2012)).5 Estimates of the behavioral response to HIV risk generally have

found small or no impacts on sexual behavior (Oster (2012)) or fertility (Fortson (2011), Juhn et

al. (2008), Kalemli-Ozcan and Turan (2011)), although Young (2005) and Young (2007) do find a

reduction in child-bearing associated with HIV prevalence.

A few recent papers have explored the impact of antiretroviral drugs on risk-taking with mixed

results. Two studies in the US use variation in behavior among gay men before and after ARVs

became available in the US, both finding an increase in risk-taking after their introduction (Me-

choulan (2007), Papageorge (2012)). In Sub-Saharan Africa, where the overall HIV rate is higher,

life-expectancy is lower, and access is still limited, ARVs may affect a wider range of outcomes with

greater policy implications. In Malawi, Baranov et al. (2012) use a method similar to this paper,

but rely on measures of risk-taking largely determined before ARVs became available, and they

find no impact using the entire sample. This paper focuses on recent behavior among those who

could change their actions (young women) resulting in different findings. de Walque et al. (2012)

study the impacts of beliefs about ARV effectiveness on risk-taking and find a behavioral response,

but relying on self-reported beliefs about ARVs introduces concerns about endogeneity.

Although other papers have estimated the impact of ARV access on those who are HIV positive

4This term is commonly used but should not be confused with risk compensation in the labor economics literature
referring to increased wages paid to employees asked to undertake greater risks.

5Male circumcision is associated with a dramatic reduction in the risk of HIV infection (Auvert et al. (2005),
Bailey et al. (2007), Gray et al. (2007)).
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(Bor (2012), Lakdawalla et al. (2006), Thirumurthy et al. (2008), Thirumurthy et al. (2012)), and

the impacts on other outcomes including employment (McLaren (2012)), mortality risk-perceptions

and productivity (Baranov et al. (2012)), human capital investments (Baranov and Kohler (2012)),

child health (Lucas and Wilson (n.d.)), and HIV testing (Wilson (2011)), this paper presents

the first causally identified estimates of the impact of ARVs on risk-taking in a context with a

generalized HIV epidemic, and this is the behavioral outcome that will determine the course of the

epidemic.

This paper proceeds as follows. In section 2, I outline a theoretical framework to formalize

the intuition driving the empirical estimation and to demonstrate how the empirical estimates will

drive the final simulation. Section 4 describes the data and the context in which it was collected,

and the empirical methods are outlined in section 5. Section 5 discusses the main results, and

in section 6 I simulate the rate of new infections as a function of the level of ARV distribution,

incorporating both mechanical impacts from the medical literature and the behavioral responses

estimated in section 5. I conclude in section 7.

2 Theoretical Framework

The theoretical framework presented in this paper builds on the behavior change literature ap-

plied to responses to information about HIV. In an early model, Kremer (1996) argues that high

HIV prevalence may dissuade those who are low-risk and least-likely to be infected from partici-

pating in sexual activity at all while causing those who are less cautious to take more risks because

of the low probability of remaining negative. This can generate multiple equilibria at different

risk levels. More recently, Gong (2011) shows that HIV testing changes behavior differentially

for individuals with different priors about their own status, finding support in data from an early

randomized offering of HIV testing in East Africa. Kerwin (2012) constructs a new model that

rationalizes a type of fatalism based on previous risk-taking that can generate non-monotonic re-

sponses to changes in risk. This model helps to explain a pattern observed in Malawi in which

individuals sufficiently overestimate the likelihood that they are currently infected, and stop taking

precautions (e.g. Kaler (2003)).

In the framework developed in this paper, individuals from an infinite population of agents of
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size 1 choose whether or not to have unprotected sex by weighing the individual-specific benefit

from unprotected sex against the expected costs of HIV infection. Access to treatment can change

perceptions about both the likelihood of infection and the cost of becoming infected.6

The rate of new infections among those previously uninfected, I, is equal to the probability of

infection conditional on engaging in unprotected sex, p, multiplied by the proportion of the unin-

fected population that chooses to do so, A1. Treatment availability directly affects p by changing

the pool of potential partners and their infectivity and indirectly affects both p and A1 through a

behavioral channel.

Individuals can be categorized into three types: 1) Type 1 is HIV negative, 2) Type 2 is HIV

positive, without treatment, and 3) Type 3 is HIV positive, with treatment.

I make the following assumptions throughout:

• Each individual has full information about his or her own status. This assumption is included

to make the model tractable and to focus on aspects which can be addressed in the empirics.

The focus of the analysis is young women, who are likely to accurately perceive that it is

unlikely that they are currently HIV positive. This population is old enough that infection

from birth is nearly impossible, yet they are young enough that they have not or only recently

began having sex. Up until that point, the likelihood of infection was approximately zero,

although it could have recently changed. Throughout this section, the impact of weakening

the assumption of full information about own status will be directly addressed.

• Each individual knows the distribution of other types among potential sexual partners, but

does not observe the status of any particular potential partner.

Each individual chooses whether to have unprotected sex based on an individual-specific

utility from unprotected sex (incorporating everything including social pressure and desire for

children, etc.). Those who are HIV negative also consider the likelihood of becoming infected and

the associated utility cost of infection.

6For simplicity, I assume that individuals who have access to ARVs know that they have access and that those who
do not do not anticipate future access. This is plausible if proximity brings with it information about the existence
of ARVs. I discuss the empirical implications of this assumption in section 3.
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Type 1: Formally, an uninfected individual will choose to have unprotected sex if:

θi + (1 − p) · u− + p · u+ > u− (1)

where u− represents the continuation value of staying negative, u+ represents the continuation

value of being positive, and p represents the probability of infection from unprotected sex. θi is an

individual-specific taste parameter, distributed with cdf, Fθ, which encompasses all non-HIV-related

costs or benefits of unprotected sex relative to the alternative. The alternative can be abstinence

or protected sex.7 To be clear, this parameter can also be negative. Rewriting inequality 1 as

θi > p · (u− − u+), it follows that the proportion of the population that is negative (Type 1) that

chooses to have unprotected sex can be written as:

A1 = 1 − Fθ(p · (u− − u+)) (2)

Note that ARV availability may change two components of the above equation. First, it reduces

the relative cost of becoming infected, u−−u+, by extending the HIV positive life expectancy. This

alone would lead to an increase in risk-taking among individuals of Type 1. However, ARV access

can also affect p by changing the population of potential sexual partners. The direction of this

effect is ambiguous.

