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Abstract
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1 Introduction

Instrumental variable (IV) approaches have been widely used in the literature of program eval-

uation due to its high internal validity. An influential framework for studying causality within

the IV framework was developed by Imbens and Angrist (1994) and Angrist, Imbens and Rubin

(1996) (hereafter IA and AIR, respectively). They show that allowing heterogeneous effects,

IV estimators point identify the local average treatment effect (LATE) for compliers, those

whose treatment status is affected by the instrument. A common criticism of their approach is

the focus on the effect for a subpopulation (e.g., Heckman, 1996; Robins and Greenland, 1996;

Deaton, 2010; Heckman and Urzua, 2010), and the instrument-specific interpretation of the

LATE stimulates recently growing literature on IV approaches in pursuit of external validity.

Point identification of the population treatment effects usually requires an instrument to be

strong enough to drive the probability of being treated from zero to one (e.g., Heckman, 2010),

which is hard to satisfy in practice. An alternative way relies on stable IV estimates revealed

empirically, which inspire the use of multiply instruments for the same causal relationship (e.g.,

Angrist and Fernandez-Val, 2010). In contrast with point identification, Manski (1990) pio-

neered partial identification of the population average treatment effect (ATE) under the mean

independence assumption of the instrument.

Our paper derives nonparametric sharp bounds for the population ATE by extending the

work of IA and AIR. There has been a growing literature on partial identification of the ATE

with IV methods since Manski (1990). One strand of this literature endeavors to improve

Manski’s bounds by assuming different versions of monotonicity of the outcome. Manski and

Pepper (2000) introduce the monotonicity of the treatment response (MTR) assumption and

the monotonicity of the treatment selection (MTS) assumption. Combining with the mean

independence assumption, Chiburis (2010a) derives the bounds under both MTR and MTS

assumptions without specifying the direction of the monotonicity a priori. Another strand of

the literature imposes structural models on the treatment or the outcome. Under the statistical

independence assumption of the instrument, Heckman and Vytlacil (2000) impose a threshold

crossing model with a separable error on the treatment. Focusing on a binary outcome, Shaikh

and Vytlacil (2011) impose threshold crossing models on both the treatment and the outcome,

while Chiburis (2010b) considers a threshold crossing model on the outcome. Instead of assum-

ing the threshold crossing model with separable errors, Chesher (2010) imposes a non-separable

structural model on the outcome and assumes the structural function is weakly increasing in

the non-separable error.

Comparison of identification power among these assumptions are also discussed in the ex-

isting literature on partial identification with IV methods. The assumptions employed by IA

and AIR are also cited despite their purpose of point identification. First, the monotonicity
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assumption on the treatment (e.g., IA; AIR; Balke and Pearl, 1997; Huber and Mellace, 2010)

and the structural model assumptions on the treatment (e.g., Heckman and Vytlacil, 2000)

do not improve Manski’s bounds derived under the mean independence assumption. Second,

monotonicity assumptions on the outcome (e.g., Manski and Pepper, 2000) and the structural

model assumptions on the outcome do improve Manski’s bounds (e.g., Bhattacharya, Shaikh

and Vytlacil, 2008, hereafter BSV; Chiburis, 2010a; Chiburis, 2010b; Chesher 2010; Shaikh and

Vytlacil, 2011). Third, partial identification with IV methods usually requires bounded support

of the outcome. This might also be the reason why quite a few papers focus on binary outcomes

(e.g., Balke and Pearl, 1997; BSV; Hahn, 2010; Chiburis, 2010b; Shaikh and Vytlacil, 2011).

It’s worth noting that for a binary dependent variable, the monotonicity assumptions and

the structural model assumptions are equivalent. Vytlacil (2002) shows the equivalence between

the monotonicity assumption and the threshold crossing model on the treatment. Machado et al.

(2011) notice the equivalence between the MTR assumption and the threshold crossing model

on the outcome. In the absence of covariates, Chiburis (2010b) observe the equivalence between

the threshold crossing model with a separable error and the non-separable structural function

being weakly increasing in the non-separable error. BSV show that in the absence of covariates,

the bounds for a binary outcome under MTR and the mean independence assumptions are equal

to the ones derived from the threshold crossing models on both the treatment and the outcome.

Afterwards, Chiburis (2010b) notice that his bounds under the threshold crossing model only

on the outcome are equal to the ones under MTR and the mean independence assumptions.

This paper improves Manski’s nonparametric bounds by extending the work of IA and AIR.

We consider the setup consisting of a binary instrument and a binary treatment, which is quite

common in the existing literature on partial identification of the ATE with IV methods. We add

to the literature by considering two different sets of assumptions that can be useful in practice.

The first is monotonicity in the treatment of the average outcomes of subpopulations (strata)

defined by the joint potential values of the treatment status under each value of the instrument.