If individuals do not know their HIV status, then the impact of ARV access will be dampened,

but the sign will remain the same. If an individual believes that the probability he or she is HIV

positive is π, then inequality 1 can be rewritten as

θi + (1 − π) · [(1 − p) · u− + p · u+] + π · u+ > (1 − π) · u− + π · u+ (3)

Although this changes the threshold of θi over which an individual chooses to have sex, it does not

change the direction of the effect of ARV access via the probability of infection from sex or the cost

of infection. If, however, drugs change whether people get tested for HIV, then this raises a further

complication which is addressed later in the paper.

7A number of papers have found evidence of a higher willingness to pay for unprotected sex among those who
visit sex workers (e..g.: Gertler et al. (2005), Rao et al. (2003), and Robinson and Yeh (2011)).
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Types 2 and 3: Those who are already HIV positive do not risk changing their HIV status,

and thus the only parameter in their utility optimization is the individual-specific utility from un-

protected sex.8 Altruism, morbidity, fatalism, desire for children, or any other channel through

which treatment changes the utility from unprotected sex for those who are positive can be in-

corporated into the model by allowing this taste parameter for Types 2 and 3 to be drawn from

different distributions.

Thus, an individual of Type 2 (HIV positive, not on treatment) will choose to have unprotected

sex if γi > 0, and an individual of Type 3 (HIV positive, on treatment) will choose to have

unprotected sex if ωi > 0, where γi and ωi, are individual-specific taste parameters distributed

with cdfs, Fγ and Fω, respectively. These parameters can be positive or negative, incorporating

any utility gains or losses from unprotected sex.

It follows that the proportion of the population that is positive and not on ARVs (Type 2) that

chooses to have unprotected sex can be represented as

A2 = 1 − Fγ(0) (4)

and similarly, the proportion of the population that is positive and on ARVs (Type 3) that chooses

to have unprotected sex can be represented as:

A3 = 1 − Fω(0) (5)

The assumption that those of Types 2 and 3 will not change their behavior in response to

treatment access of others depends on the claim that while HIV positive individuals bear a utility

cost from the possibility of infecting someone who is negative (i.e.: they are altruistic), altruism

will have only limited behavior-change consequences. This assumption depends critically on the

marginal changes in the probability that one’s sexual partner is negative. Where prevalence rates

in Kenya are somewhere between 5 and 15 percent, the probability of a heterogeneous match for

someone who is HIV positive (i.e.: an HIV negative partner) is much higher than the probability of

8Those who are HIV positive do risk re-infection from having sex with another person who is HIV positive. This
can moderately increase the speed of the progression of HIV into full-blown AIDS. However, this can credibly be
assumed to be negligible with no loss to the applicability of the model.
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a heterogeneous match for someone who is HIV negative (i.e.: an HIV positive partner). Changes

in the composition of the pool of potential partners induced by the medical life extension of ARVs

is therefore proportionally small for those who are positive and proportionally large for those who

are negative. Further, supposing that those who are positive are very likely to draw a negative sex

partner, the altruistic calculation of the cost of infecting someone on the basis of ARV availability

is second order for those who are positive (who naturally discount costs for others relative to own

benefits) where it is arguably quite substantial for those who are negative.

Another concern with this formulation is that many do not know their status.9 Again, I expect

this to have only a negligible effect overall. First, those of Type 3 necessarily know their status

as they are receiving treatment. If some Types 1 and 2 do not know their status, then this will

dampen any impact on behavior among those who are negative. As long as some of the Types 1

and 2 knows their status or the two types have different perceptions of the chance that they are

infected, then the behavioral response among those of Type 2 will be smaller than those of Type 1.

An increase in sexual activity among those who are positive and untreated will feedback, decreasing

the utility from unprotected sex among those of Type 1. Without full information, the impact of

treatment on behavior in the two types must go in the same direction. However, even if the two

types share identical beliefs, this will dampen, but not change the sign of any other impacts.

The probability of becoming infected from unprotected sex, p, depends on the proportion of each

type among potential sexual partners and the likelihood of transmission from each type. Denote by

Nj the size of the population of each type, because the transmission probabilities can be different

with these two groups.

Let q be the reduction in infectivity due to ARVs, and let q̂ by individuals’ beliefs about q.10

If individuals believe that ARVs fully eliminate the risk of transmission, then q̂ is 0. On the other

hand, if individuals are unaware of the reduction in infectivity, then q̂ = 1.11 For an individual of

Type 1, the likelihood of infection if their partner is of Type 2 is r and the likelihood of infection

if the partner is of Type 3 is r · q.

9Of those who tested positive in the 2008/2009 wave of the DHS in Kenya 29 percent had never been tested for
HIV previously, and so likely did not know their status.

10Based on the medical literature, q could be as small as 0.04 ((Cohen et al. (2011)) so the reduction in infectivity
from treatment could be quite large. However, individuals respond to their beliefs, q̂, which could be anywhere
between 0 and 1.

11In informal conversations with HIV clinic employees, this was a commonly held belief. Many expressed concern
that people who were HIV positive had become healthy and fat and were at risk of infecting others.
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The likelihood of infection from unprotected sex can therefore be written as:

p = r · A2N2 +A3N3q

A1N1 +A2N2 +A3N3
(6)

and by analogy, the perceived likelihood of infection is:

p̂ = r · A2N2 +A3N3q̂

A1N1 +A2N2 +A3N3
(7)

Changes in access to ARVs affect p by changing the relative sizes of the population of Types 2 and

3 and the proportion of those who are negative who engage (A1).

Let D represent the share of those who are positive who receive treatment, and let M be the

share of the population that was infected as of the beginning of the current period. Besides the

possibility of different behavioral parameters, γi and ωi as outlined above, individuals of type 2

and type 3 have different death rates (d2 and d3 respectively), as the primary function of ARVs is

to keep HIV positive individuals alive. Therefore the size of each population is:

N1 is fixed from the previous period.

N2 = M · (1 −D) · (1 − d2) (8)

N3 = M ·D · (1 − d3) (9)

and we know that d2 > d3. If treatment is unavailable then D = 0 and N3 = 0, and if everybody

who is positive receives treatment, then N2 = 0.

An increase in D decreases the cost of becoming infected (u− − u+), and it changes p̂, the

perceived likelihood of becoming infected. The sign of this is ambiguous and depends on other

parameters.

In particular, if q̂ = 0, then:

dp̂

dD
< 0 (10)

This is intuitive because every impact of drug provision on p moves it in the same direction. First,

with the elimination of infection of those on treatment, the size of the infectious population is
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necessarily smaller, reducing the likelihood of matching with someone who is infectious. Second, if

individuals respond to the reduction in risk from fewer positive matches or from the reduction in

the cost of infection, then A1 will increase as well, which will further reduce p.

On the other hand, if q̂ = 1, then the impact of drugs on the likelihood of infection is more

complicated. With no reduction in transmission probabilities but a reduction in the mortality

probability of those infected, there will be an increase in the size of the infectious population in the

pool of potential partners. This will increase p. On the other hand, if the reduction in the cost of

infection sufficiently increases A1 (the fraction of the negatives who choose to have sex), then this

could reduce p. Which effect will dominate cannot be determined theoretically because it depends

on the response to the perceived cost of infection. If the first effect dominates and p increases, then

the effect of drugs on A1 also becomes ambiguous.12.

While ARV availability unambiguously decreases the cost to the individual of infection, the

sign of the impact of ARV availability on the perceived probability of infection is ambiguous as is

the relative magnitude of the cost reduction to the positive or negative change in the perceived

probability of infection. Therefore the impact on the likelihood of those who are negative engaging

in unprotected sex is ambiguous. The empirical section will estimate this revealed decision.

The theoretical framework was set up in part to show how drugs change new infections directly

and through changes in behavior. As previously stated, the infection rate is:

I = A1 · p (11)

All parameters that contribute to the above equation can be taken from the existing medical

literature, with the exception of the behavioral response to treatment, which determines A1, and

indirectly, p. This response will be measured in the empirical analysis of this paper, and then this

estimated response will be used to predict the impact of drugs on new infections.

12If individuals do not know their own HIV status, then A2 will move in the same direction as A1, which will
reduce the magnitude of, but not change the sign of dp̂

dD
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3 Data and Context

Antiretroviral drugs were developed during the 1980s and became widely available in devel-

oped countries in the 1990s. Because of prohibitively high prices, they were almost completely

unavailable to residents of Sub-Saharan Africa until the last decade. In the early 2000s, a number

of agreements between developing countries and pharmaceutical companies reduced the prices of

ARVs for governments of developing countries. Since then, the price of ARVs paid for by these

governments has fallen from more than $10,000 per person per year to under $70 per person per

year. With funding from governments and international organizations, ARVs are provided free of

charge to eligible patients in Kenya and most other Sub-Saharan African countries.

As reported in Table 1, Kenya has a relatively high rate of HIV infection (6.3% in 2009), and

it has seen a large and rapid expansion in access to ARVs in the last decade. In the early stages

of the roll-out, the Ministry of Health and other associated government organizations outlined

plans to provide geographically dispersed access through capable pre-existing facilities. Although

initially only large hospitals were considered to have all the necessary staff and equipment to provide

treatment, the requirements for facilities to be designated as capable have been reduced. In 2004,

only 7 facilities distributed ARVs in Kenya but this increased substantially to 336 in 2008 (Figures

1a and 1b). Treatment is free for those who are HIV positive and eligible.13

Some locations were more likely than others to have ARVs introduced, and the empirical analysis

will address these. This includes urban areas and areas with high rates of HIV. Because distribution

happened through existing facilities, areas with large hospitals were more likely to distribute ARVs,

while areas without nearby health facilities were less likely. The DHS data used in this paper

provides the best existing estimates of regional HIV prevalence, and the Kenya Open Data Initiative

provides a record of the GPS locations of all health facilities currently in Kenya. This information

is included in the analysis to address potential endogeneity from location of ARV sources.

Information about ARV access comes from an original dataset constructed using administrative

records obtained from meetings with government and NGO officials in Kenya. The geographic

information comes from the Kenya Open Data Initiative,14 and the timing information comes from

13Eligibility was initially based on assessments of whether a person was expected to be able to adhere to the
medicine, and the progression of the disease. Now the primary metric for eligibility is the progression of the disease.
Initially a person was eligible with a CD4 count below 200, but the WHO has increased the threshold to 350.

14See opendata.go.ke
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reports provided by KEMSA, a procurement agency, and the National AIDS and STI Control

Program (NASCOP) of the Ministry of Health. This combined database of health facilities that

currently provide ARVs includes information for each facility on the year ARV distribution began

and the location of the facility.

I hand matched clinic information across data sources by the name and district of each facility.

The first instance in which a health facility appears in any records is used as the year in which

treatment became available.15 Table 1 shows the number of health facilities and the number of

individuals receiving treatment in each year.

The data on individual behaviors come from two waves of geocoded Demographic and Health

Surveys (DHS) from 2003 and 2008/2009, 16 which will be referred to throughout the paper as

Wave 1 and Wave 2 respectively. Kenya expanded treatment availability largely between 2006

and 2009, so these waves provide information from before and during the middle stages of the

expansion. Columns 3 and 4 of Table 1 shows the number of women and the number of clusters

in each survey. Each cluster contains an average of 18 households and 21 female respondents. The

analysis will focus on women ages 15-18 in order to look at a population that is most likely not to

be in stable partnerships. Those who are already married are less likely to change their behavior

in measurable ways.17 I also exclude Nairobi and other areas which were reported to have ARV

access in 2004 to mitigate concerns regarding the endogeneity of ARV access. Summary statistics

of relevant variables are reported for the sample used in the analysis in Table 2. For clarity, all

percentages are reported out of 100.

A few characteristics of the sample should be noted. First, a relatively small fraction of the

sample of young women is HIV positive, but treated areas have higher prevalence rates, which will

be addressed in the analysis. Nearly the entire sample in both rounds (between 97% and 100%)

in both treatment and comparison areas have heard of HIV, and approximately two thirds report

that they know someone who currently has or has died of AIDS. Testing increased between rounds

15In conversations with officials working on Monitoring and Evaluation of ARV distribution, I was not told of
any health facilities that stopped distributing drugs unless they were replaced by another organization in the same
location.

16Interviews in the second wave were conducted between November 2008 and March 2009.
17While those in stable relationships may change their behavior outside of marriage in response to changes in

HIV risk, this is more difficult to measure. I cannot determine paternity from the data, and only a small fraction of
respondents report having additional partners. Respondents are asked about STIs, but very few report infections or
symptoms.
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in both areas, with a somewhat larger increase in treatment areas, which is consistent with the

findings of Wilson (2011). Among both groups, only a very small fraction report STD symptoms

or multiple partnerships.

The DHS data contain responses to questions about childbearing and recent sexual activity.

There is extensive evidence of misreporting of sexual activity from direct survey questions (e.g.