Just as BSV and Shaikh and Vytlacil (2011), we do not require prior knowledge about the

direction of the monotonicity. However, in contrast to the existing literature (e.g., Manski

and Pepper, 2000; BSV; Shaikh and Vytlacil, 2011), we impose monotonicity on the average

outcomes of the strata rather than on the individuals’outcomes. This makes the assumption

more plausible in practice by allowing some individuals to experience a treatment effect that

has the opposite sign to the ATE. The second set of assumptions involves mean dominance

assumptions across the potential outcomes of different strata, which have been shown to have

significant identifying power in other settings (e.g., Zhang, Rubin and Mealli, 2008; Flores and

Flores-Lagunes, 2010). The direction of the mean dominance assumptions can be informed by

comparing average baseline characteristics across strata that are likely to be highly correlated

with the outcome. Importantly, some of our bounds do not require a bounded outcome.
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A recent paper by Huber and Mellace (2010) also derives bounds on the ATE within the IV

framework. The main difference between our work and theirs is that we consider the monotonic-

ity assumption on the average outcomes of the strata, which results in narrower bounds and can

be justified by economic theory in many applications. Also, we avoid imposing the direction of

the monotonicity a priori, while its direction can be inferred from data. In addition, the mean

dominance assumptions we consider not only differ from theirs, but the direction of our mean

dominance can be informed by comparing the average baseline characteristics across strata,

which are estimated by solving an overidentified nonparametric GMM problem.

To illustrate the identification power of our bounds, we analyze the effect of enrolling into the

Job Corps program, which is the largest federally-funded job training program for disadvantaged

youth in the United States. Using randomization into the program as an instrument, the

narrowest bounds on the ATEs derived by our assumptions are [24.61, 201.04] for weekly

earnings, [.042, .163] for employment, and [−142.76, −84.29] for public benefits. These bounds
are significantly narrower than the IV bounds proposed by Manski (1990), Heckman and Vytlacil

(2000) and Kitagawa (2009), when applied to our setting, and the ones by Huber and Mellace

(2010). The width of our bounds is also smaller than that under the IV and MTR assumptions

of Manski and Pepper(2000), especially for public benefits. Our bounds on employment are also

narrower than the ones proposed by Balke and Pearl (1997), BSV, Chesher (2010), Chiburis

(2010b) and Shaikh and Vytlacil (2011) for the case of a binary outcome. Our lower bounds for

weekly earnings and employment are 10 percent higher than their respective intention-to-treat

(ITT ) effects (22.19 and .038), while the upper bound for public benefits is equal to its ITT

effect.1 Meanwhile, the LATEs for compliers on the three outcomes fall within our narrowest

bounds. In sum, our empirical results suggest that enrolling into the Job Corps program

increases weekly earnings by at least $24.61 and employment by at least 4.3 percentage points,

and decreases yearly dependence on public welfare benefits by at least $84.29.

2 Framework

2.1 Setup and Benchmark Bounds

Consider a random sample of size n from a population. LetDi ∈ {0, 1} indicate whether unit i is
treated (Di = 1) or not (Di = 0), and let Zi ∈ {0, 1} be an instrument for treatment. Let Di(1)

and Di(0) denote the treatment individual i would receive if Zi = 1 or Zi = 0, respectively. Our

outcome of interest is Y . Denote by Yi (1) and Yi (0) the potential outcomes as a function of D,

i.e., the outcomes individual i would experience if she received the treatment or not, respectively.

Finally, let Yi(z, d) be the potential outcome as a function of the instrument and the treatment.

1This is because our bounds derive different numerical results dependent on the sign of the LATE for com-
pliers.
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Our parameter of interest is the population average treatment effect, ATE = E[Yi(1)− Yi(0)].
For each unit, we observe {Zi, Di(Zi), Yi(Zi, Di(Zi))}. We omit the subscript i unless necessary
for clarity. This setting has received considerable attention in the literature (e.g., AIR, BSV).

AIR partition the population into four strata based on the values of {Di (0) , Di (1)}: {1, 1},
{0, 0}, {0, 1} and {1, 0}. AIR and the subsequent literature refer to these strata as always-takers
(at), never-takers (nt), compliers (c), and defiers (d), respectively. AIR impose the following

assumptions which we adopt:

Assumption 1 (Randomized Instrument). {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(0), D(1)} is
independent of Z.

Assumption 2 (Exclusion Restriction). Yi(0, d) = Yi(1, d) = Yi(d), d ∈ {0, 1} for all i.
Assumption 3 (Nonzero First Stage). E[D(1)−D(0)] 6= 0.
Assumption 4 (Individual-Level Monotonicity of D in Z). Either Di(1) ≥ Di(0) for all i or

Di(1) ≤ Di(0) for all i.

Assumptions 1 through 3 are standard assumptions in the IV literature (e.g., IA, AIR,

Huber and Mellace, 2010; Blanco, Flores, and Flores-Lagunes, 2012). Assumption 4 rules out

the existence of defiers (compliers) when the monotonicity is non-decreasing (non-increasing).

The direction of the monotonicity can be inferred from the data given the independence of Z.

Following BSV, we order Z so that E[D|Z = 1] ≥ E[D|Z = 0] to simplify notation.
To partially identify the ATE, we write it as a function of the average effects for the

existing strata. Let LATEk = E[Y (1)− Y (0)|k] and πk denote, respectively, the local average
treatment effect and the stratum proportion in the population, for stratum k, with k = at,

nt, c. Let Y
zd
= E[Y |Z = z,D = d] and pd|z = Pr(D = d|Z = z). Under Assumptions 1

through 4, the following quantities are point identified: πat = p1|0, πnt = p0|1, πc = p1|1 − p1|0,
E[Y (1)|at] = Y

01
, E[Y (0)|nt] = Y

10
and LATEc = (E[Y |Z = 1] − E[Y |Z = 0])/(p1|1 − p1|0).