Jamison and Karlan (2011), Minnis et al. (2009)). In this particular dataset, for example, 609

women reported that the age they first had sex was later than the age at which they first gave

birth, and of 2096 individuals in both waves who reported that they had never had sex, 24 tested

positive for HIV. All individuals in the sample are over age 15 and therefore very unlikely to have

been born with HIV, and this rate is well above the error rate of the set of tests used. Because of

these concerns about measurement error, childbearing is a commonly used measure of HIV risk-

taking (e.g. Duflo et al. (2011), Dupas (2011)). I follow this convention and use current pregnancy

as a preferred proxy for unprotected sex and show additional results using self-reported behavior

as the outcome variable.18 Results are also presented with self-reported unprotected sex in the last

four weeks as the outcome.

Throughout the analysis, I proxy for information about access to ARVs with the proximity to a

facility providing ARVs. A small fraction of the HIV negative population is aware of ARVs before

they are introduced in the area. For this group, proximity only marginally increases access by

reducing the cost of obtaining treatment. The bulk of the population has no previous information

about ARVs until they are first introduced at a nearby clinic. This change in awareness can hap-

pen through several channels, including deliberate information campaigns, posters, and billboards

announcing the availability of treatment.19

18Those who report having miscarried recently and would have been pregnant (based on the number of months
pregnant at the time of the miscarriage) if not for the miscarriage are coded as pregnant. Results do not change if
these are not coded as pregnant.

19Other individuals may learn about the presence of ARVs from those who have begun treatment either explicitly
via word of mouth, or indirectly by observing health improvements of peers who are rumored to be HIV positive.
These two channels of information could lead to the formation of different beliefs about HIV infections. In particular,
indirect observation could erroneously signal that a cure is available. In the 2006 Uganda DHS, 34% of women who
reported that they had heard of ARVs believed that they were a cure for HIV. As this belief is common, it is possible
that behavioral responses to proximity to treatment could be driven by an over-estimate of the benefit of ARVs to
those who are HIV positive. In this case, if individuals believe that ARVs are more effective than they are, they
might respond more than they would have with accurate information.
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4 Empirical Strategy

With two waves of population surveys combined with a record of the roll-out of treatment, the

estimation will rely on a difference in differences identification strategy, using multiple definitions

of access based on proximity to an ARV facility and methods of identifying the relevant comparison

groups across waves.

In all specifications, all observations are weighted using DHS sampling weights, unless otherwise

noted, and each specification includes controls for age, education, and district and division HIV

rates.20 Finally, each specification includes controls for urban-rural status, proximity to large and

small health facilities, and each of these interacted with wave 2 to allow different trends.

The basic equation I estimate is:

Yijt = β0 ∗ Treatj ∗Wave2t + β2 ∗Wave2t + γj +

n∑
k=3

βk ∗Xkijt + εijt (12)

where Yijt is the outcome, Treatj is a binary variable that represents whether the respondent is

located in an area in which ARVs were available before Wave 2, and γj is an area fixed effect. Xijt

is a vector of (n-3) individual-specific controls. Each wave surveys different villages, and therefore

the definition of an area j cannot be a village. Each specification will define area differently.

In the preferred specifications, Treatj is defined as being within 8 kilometers of a facility with

ARVs by 2008.21 Because the same villages were not sampled across waves, the relevant comparison

group across waves is not obvious. To address this, observations are matched across waves based

on their locations using GPS locations to identify precise comparisons and construct a fixed effect

analysis within pairs of neighboring survey clusters.

Each survey cluster in wave 2 is linked with the five closest survey clusters from wave 1.22 For

the analysis, each respondent from wave two is included five times and each observation from wave

1 is included as many times as it is matched. Any pair that is more than 100kms apart is dropped.

20This is constructed using the DHS sample as this is the standard source of information about HIV rates. Each
respondent is excluded from the estimate of the HIV prevalence in her area.

21Eight kilometers is chosen to maximize power as it is the closest distance to the median. This generates balance
between the treatment and control groups that maximizes the precision of the estimates. This distance (approximately
5 miles) is also a reasonable distance to walk for frequent medical care. For robustness, the analysis is repeated using
different distance cut-offs with nearly identical results.

22Because the locations of villages is jittered and some villages may be sampled twice, it is possible that some of
these matched pairs are truly taken from the same villages at two points in time.
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Using this expanded and matched sample, I estimate another difference in difference estimate

with matched-pair fixed effects. Each specification includes a fixed effect for each matched-cluster

pair. Each observation is additionally weighted by the minimum of the inverse of the distance and

1/8.23 Pairs of cluster with different treatment status are dropped in the primary specification,

but estimates including these as well are also presented, and do not generate noticeably different

results. Dropping the unmatched pairs is comparable to excluding boundaries between areas in

spatial analysis. The standard errors are clustered at the level of the survey cluster to correct for

the duplication. I also report standard errors corrected for two-dimensional clustering following

Cameron et al. (2011). One dimension is a cluster from Wave 1 with all observations from Wave

2 with which it is matched, and the other dimension is the opposite. The standard errors are

somewhat larger, but not substantially so. The coefficient of interest remains the interaction

between Wave2t and ARV Accessj .

In a simpler specification, Treatj is defined as residing within a division in which at least

one health facility provided ARVs by 2008. This specification includes division fixed effects and

standard errors clustered at the level of the division.24,25 While divisions can be large, this measure

of proximity may reflect reality in that individuals are likely to visit the center of their division

for other business, even if they do not live as close. Therefore it is logical that the relevant

proximity that would determine the spread of information about a new HIV treatment could be

within the same district. The geographic distribution of treated divisions is shown in Figure 2. One

weakness of this specification is that observations from divisions with clusters in only one round

do not contribute the estimates, so information is lost, which is why the matched specification is

preferred.

Robustness is verified using multiple age cut-offs, and results are also reported separately for

those married and unmarried. The theoretical framework suggests a change in behavior among

those who are HIV negative. The analysis that follows includes a very small fraction of respondents

who tested positive for HIV. The results are robust to excluding this group. All estimates include

23This weighting scheme is used in place of the inverse distance so as not to overweight extremely small distances.
Because of the jittered data, these distances are not likely to be precise at this level.

24During the time between waves, administrative boundaries have shifted. For consistency, I use current borders
and place observations within them using their GPS locations.

25Due to jittering, 11 clusters were placed outside of the borders of Kenya. These observations were manually
linked with the closest administrative division within the country so that they could be included in this analysis.
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controls for age, education, district and division HIV prevalence, urban-rural status, and proximity

to other health facilities, along with survey wave and location fixed effects as described.