As shown in IA and AIR, LATEc is point identified for compliers whose treatment status is

affected by the instrument, and equals the conventional IV estimand in the absence of covariates.

Decomposing the population ATE as a weighted average of the LATEs for always-takers, never-

takers, and compliers, we have:

ATE = πatLATEat + πntLATEnt + πcLATEc (1)

= p1|1Y
11 − p0|0Y

00
+ p0|1E[Y (1)|nt]− p1|0E[Y (0)|at], (2)

where E[Y |Z = z] = E[E[Y |Z = z,D = d]|Z = z] is used in the second equality. By equation

(2), since Y (1) for never-takers and Y (0) for always-takers are never observed in the data,
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additional assumptions are needed to bound ATE. The most basic assumption considered in

the previous literature is the bounded support of the outcome.

Assumption 5 (Bounded Outcome). Y (0), Y (1) ∈ [yl, yu].

This assumption states that the potential outcomes under the two treatment arms have

a bounded support. Replacing E[Y (1)|nt] and E[Y (0)|at] in equation (2) with yl and yh, we
obtain sharp bounds on the ATE under Assumptions 1 through 5.

Proposition 1 Under Assumptions 1 through 5 the bounds LB ≤ ATE ≤ UB are sharp,

where

LB = Y
11
p1|1 − Y

00
p0|0 + y

lp0|1 − yup1|0
UB = Y

11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0.

The bounds in Proposition 1, which we present for reference, coincide with the IV bounds in

Manski (1990), Heckman and Vytlacil (2000) and Kitagawa (2009), when applied to our setting,

and with those in Huber and Mellace (2010). When the outcome is binary, these bounds also

coincide with those in Balke and Pearl (1997).

2.2 Bounds under Monotonicity

Now let us introduce the monotonicity assumption we employ to improve the identification

power of the bounds in Proposition 1.

Assumption 6 (Monotonicity in D of Average Outcomes of Strata). (i) Either E[Y (1)|k] ≥
E[Y (0)|k] for all k = at, nt, c; or E[Y (1)|k] ≤ E[Y (0)|k] for all k = at, nt, c. (ii) E[Y (1) −
Y (0)|c] 6= 0.

Assumption 6 requires that the LATEs of the three existing strata are all either non-negative

or non-positive. This assumption is similar to that in BSV, with the important distinction that

we impose it on the LATEs rather than on the individual effects, which makes it more plausible

in practice by allowing some individuals to have a treatment effect of the sign different from

that of the ATE. Since we ordered Z so that E[D|Z = 1] ≥ E[D|Z = 0], the direction

of the monotonicity is identified from the sign of the IV estimand (LATEc) under the current

assumptions. The following proposition presents sharp bounds on the ATE under the additional

Assumption 6.
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Proposition 2 Under Assumptions 1 through 6 the bounds LB ≤ ATE ≤ UB are sharp,

where, if E[Y |Z = 1]− E[Y |Z = 0] > 0,

LB = E[Y |Z = 1]− E[Y |Z = 0]

UB = Y
11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0;

and if E[Y |Z = 1]− E[Y |Z = 0] < 0,

LB = Y
11
p1|1 − Y

00
p0|0 + y

lp0|1 − yup1|0
UB = E[Y |Z = 1]− E[Y |Z = 0].

Depending on the sign of LATEc, either the lower or the upper bound in Proposition

2 improves upon the corresponding bound in Proposition 1. When LATEc > 0, the lower

bounds on LATEat and LATEnt become zero; otherwise, their upper bounds become zero.

Consequently, either the lower or upper bound on the ATE equals the ITT effect dependent

on the sign of LATEc. When the outcome is binary, the bounds in Proposition 2 coincide with

those in BSV and Chiburis (2010b), which both equal the bounds in Shaikh and Vytlacil (2011)

and Chesher (2010) when there are no exogenous covariates other than the binary instrument.

Moreover, if LATEc is positive (negative) and Assumptions 1 through 6 hold, then the bounds

in Proposition 2 equal the bounds obtained by imposing the mean independence assumption

of the instrument and increasing (decreasing) MTR assumptions in Manski and Pepper (2000).

MTR imposes monotonicity of the outcome in the treatment at the individual level, and it

requires one to know the direction of the effect a priori. Depending on the sign of the individual

effect, BSV shows the equivalence of their bounds to those under the IV and MTR assumptions

for the case of a binary outcome. Thus, in our setting along with the relaxed version of the

monotonicity assumption, our results can be seen as an extension of those in BSV to the case

of a non-binary outcome.2

2.3 Bounds under Mean Dominance

In practice, some strata are likely to have more favorable characteristics and thus better mean

potential outcomes than others. The three alternative assumptions below formalize the notion

that under the same treatment status, never-takers tend to have the best average potential

outcome among the three strata, while always-takers tend to have the worst one.

Assumption 7a. E[Y (d)|at] ≤ E[Y (d)|nt] for d = 0, 1.
Assumption 7b. E[Y (0)|at] ≤ E[Y |Z = 0, D = 0] and E[Y (1)|nt] ≥ E[Y |Z = 1, D = 1].

Assumption 7c. E[Y (0)|at] ≤ E[Y (0)|c] and E[Y (1)|nt] ≥ E[Y (1)|c].
2For a discussion of the trade-off between the MTR assumption and assuming monotonicity of the treatment

in the instrument, see BSV.
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The direction of these assumptions can be inverted depending on the application in ques-

tion. The always-takers and never-takers are likely to be the most “extreme" groups in many

applications, so Assumption 7a may be viewed as the weakest of the three. Assumption 7b

compares the mean Y (0) and Y (1) of the always-takers and never-takers, respectively, to those

of a weighted average of the other two strata, while Assumption 7c compares them to those of

the compliers. Although none of these assumptions is directly testable, it is possible to obtain

indirect evidence about their plausibility by comparing relevant average pre-treatment charac-

teristics of the different strata (e.g., Flores and Flores-Lagunes, 2010; Frumento et al., 2012).

For Assumption 7c, the direction may also be inferred by comparing point identified quantities,

E[Y (1)|at] to E[Y (1)|c] and E[Y (0)|nt] to E[Y (0)|c], if these inequalities also hold under the
alternative treatment status.

We present bounds under Assumptions 1 through 5 and each of the three versions of As-

sumption 7. In each case, the lower bound is higher than that in Proposition 1.

Proposition 3 Let UB = Y
11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0.
(a) Under Assumptions 1 through 5 and 7a the bounds LB ≤ ATE ≤ UB are sharp, where

LB = Y
11
p1|1 − Y

00
p0|0 + Y

01
p0|1 − Y

10
p1|0.

(b) Under Assumptions 1 through 5 and 7b the bounds LB ≤ ATE ≤ UB are sharp, where

LB = Y
11 − Y 00.

(c) Under Assumptions 1 through 5 and 7c the bounds LB ≤ ATE ≤ UB are sharp, where

LB = Y
11
p1|1 − Y

00
p0|0 +

Y
11
p1|1 − Y

01
p1|0

p1|1 − p1|0
p0|1 −

Y
00
p0|0 − Y

10
p0|1

p1|1 − p1|0
p1|0.

Assumptions 7a through 7c have testable implications when combined with Assumption 6,

if LATEc < 0. The following inequalities are expected to hold: Y
01 ≤ Y

10
(7a); Y

01 ≤ Y
00

and Y
11 ≤ Y

10
(7b); and, Y

01 ≤ E[Y (0)|c] and E[Y (1)|c] ≤ Y
10
(7c). If some (or all) of

these inequalities are not rejected in applications, then their corresponding assumptions are

expected to hold. The following three propositions provide bounds when Assumptions 6 and 7

are combined.

Proposition 4 Under Assumptions 1 through 6 and 7a the bounds LB ≤ ATE ≤ UB are

sharp, where, if E[Y |Z = 1]− E[Y |Z = 0] > 0,

LB = Y
11
p1|1 − Y

00
p0|0 +max{Y

10
, Y

01}p0|1 −min{Y
10
, Y

01}p1|0
UB = Y

11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0;
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and if E[Y |Z = 1]− E[Y |Z = 0] < 0,

LB = Y
11
p1|1 − Y

00
p0|0 + Y

01
p0|1 − Y

10
p1|0

UB = E[Y |Z = 1]− E[Y |Z = 0].

Proposition 5 Under Assumptions 1 through 6 and 7b the bounds LB ≤ ATE ≤ UB are

sharp, where, if E[Y |Z = 1]− E[Y |Z = 0] > 0,

LB = Y
11
p1|1 − Y

00
p0|0 +max{Y

10
, Y

11}p0|1 −min{Y
01
, Y

00}p1|0
UB = Y

11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0;

and if E[Y |Z = 1]− E[Y |Z = 0] < 0,

LB = Y
11 − Y 00

UB = E[Y |Z = 1]− E[Y |Z = 0].

Proposition 6 Under Assumptions 1 through 6 and 7c the bounds LB ≤ ATE ≤ UB are

sharp, where, if E[Y |Z = 1]− E[Y |Z = 0] > 0,

LB = Y
11
p1|1 − Y

00
p0|0 +max{Y

10
,
Y
11
p1|1 − Y

01
p1|0

p1|1 − p1|0
}p0|1

−min{Y 01,
Y
00
p0|0 − Y

10
p0|1

p1|1 − p1|0
}p1|0

UB = Y
11
p1|1 − Y

00
p0|0 + y

up0|1 − ylp1|0;

and if E[Y |Z = 1]− E[Y |Z = 0] < 0,

LB = Y
11
p1|1 − Y

00
p0|0 +

Y
11
p1|1 − Y

01
p1|0

p1|1 − p1|0
p0|1 −

Y
00
p0|0 − Y

10
p0|1

p1|1 − p1|0
p1|0

UB = E[Y |Z = 1]− E[Y |Z = 0].