The primary assumption to justify the difference in difference specification is that the trends

in the treatment and control areas would have been the same in the absence of treatment. Figure

4 plots pregnancy rates in treated and control areas (defined using the 8km distance threshold),

before 2003, based on the birth registry in the DHS data. While the levels are not the same, the

trends are clearly similar, and we cannot reject that the two curves are parallel.

5 Results

The main results are reported in Panel A of Table 3. Columns 1 and 2 present the results using

the specifications with matched clusters of observations. In Column 1, this estimation includes all

matches, and Column 2 excludes the pairs with different treatment status from the analysis. The

treatment effect is the coefficient on the interaction term, reported in the first row. This shows a

treatment effect of 6.7 percentage points. Column 3 presents the specification in which treatment

is defined as having a facility with ARVs in the same division, showing a treatment effect of 9.5

percentage points. In all three specifications, the coefficient of interest is positive and statistically

significantly different from zero.

Panels B and C of Table 3 repeat the same estimation, using whether the respondent reports that

she has had sex in the last 4 weeks as the outcome. In Panel C, the outcome is reporting having had

sex in the last 4 weeks and reporting having not used a condom with the most recent sexual partner.

In the first and second columns, the treatment effect is measured to be approximately 5 percentage

points. While sexual activity would need to change by a larger magnitude to generate the observed

changes in pregnancy rates, the lower estimated treatment effects could reflect attenuation from

noise resulting from misreporting. In the third column, the coefficient of interest is insignificant, but

the point estimate and standard error are both large, so a substantial increase cannot be rejected.

5.1 Fertility preferences

Changes in pregnancy rates could also reflect differences in fertility preferences, questioning

the applicability of the proposed theory of risk-taking to explain the observed results. Panel A of
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Table 4 estimates the impact on other measures of fertility preferences or access to family planning,

using the matched specification with only pairs with similar treatment status (Estimation Strategy

3). Column 1 shows the impact on having been visited by a family planning worker as a test of

whether the introduction of ARVs also brought changes in the provision of broader reproductive

health services. This coefficient is negative, small, and insignificant. The second column estimates

the impact on the stated ideal number of children. Treatment areas - which were observed to have

had relatively higher conditional fertility rates - reported lower numbers of ideal children. Columns

3 and 4 find no impacts on the use of birth control, conditional and not conditional on having had

sex respectively.

Another way to test whether the impacts on pregnancy reflect changes in general fertility pref-

erences is to look at which segment of the population changes their behavior. If ARVs changed

fertility preferences, then we would expect to see a change in fertility among those who are married

at least as strongly as among those who are not married. Panel B of Table 4 repeats the main anal-

ysis using different subgroups. Column 1 includes married women, and column 2 includes women

who have been married for at least 1 year. Column 3 includes women who report that they are

cohabiting. In each of these three specifications, the estimated treatment effect is either negative

or extremely small and insignificant. However, Column 4 includes those who are unmarried and

over 25 (in order to have a completely distinct population from those in the previous estimates),

including those who never married or are divorced or widowed. In this specification, the treatment

effect estimated is 4.6 percentage points, similar to that estimated for young women. Selecting on

these subgroups is problematic because the criteria for selection are potentially endogenous and

could themselves be responses to ARV access. Still, these estimates suggest that the measured

differences are less likely to be a reflection of changes in fertility preferences, and they may re-

flect differences in risk preferences with regards to unprotected sex among populations with the

possibility for marginal behavior changes.

Columns 1 and 2 of Appendix Table A1 present estimates of the impact on unwanted pregnan-

cies, as these are more likely to reflect changes in risk-taking rather than fertility preferences. I code

pregnancies as unwanted if the respondent reports that she did not want to become pregnant or did

not want to become pregnant at that time. For those who have recently miscarried but would have

been pregnant otherwise, respondents are not asked whether they wanted the pregnancy. I code
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all pregnancies resulting in miscarriage as unwanted, and the results are nearly identical if these

are all coded as wanted. Rates of reported unwanted pregnancies are substantially lower than for

all pregnancies, and so the estimated impacts are correspondingly smaller, but still positive and

substantial.

5.2 HIV testing

As discussed earlier, Wilson (2011) demonstrates that demand for HIV testing is likely to

increase with ARV access. This increase in testing could facilitate partner sorting based on HIV

status or sero-sorting. This presents an alternative channel by which ARV access increases testing

which facilitates sero-sorting, which increases pregnancies among those who know their partners

status and thus are not putting themselves at risk of HIV infection. While this could be part of

the story, there is evidence that it is not the entire story. First, in this sample, even in the second

wave, only 27 percent of those in areas with ARVs had been tested, while 21 percent of those in

control areas had been tested. Of those who were tested in treatment areas in wave 2, only one

third (or 9 percent of the entire group) had been tested more than one year before the survey.

Columns 3 and 4 of Appendix Table A1 repeat the main analysis excluding those who had been

tested at least one year before the survey, and the results remain the same. While sero-sorting

may marginally contribute to the increase in pregnancy among young women, it cannot explain the

observed relative increase in risky behavior in areas that received ARVs.

HIV testing could also change beliefs about own HIV status, as many individuals overestimate

the probability that they are infected. If this is the case, as ARV access encourages testing more

people will believe that they are HIV negative. Following Gong (2011), this would predict a

reduction in risk-taking as those who believe they are likely to be positive and find they are

negative were demonstrated to respond by taking fewer risks, and so this cannot be driving the

results. On the other hand, if this also changes beliefs about the prevalence of HIV in the general

population, this becomes more complicated. Without detailed information about beliefs, this is

beyond the scope of this paper.26

The threshold of 8 kilometers was chosen because it is near the median in order to maximize

power, but - like any other distance cutoff - it is somewhat arbitrary. Panel A of Table A2 allows

26For more information about changes in beliefs as a result of ARV access, see Baranov et al. (2012).
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the distance threshold to vary from 8-12 kilometers. Each column repeats the analysis of the

first column of Panel A of Table 3 with pregnancy as the outcome using a different distance cut-

off. The results are remarkably consistent across these specifications. The sample sizes varies

somewhat because of the restriction that matched pairs have the same treatment status. Some

misclassification is inevitable as any distance cut-off will necessarily put some individuals who

know about treatment outside of the circle while including others who do not know about it within

it. However, this demonstrates that the particular choice of the threshold does not determine the

estimated results.