Note that, if LATEc < 0, the bounds in Propositions 4 through 6 do not require boundedness

of the outcome, because Assumption 6 improves upon the upper bound in Proposition 1, while

Assumption 7 improves upon the lower bound. In contrast, if LATEc > 0, Assumptions 6

and 7 each improve only upon the lower bound in Proposition 1. The bounds in Propositions

4 through 6 are narrower compared with the bounds in Proposition 2 and the corresponding

bounds in Proposition 3. This is because under the combined assumptions, the monotonicity

assumption improves upon further either the lower or upper bound in Proposition 3, depending

on the sign of LATEc, while the mean dominance assumptions further improve upon the lower

bound in Proposition 2.
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Proposition 5 overlaps with the bounds recently derived by Chiburis (2010a) under the MTR

assumption without specifying a priori direction and the decreasing MTS assumption, as well as

the mean independence assumption of the instrument. This is because Assumption 7b coincides

with the decreasing MTS assumptions imposed on the counterfactual average outcomes for

always-takers and never-takers (i.e., E[Y (0)|at] and E[Y (1)|nt]). The form of Chiburis’bounds,
however, cannot simplify to Proposition 6, in that his monotonicity assumptions also involve the

counterfactual average outcome for the mixture of never-takers and compliers and that for the

mixture of always-takers and compliers (i.e., E[Y (1)|Z = 0, D = 0] and E[Y (0)|Z = 1, D = 1]),

which are not involved in our setting.

It is important to note that the bounds in Proposition 6 are also the sharp bounds for

ATE if we replace Assumption 7c with the assumption, E[Y (d)|at] ≤ E[Y (d)|c] ≤ E[Y (d)|nt]
for d = 0, 1. However, since E[Y (d)|c] may suffer from the potential issue of a weak IV (i.e.,

p1|1 − p1|0 is close to zero), and thus be more diffi cult to estimate than E[Y |Z = d,D = d].

Consequently, the estimated bounds in Proposition 5 may produce narrower confidence intervals

than those in Proposition 6 if p1|1 − p1|0 is close to zero.

2.4 Estimation and Inference

Some of our bounds involve minimum (min) or maximum (max) operators, which create com-

plications for estimation and inference. First, because of the concavity (convexity) of the min

(max) function, sample analog estimators of the bounds can be severely biased in small samples.

Second, closed-form characterization of the asymptotic distribution of estimators for parame-

ters involving min or max functions are very diffi cult to derive and, thus, usually unavailable.

Furthermore, Hirano and Porter (2012) show that there exist no locally asymptotically unbi-

ased estimators and no regular estimators for parameters that are nonsmooth functionals of the

underlying data distribution, such as those involving min or max operators. These issues have

generated a growing literature on inference methods for partially identified models of this type

(see Tamer, 2010, and the references therein).

We employ the methodology proposed by Chernozhukov, Lee and Rosen (2011) (hereafter

CLR) to obtain confidence regions for the true parameter value, as well as half-median unbiased

estimators for the lower and upper bounds. The half-median-unbiasedness property means that

the upper (lower) bound estimator exceeds (falls below) the true value of the upper (lower)

bound with probability at least one half asymptotically. This is an important property be-

cause achieving local asymptotic unbiasedness is not possible, implying that "bias correction

procedures cannot completely eliminate local bias, and reducing bias too much will eventually

cause the variance of the procedure to diverge" (Hirano and Porter, 2012). For details on the

procedure of applying CLR’s method to our bounds see the Appendix. For the bounds without

min or max operators, we use sample analog estimators and construct the confidence regions
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for the true parameter value proposed by Imbens and Manski (2004).

3 Bounds on Population Average Treatment Effects of Job Corps

3.1 Data

Job Corps (JC) is the largest and most comprehensive education and job training program

in the United States. It offers to economically disadvantaged youth aged 16 to 24 years old

academic education, vocational training, residential living, health care and health education,

counseling and job placement assistance. According to the U.S. Department of Labor (2005),

a typical JC student lives at a local JC center for eight months and receives about 1100 hours

of academic and vocational instruction, which is equivalent to approximately one year in high

school.

We employ data from the National Job Corps Study (NJCS), a randomized experiment

undertaken in the mid-to-late nineties. The study examined the impacts of JC on labor market

outcomes, welfare dependence and several other outcomes to help assess whether the program

achieved its goals of helping students become more responsible and productive citizens. Eligible

applicants were randomly assigned to treatment and control groups. Individuals in the control

group were embargoed from the program for a period of three years. The research sample

was interviewed at random assignment and at 12, 30, and 48 months after random assignment.

Taking advantage of randomization, most of previous works on JC study ITT effects or LATEs

for compliers (e.g., Burghardt et al., 2001; Schochet, Burghardt, and Glazerman, 2001; Scho-

chet, Burghardt, and McConnell, 2008; Lee, 2009; Blanco, Flores, and Flores-Lagunes, 2012).

The noncompliance behavior, however, tends to dilute the impacts of JC. In our sample, 73%

of individuals of the treatment group actually enrolled in JC, while 4% of individuals of the

control group also enrolled. Even adjusting to noncompliance by examining LATEc, that effect

is representative for a subpopulation accounting for 69% in the population of our interest.