The age cut-off can also be varied to show that there are consistent results using alternative

age thresholds. While the main cut-off restricts the analysis to teenagers, a demographic that is of

particular interest in research on changes in fertility behavior, others are possible. For example, the

majority of those aged 21 and under do not have children, while those above are more likely than

not to have had a child. The majority of those 22 and under do not report that they are cohabiting

and the majority of those 23 and under do not report that they are married. Panel B of Table A2

repeats the analysis from Column 3 of Table 3 varying the age cutoff from 19 to 24, and Panel C of

Table A2 repeats the analysis from Column 3 of Panel A of Table 3 using the administrative area

to determine treatment status. In both tables, the results are reasonably consistent, although the

estimated treatment effect declines as the threshold increases. The increase in age increases the

proportion of the sample that is already married, cohabiting, or otherwise in a stable partnership,

and thus unlikely to respond to changes in risk of unprotected sex, and this is likely to generate

the decline in the estimated effect.

6 Simulation

The introduction of antiretroviral drugs could influence the spread of HIV both through chang-

ing behavior and through biological channels - reducing infectiousness of those on treatment and

keeping more people who are HIV positive alive. This is formalized in Section 2, demonstrating

how the sign of the impact of ARVs on new infections is ambiguous and depends on behavior.

The empirical analysis above showed a relative increase in risk-taking among those with access

to antiretroviral treatment. This can directly increase the rate of new infections by increasing those
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who put themselves at risk. However, it also can indirectly decrease the rate of new infections as

the increase in A1 means that a larger fraction of the pool of potential sexual partners is HIV

negative, decreasing the risk of infection for those who engage, p. This is formally demonstrated

by Kremer (1996).

In addition, the reduction in transmission risk from treatment, q, can outweigh a substantial

change in behavior among those who are negative so that the rate of new infections will decline

with treatment. It bears mentioning that beyond the impact on new infections, ARV access has

large and important welfare impacts for those who are infected and receive treatment.

In practice, the effect of D (the level of ARV provision) on behavior is likely to be non-linear

with substantially larger effects on behavior when the marginal person put on treatment is sicker.

The benefit to an individual who is HIV positive of being on treatment is high when he or she has

a low CD4 count, which means being close to AIDS onset and opportunistic infections. However,

especially given the toxicity and unpleasant side-effects, earlier treatment is not likely to provide

a significant additional benefit to the individual. Thus while access to treatment provided to

individuals with a CD4 count below 200 (which was previously the WHO recommended threshold)

can generate the observed difference in behavior, the behavioral response is not likely to grow as the

CD4 count threshold increases. However, the change in this threshold will change the probability

of infection as more infected individuals are put on treatment and present a lower transmission

probability.27

Based on the reasoning above, a low level of ARV access could change behavior but not lead to

a significant reduction in infectiousness, while a very high level in which treatment is available upon

diagnosis of HIV infection would reduce incidence of HIV. This is outlined in Over et al. (2006)

and Granich et al. (2009) who propose beginning treatment immediately after a positive HIV test.

This will be demonstrated via simulation. Recall

I = A1 ∗ p

27WHO changed the recommended CD4 count threshold to determine ARV eligibility from 200 to 350, however
most countries in Sub-Saharan Africa have not reached full coverage even with the lower threshold due to a lack of
supplies. Rwanda is one exception, reporting nearly 100 percent coverage of those eligible, and experimenting with
using 500 as a threshold for those in sero-discordant couples to reduce the likelihood of transmission to the uninfected
partner.
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where I is the rate of new infections, A1 is the fraction of the negative population that has unpro-

tected sex, and p is the likelihood of transmission conditional on unprotected sex.

This probability can be written as:

p = r ∗ A2N2 +A3N3q

A1N1 +A2N2 +A3N3

where Nj is the size of group j, Aj is the proportion of each group that has unprotected sex, r is

the transmission risk from sex with a Type 2 individual, and r ∗ q is the transmission risk from sex

with a Type 3 individual. The simulation will use available estimates of each of these parameters

to estimate the impact of drugs on new infections. For clarification, treatment changes A1, N2, and

N3. The assumptions used in the simulation are summarized in Table 5.

As described above, treatment changes behavior most at the low end, but would not be expected

to change dramatically as access is available to anyone with a sufficiently low CD4-count, while

the impact on transmission rates continues as treatment is provided to those based on higher CD4

thresholds. Based on Williams et al (2006), if the CD4 count threshold is set at 200, then 17% of

those who are HIV positive will receive treatment. This number climbs to 44% if the threshold is

350 and 67% if the threshold is 500. For simplicity, I assume that below 17%, treatment is given to

a fraction of those who need it and behavior changes for this fraction of the negative population.

Above this threshold, behavior change is constant, at the level estimated in the empirical analysis.

This assumed relationship between the fraction positive on treatment and the fraction negative

who have sex is demonstrated in Figure 5.

I simulate new infection rates at all levels of drug provision up to 67%. This is done using

10,000 individuals. First, HIV status is assigned, then some are assigned to treatment based on

the level of distribution. Death rates determine survival, and some choose to have unprotected sex.

Of those who choose to, they are matched randomly. Some become infected. This is repeated for

each percentage on treatment from 0-67% 500 times with and without behavior change, and with

q equal to 1, 0.74, 0.5 , and 0.04.

Figures 6 and 7 present the estimated infection rates. Figure 6a assumes that there is no be-

havioral response and no reduction in transmission, and clearly, there is nearly no difference in new

infection rates, except for a moderate increase explained by keeping more people who are infected
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alive. Figure 6b also presents estimates with no reduction in transmission, but with a change in

behavior. This presents a much larger increase in infection rates. Figure 7a presents infection rates

for different levels of treatment distribution if the reduction in transmission probability from ARVs

is substantial (q = 0.04). Here, there is a slight jump in infection rates when behavior changes (at

the CD4 count threshold of 200), but there is a substantial decline in infection rates that outweighs

this. Figure 7b uses q = 0.5 to show the impact of ARV provision if the reduction in transmission is

more modest. In this case, the increase in infection due to behavior change is outweighed only if a

sufficient fraction of the population is put on treatment. This suggests that provision of treatment

can decrease infection rates, but that overcoming a behavioral response depends on reaching a

sufficient threshold.