We make inference about the population ATE, which is of great public interest, using data

on individuals who responded to the 48-month interview. The outcome variables we consider

are weekly earnings and employment at Week 208 and public assistance benefits received during

the fourth year after randomization3. Given the objectives and services provided by JC (e.g.,

academic and vocational training, job search assistance), it tends to have positive effects on

participants’labor market outcomes, though the direction of these effects may be inverted in

the short run. On one hand, individuals who enroll in JC could be less likely to be employed

while undergoing training, which is usually referred to as the “lock-in”effect (van Ours, 2004).

On the other hand, some participants may raise their reservation wages after training and

3Benefits include Aid to Families with Dependent Children (AFDC) or Temporary Assistance for Needy
Families (TANF), food stamps, Supplemental Security Income (SSI) or Social Security Retirement, Disability,
or Survivor (SSA), and General Assistance.
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choose to be unemployed by rejecting some job offers. Both potential threats make participants

possibly experience lower earnings than those who do not enroll in JC in the short run. Given

a long enough period of time, however, trained individuals are no longer “locked-in”away from

employment and those raising reservation wages find jobs, and both of them are more likely

to have higher earnings after training. Consistent with this view, Schochet, Burghardt, and

Glazerman (2001) and Lee (2009) find negative effects of JC on weekly earnings and employment

in the short run, but positive effects in the long run.

Participation in JC may also affect welfare dependence differently in the short and long

runs. In the short run, participants may experience a reduction in welfare receipt while they

enroll in JC, because the program provides shelter (except to nonresidential students), food,

and a stipend. In the long run, after they leave JC, participants may receive less public income

support because of higher earnings. In contrast with this expectation, Schochet, Burghardt,

and Glazerman (2001) report that the reductions in benefit receipt persisted throughout 4 years

after randomization. Therefore, we focus our analysis on the latest measures available of labor

market outcomes and welfare dependence in the NJCS.

The treatment variable indicates whether or not the individual ever enrolled in JC during the

208 weeks (i.e., four years) after random assignment. The random assignment indicator serves

as an instrument for JC enrollment. Two samples are obtained by dropping individuals with

missing relevant variables from the survey.4 The sample for weekly earnings and employment

involves 10,520 individuals (4,187 and 6,333 in the control and treatment groups, respectively),

while for public benefits 10,976 individuals (4,387 and 6,589 in the control and treatment groups,

respectively). Finally, due to both design and programmatic reasons, some subpopulations were

randomized in the NJCS with different (but known) probabilities (Schochet, Burghardt, and

Glazerman, 2001). Hence, we employ design weights throughout our analysis.5

Table 1 reports the average baseline characteristics of both samples by treatment assign-

ment status along with the percentage of missing values for each of those variables. The pre-

treatment variables include demographic characteristics, education and background variables,

employment, earnings and public benefits dependency at baseline, as well as labor market out-

comes in the year prior to randomization. As one would expect, the average pre-treatment

characteristics of the treatment and control groups are similar in both our samples due to

randomization, with the difference in means being statistically different from zero at the five

percent level for only one variable (personal income: 3,000-6,000). Thus, both our samples

maintain the balance of baseline variables between the control and treatment groups.

4We derive two samples because individuals with missing labor market outcomes and with missing public
benefits are different.

5Specifically, the weight we employ addresses sample design, 48-month interview design, and 48-month inter-
view non-response.
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3.2 Assessment of Assumptions

Table 2 shows some relevant point identified averages for both samples. The noncompliance

behavior is similar between the two samples. As we have already mentioned, 73% of individuals

of the treatment group actually enrolled in JC, while 4% of individuals of the control group

also enrolled during the 208 weeks after randomization. The ITT effects on weekly earnings,

employment and public benefits are 22.19 , .038 and −84.29, respectively. These effects are
all statistically significant, with their signs as expected. The LATEc estimates for compliers

on earnings, employment and public benefits are 32.29, .055 and −122.28, respectively, 45
percent higher than their corresponding ITT estimates. By Assumption 6, the sign of LATEc
identifies the sign of the LATEs for the other two strata. Thus, our estimates of LATEc
indicate positive population average treatment effects on weekly earnings and employment and

a negative population effect on public benefits.

The middle part of Table 2 shows the proportion of each stratum. In both samples, the

proportion of compliers is the largest, .69, followed by never-takers, .27, and always-takers,

.04. And by Assumption 6, there are no defiers in our samples. The end part of Table 2

reports the point identified averages cited in Assumptions 6 and 7.6 These estimates are all

statistically significant and follow a certain pattern in both samples: under the treated status,

the average outcome for always-takers is the smallest, followed by the average for the mixture of

always-takers and compliers, and the average for compliers, while under the untreated status,

the average outcome for compliers is the smallest, followed by the average for the mixture of

never-takers and compliers, and the average for never-takers.

As mentioned previously, differences across these point identified averages may provide a

preliminary hint for Assumption 7. To begin, we may infer the direction of Assumption 7c

by comparing the identified averages of always-takers and never-takers to those of compliers

under the same treatment status. The hypotheses that E[Y (1)|at] ≤ E[Y (1)|c] and E[Y (0)|c] ≤
E[Y (0)|nt] are not rejected for all of the three outcomes. Thus, if the same relationship with
compliers also hold under the alternative treatment status, we may expect Assumption 7c to

hold. Furthermore, since the ITT effect on public benefits is negative, testable implications

are available when Assumption 7 is combined with Assumption 6, as discussed in Section 2.3.