7 Conclusion

Previous models of the impacts of ARVs insufficiently acknowledged the importance of behavior

change in shaping HIV incidence. With the absence of evidence about the magnitude or sign of this

behavioral response, even the direction of the response could only be guessed. However, taking this

response seriously is necessary for credibly evaluating drug provision to inform developing country

governments and international donors as they weigh competing demands on tight budgets. This

paper fills two prominent holes in the existing literature on HIV treatment provision in Sub-Saharan

Africa: First, it provides the first causally identified estimates of the change in risky behavior due to

treatment access in the context of a generalized epidemic. Second, it shows how these estimates work

with existing medical evidence about the mechanical effects of ARVs to determine the predicted

impacts of treatment provision on new HIV infections.

Using an original dataset that combines administrative records of the roll-out of treatment

facilities in Kenya with two national population surveys, I estimate a substantial increase in risk-

taking in response to treatment access. Among young women, this demonstrates an increase in

pregnancies of 82% and an increase in self-reported sexual behavior of 40%. Identifying this response

is crucial to estimating the impact of ARVs on the course of the HIV epidemic. Incorporating the

behavioral response into a simulated model of the impact of different levels of ARV provision

demonstrates that treatment provision can reduce new infection rates, even with the substantial
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increase in risk-taking estimated in the empirical section of the paper.

Like any study with data from a single country, the question of generalizability remains. Future

work will apply the same method of analysis in Uganda and Rwanda, combining administrative

records of ARV distribution, which I have already collected, with recently released DHS data from

these countries. While these results diverge from previous studies in Sub-Saharan Africa that

do not find significant changes in risk-taking in response to information about HIV risk (e.g.:

Godlonton et al. (2011), Oster (2012), Wilson et al. (2012)), they match evidence of behavioral

responses to ARV provision among gay men in the US (Mechoulan (2007), Papageorge (2012)).

While previous changes in the risk environment were generated by variation in the likelihood of

infection, ARVs change the costs of infection. As the likelihood of infection from a single encounter

is low, perhaps the changes in probabilities are not easily understood or perceived, whereas a change

in life expectancy and the cost of infection is more salient.

While this paper provides some evidence of the extent to which risky sexual behavior responds

to changes in the cost of HIV infection, more work remains to be done to assess the generaliz-

ability of these results and variation in responses among different populations. Hopefully future

assessments of proposed policy changes regarding HIV treatment provision will acknowledge the

potential strength and importance of behavioral responses.
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8 Figures

Figure 1: ARV distribution sites in Kenya

(a) 2004 (b) 2009
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Figure 2: Treated divisions
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Figure 3: DHS clusters in Kenya, 2003, 2008/2009

Figure 4: Parallel trends: Pregnancy rates before 2003
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Figure 5: Simulation assumption of behavior change
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Figure 6: No reduction in transmission probability (q=1)

(a) No behavior change

(b) Behavior change
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Figure 7: Behavior change and reductions in transmission probability

(a) Reduction in transmission probability of 96% (q=0.04)

(b) Reduction in transmission probability of 50% (q=0.5)
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9 Tables

Table 1: Summary of ARV roll-out, HIV prevalence, and survey timing

Number Facilities HIV Prevalence DHS survey
Year with ARVs (WHO) Female Respondents Clusters

2003 1 7.5 8,195 400
2004 7 7.1
2005 153 6.8
2006 188 6.6
2007 263 6.4
2008 336 6.3

8,444 398
2009 392 6.3
2010 610
Note: Facilities counted as distinct only if in different locations.
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Table 2: Summary Statistics 1

2003 2008/2009

No ARVs in ARVs in No ARVs in ARVs in
8kms by 2008 8kms by 2008 8kms by 2008 8kms by 2008

HIV positive .014 .037 .01 .059
(.119) (.189) (.099) (.236)

Years of education 5.978 6.867 6.979 7.764
(2.853) (2.515) (2.751) (2.285)

Married .151 .062 .062 .082
(.358) (.241) (.241) (.275)

Heard of AIDS .966 .995 .979 .994
(.183) (.071) (.145) (.079)

Knows someone who has or died of AIDS .656 .669 .614 .72
(.476) (.471) (.487) (.449)

Ever been tested for AIDS .033 .054 .21 .282
(.179) (.225) (.408) (.451)

Ever had sex .358 .351 .296 .331
(.48) (.477) (.457) (.471)

Had sex in the last 4 weeks .144 .115 .066 .118
(.351) (.319) (.249) (.323)

Currently Pregnant/Miscarried .083 .04 .035 .047
(.276) (.195) (.185) (.212)

Current unwanted pregnancy/miscarriage .038 .024 .012 .035
(.19) (.153) (.108) (.184)

Ideal number of children 3.808 3.318 3.636 3.174
(2.449) (1.741) (1.927) (1.585)

Used any birth control method .034 .055 .032 .06
(.181) (.228) (.177) (.238)

Used any birth control if had sex .082 .141 .11 .18
(.275) (.349) (.314) (.385)

Has at least two sexual partners .009 .021 .008 .011
(.095) (.144) (.087) (.106)

Had any STD in last 12 months .002 .006 .003 .003
(.047) (.079) (.055) (.056)

Had STD symptoms in last 12 mos. .009 .014 .005 .017
(.096) (.118) (.074) (.129)

Note: Standard deviations in parentheses. Includes women ages 15-18. Excludes areas with ARVs before 2004.
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Table 3: Impacts of ARV access on pregnancy, self-reported sexual activity

(1) (2) (3)
Matched Same ART in

VARIABLES Treatment Status Matched Division

Panel A: ARV Access*Wave2 .064 *** .067 *** .095 ***
Currently Pregnant (.02) (.019) (.033)

[.033] [.033]
Observations 11,391 7,538 2,494

Clusters 621 583 207
Panel B: Sex in ARV Access*Wave2 .057 *** .057 *** .027
the last 4 weeks (.024) (.024) (.041)

[.042] [.042]
Observations 11,391 7,538 2,494

Clusters 621 583 207
Panel C: Unprotected ARV Access*Wave2 .048 ** .048 ** .03
sex in the last 4 weeks (.022) (.022) (.041)

[.037] [.037]
Observations 11,391 7,538 2,494

Clusters 621 583 207

Note: All estimates include controls for age and education, district and division HIV prevalences,
urban-rural status, the presence of large and small health facilities within 10kms, and each of these
location characteristics interacted with Wave 2. Columns 1 and 2 include pair fixed effects with
standard errors clustered at the level of the survey cluster. Two-way clustering adjusted standard
errors, following Cameron et al (2006) are reported in square brackets. All estimates are weighted
using DHS sampling weights. Estimates in columns 1 and 2 are additionally weighted by the DHS
sampling weights multiplied by the minimum of 1/8 and the inverse of the distance between the pair.
Column 3 includes division fixed effects and standard errors, clustered at the division level.
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Table 4: Impacts of ARV access on fertility preferences, pregnancy in alternative subsets