These testable implications are not rejected in our application.

More importantly, indirect evidence of Assumption 7 are obtained by estimating the average

baseline characteristics across strata from an overidentified nonparametric GMM problem. For

details on the GMM procedure see Appendix. Tables 3 and 4 show these estimates and their

differences across strata for our samples. The average characteristics across strata are similar

6As in Lee (2009), we use a transformed measure to estimate the sample averages of weekly earnings and
public benefits to minimize the effect of outliers. Specifically, the entire observed outcome distribution (for either
weekly earnings or public benefits) is split into 20 percentile groups (5th, 10th, . . . , 95th), and then the mean
outcome within each of the 20 groups is assigned to each individuals.
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between the two samples. Among the three strata, never-takers are more likely to be female,

older, married, to have children, higher level of education, personal income above $9,000 (less

likely to have personal income below $3,000), higher weekly earnings at baseline, and to have

better labor market outcomes the year before randomization. By contrast, always-takers tend

to be male, younger, to have lower level of education at baseline, and to have lower earnings

in the previous year. Furthermore, the statistical significance of the difference between always-

takers and never-takers indirectly supports Assumption 7a, while the statistical significance of

the differences compared to compliers (i.e., columns 4 and 5) tends to support Assumption 7c.

Meanwhile, when the differences across the three strata are all statistically significant, Assump-

tion 7b are more likely to hold. Note that these differences become more convincing evidence

of Assumption 7 on the labor market outcomes under the untreated arm than those under the

treated arm. However, the differences across the strata in the public benefit dependency at the

baseline are not statistically significant.7 We conclude from these results that the data do not

provide indirect evidence against Assumption 7, and that the point estimates of the differences

suggest that the assumption is plausible.

3.3 Empirical Results

Table 5 shows our bounds on the ATEs on the labor market outcomes and the public depen-

dency under Proposition 1 through Proposition 6. Under each pair of the estimated bounds,

we report a 95% level confidence interval for the true parameter. Since the bounds for weekly

earnings and employment in Propositions 4 through 6 involve max or min operators, we report

the half-median unbiased estimators and the corresponding confidence intervals proposed by

CLR. The bounds without max or min operators are estimated with sample analogs and their

confidence intervals are obtained by the method of Imbens and Manski (2004).

We begin with the ATE on weekly earnings in the first two columns. Proposition 1 provides

the bounds in the AIR setting under the bounded-outcome assumption (A.5). The estimated

bounds are rather wide and fail to identify the sign of the ATE. Note that these bounds are

also the IV bounds proposed by Manski (1990), Heckman and Vytlacil (2000) and Kitagawa

(2009), when applied to our setting, and the ones by Huber and Mellace (2010). The ATE

in Proposition 2 under the monotonicity assumption (A.6) is bounded between [22.19, 201.02],

obtained by identifying positive LATEs for always-takers and never-takers. Note that they

are also the ones under the IV and MTR assumptions proposed by Manski and Pepper (2000).

The mean dominance assumptions (A.7) improve upon the lower bound in Proposition 1, and

negative effects are ruled out in Propositions 3b and 3c in the absence of assuming the sign

of LATEs. When we impose Assumptions 1 through 7 together, all of our bounds and their

corresponding confidence intervals lie in the positive region. In particular, the bounds on the

7Unfortunately, information about the amount of public benefits in dollars is unavailable at the baseline.
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ATE on the weekly earnings in Proposition 6 are the narrowest, [24.61, 201.04], with the lower

bound 10 percent higher than the ITT effect (22.19), while the LATEc for compliers (32.29)

falls within the bounds. It turns out that informing the unobserved terms (i.e., E[Y (0)|at] and
E[Y (1)|nt]) from the point identified outcomes of compliers provide a sharper lower bound on

the ATE on the weekly earnings than that obtained by identifying the sign of LATEat and

LATEnt under the monotonicity assumption (A.6).

The next two columns show the bounds on the ATE on the employment, whose value is

between 0 and 1. A similar pattern to the bounds for the weekly earnings is also found in the

bounds for the employment. Note that the bounds in Proposition 1, [−.015, .163], unable to
identify the sign of the ATE, also coincide with those in Balke and Pearl (1997) for the case of

a binary outcome. The bounds in Proposition 2 derive a positive ATE, which varies between

[.038, .163], and also equal the ones proposed by BSV, Chesher (2010), Chiburis (2010b) and

Shaikh and Vytlacil (2011), all of which analyze a binary outcome. Again, Proposition 6

provides the narrowest bounds on the ATE on the employment under Assumptions 5, 6 and

7c, [.042, .163], with the lower bound 10 percent higher than the ITT effect (.038), while the

LATEc for compliers (.055) falls within the bounds in Proposition 6.