(1) (2) (3) (4)
Used any

Visited by Ideal number birth control, Used any
FP worker of children if had sex birth control

Panel A: ARV Access*Wave2 .007 -.207* .017 .009
Fertility Preferences (.011) (.123) (.057) (.019)

[.018] [.219] [.161] [.033]

Observations 7521 7538 2534 7538
Clusters 583 583 402 583

(1) (2) (3) (4)
Pregnant Pregnant Pregnant Pregnant

Panel B: ARV Access*Wave2 -.014 -.016 -.003 .059***
Alternate Subsets (.013) (.013) (.012) (.022)

[.021] [.021] [.021] [.04]

Observations 23343 22376 25523 6224
Clusters 620 620 620 561
Subset: Married one Unmarried

Married year or more Cohabiting Over25

Note: All estimates include controls for age and education, district and division HIV prevalences,
urban-rural status, the presence of large and small health facilities within 10kms, each of these
location characteristics interacted with Wave 2, and pair fixed effects. Standard errors in parentheses
are clustered at the level of the survey cluster. Two-way clustering adjusted standard errors,
following Cameron et al (2006) are reported in square brackets. All estimates are weighted using
DHS sampling weights multiplied by the minimum of 1/8 and the inverse of the distance between
the pair.
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Table 5: Simulation Assumptions

Parameter Value Notes

r (transmission probability) 0.23 (representing one year)
q (reduction in transmission 0.04, 0.5, 1 0.04 represents estimates from Cohen et al (2011)
probability with ARVs) 0.5 represents the lowest end of medical estimates

1 represents no reduction
d1 (death rate 0.027 Average mortality for 15-19 year-olds
among HIV negative) in Kenya between 2000 and 2005: World

Population Prospects: The 2010 Revision
UN Department of Economic and Social Affairs,
Population Division (2011)

d2 (death rate among 0.12
HIV positive, untreated)
d3(death rate among 0.06
HIV positive, treated)
A2 (proportion of positive 0.37 Fraction of HIV positive DHS respondents
untreated who have who reported having had sex in previous
unprotected sex) four weeks in untreated areas
A3 (proportion of positive 0.33 Fraction of HIV positive DHS respondents
and treated who have who reported having had sex in previous
unprotected sex) four weeks in treated areas
A1 without ARVs 0.11 Assuming: pregnancy lasts 9 months, individuals

have sex twice per week, the pregnancy rate when
drugs are not available is 0.6, the likelihood
of becoming pregnant from unprotected
sex once is 0.01:
A1 (without ARVs)= 0.06

1−(1−0.01)78 = 0.11

A1 with ARVs 0.11 With a pregnancy rate when drugs are available of 0.12:
A1 (with ARVs)= 0.06

1−(1−0.01)78 = 0.11
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10 Appendix

Table A1: Robustness Checks

(1) (2) (3) (4)
ART in Matched

ART in Matched Division Same Status
Division Same Status Pregnant Pregnant

VARIABLES Unwanted Preg Unwanted Preg (Untested) (Untested)

ARV Access*Wave2 0.0485** 0.0134 0.0785** 0.0589***
(0.0245) (0.0114) (0.0338) (0.0184)

Observations 2,494 7,538 2,367 7,100
R-squared 0.105 0.188 0.141 0.225
Clusters 207 583 207 579

Note: All estimates include controls for age and education, district and division
HIV prevalences, urban-rural status, the presence of large and small health facilities
within 10kms, and each of these location characteristics interacted with wave 2.
Columns 1 and 3 define treatment as an ARV provision facility in the same division,
and they include division fixed effects and standard errors, clustered at the division
level. Columns 2 and 4 define treatment by distance and include include pair fixed
effects with standard errors clustered at the level of the survey cluster. The dependent
variable in columns 1 and 2 is current unwanted pregnancy. Columns 3 and 4 restrict
the sample to those who have not been tested for HIV in the previous 12 months. All
estimates are weighted using DHS sampling weights. Estimates in columns 2 and 4
are additionally weighted by the DHS sampling weights multiplied by the minimum of
1/8 and the inverse of the distance between the pair.
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Table A2: Robustness: Impacts of ARV access on pregnancy, Alternative specifications

Panel A: Treatment defined as within fixed distance, Varying cutoff distance
(1) (2) (3) (4) (5) (6)

Cutoff: 6km Cutoff: 7km Cutoff: 8km Cutoff: 9km Cutoff: 10km Cutoff: 11km
ARV Access*Wave2 .06*** .054*** .064*** .055*** .061*** .066***

(.019) (.02) (.02) (.021) (.022) (.025)
[.032] [.033] [.033] [.034] [.036] [.041]

Observations 7,422 7,442 7,538 7,947 8,050 8,242
Clusters 588 585 583 589 585 576

Panel B: Treatment defined as within 8kms, Matched specification, Varying ages
(1) (2) (3) (4) (5) (6)

Under 18 Under 19 Under 20 Under 21 Under 22 Under 23
ARV Access*Wave2 .035** .064*** .055*** .049*** .036** .021

(.016) (.02) (.018) (.018) (.016) (.015)
[.027] [.033] [.029] [.03] [.026] [.026]

Observations 5,653 7,538 9,313 11,266 12,744 14,464
Clusters 561 583 602 612 615 617

Panel C: Treatment defined as within same division, Varying ages
(1) (2) (3) (4) (5) (6)

Under 18 Under 19 Under 20 Under 21 Under 22 Under 23
ARV Access*Wave2 .061** .095*** .105*** .083*** .073*** .064**

(.03) (.033) (.03) (.029) (.028) (.031)

Observations 1,867 2,494 3,077 3,728 4,205 4,766
Clusters 207 207 207 208 208 209

Note: In all specifications, the outcome is an indicator for whether the respondent is currently pregnant
All estimates include controls for age and education, district and division HIV prevalences
urban-rural status, the presence of large and small health facilities within 10kms, and each of these
location characteristics interacted with Wave 2. Panels A and B include pair fixed effects with
standard errors clustered at the level of the survey cluster. Two-way clustering adjusted standard
errors, following Cameron et al (2006) are reported in square brackets. Estimates in panels A and B
are weighted by DHS sampling weights multiplied by the minimum of 1/8 and the inverse of the distance
between the pair. Estimates in panel C are weighted by DHS sampling weights and include division fixed
effects and standard errors, clustered at the division level.
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