The final two columns report the bounds on the ATE on the public benefits. Different from

the labor market outcomes, since the ITT effect on the public benefits is negative, imposing

only the monotonicity assumption improves upon its upper bound in Proposition 1, while

imposing only the mean dominance assumptions improves upon its lower bound. The bounds

in Proposition 1 are extremely wide and uninformative. The monotonicity assumption (A.6)

has a strong identification power compared with the mean dominance assumptions (A.7) in the

case of the public benefits, in that the former identifies the negative sign of the ATE on the

public benefits, though the latter greatly sharpen the lower bound in Proposition 1 by at least

70 percent. However, once we consider the two types of assumptions together, the bounded

outcome assumption is no longer necessary and the width of the bounds shrink dramatically.

Under the combined assumptions, the estimated bounds and their corresponding confidence

intervals lie in the negative region. Proposition 6 provides the narrowest bounds on the ATE

on public benefits, [−142.76, −84.29], with the upper bound equal to the ITT effect, while the
LATEc on compliers (−122.28) falls within the bounds.

4 Conclusion

This paper derives sharp nonparametric bounds on the population average treatment effects by

extending the work of Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996). The

favorable bounds are derived by combining two sets of assumptions. The first is monotonicity in

the treatment of the average outcomes of strata without specifying a priori direction. The second
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is mean dominance assumptions on average potential outcomes across strata. Importantly, some

of our bounds do not require a bounded support. And empirically, the direction of the mean

dominance assumption can be inferred from data by estimating an overidentified nonparametric

GMM problem. The application to the Job Corps program illustrates the informativeness of

our bounds. Our empirical results suggest that enrolling into the program increases weekly

earnings by at least $24.61 and employment by at least 4.3 percentage points at Week 208

after randomization, and decreases the dependence on public welfare benefits by at least $84.29

during the fourth year after randomization.

We close by pointing out that a similar analytical strategy to the one followed here can

be used to bound the ATE when the instrument does not satisfy the exclusion restriction, in

which case the local average treatment effect for compliers can be bounded as in Flores and

Flores-Lagunes (2012). In addition to solving the endogeneity issue, the strategy can also be

applied to the identification of direct and indirect effects (e.g., Rubin, 2004; Sjölander, 2009;

VanderWeele, 2011)
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Table 1: Summary Statistics of Baseline Variables

Sample for Labor Market Outcomes Sample for Public Assistance Benefits
Missing
Prop.

Z = 1 Z = 0 Diff.(Std.Err.) Missing
Prop.

Z = 1 Z = 0 Diff.(Std.Err.)

Female 0 .417 .407 .009 (.010) 0 .415 .406 .009 (.010)
Age at Baseline 0 18.42 18.38 .035 (.042) 0 18.41 18.38 .031 (.041)
White, Non-hispanic 0 .273 .266 .007 (.009) 0 .274 .269 .005 (.009)
Black, Non-Hispanic 0 .483 .478 .005 (.010) 0 .477 .474 .003 (.010)
Hispanic 0 .171 .179 -.008 (.008) 0 .172 .180 -.008 (.007)
Other Race/Ethnicity 0 .073 .078 -.005 (.005) 0 .076 .076 .000 (.005)
Never Married .017 .916 .915 .001 (.006) .020 .914 .915 -.001 (.005)
Married .017 .020 .022 -.002 (.003) .020 .020 .022 -.001 (.003)
Living Together .017 .040 .041 -.001 (.004) .020 .040 .041 -.001 (.004)
Separated .017 .024 .022 .002 (.003) .020 .025 .022 .003 (.003)
Has Child .007 .181 .184 -.003 (.008) .008 .181 .183 -.002 (.008)
Number of Children .011 .253 .248 .005 (.012) .012 .251 .247 .004 (.012)
Personal Education .018 10.08 10.09 -.008 (.031) .021 10.08 10.10 -.019 (.030)
Mother’s Education .194 11.50 11.51 -.011 (.058) .197 11.49 11.53 -.042 (.057)
Father’s Education .391 11.43 11.54 -.110 (.073) .394 11.45 11.57 -.127* (.072)
Ever Arrested .017 .258 .263 -.005 (.009) .019 .259 .266 -.007 (.009)
Household Inc.: <3000 .368 .252 .258 -.006 (.011) .371 .250 .255 -.005 (.011)

3000-6000 .368 .201 .204 -.004 (.010) .371 .198 .208 -.010 (.010)
6000-9000 .368 .116 .111 .006 (.008) .371 .117 .109 .008 (.008)
9000-18000 .368 .245 .243 .001 (.011) .371 .246 .241 .005 (.011)
>18000 .368 .187 .183 .003 (.010) .371 .189 .187 .002 (.010)

Personal Inc.: <3000 .083 .786 .790 -.004 (.008) .086 .783 .788 -.006 (.008)
3000-6000 .083 .129 .129 .000 (.007) .086 .130 .131 -.000 (.007)
6000-9000 .083 .055 .046 .009** (.005) .086 .056 .046 .010** (.004)
>9000 .083 .031 .036 -.005 (.004) .086 .031 .035 -.004 (.004)

Have Job .031 .216 .209 .007 (.008) .034 .219 .211 .009 (.008)
Weekly Hours Worked 0 21.69 21.13 .563 (.417) 0 21.71 21.14 .576 (.407)
Weekly Earnings 0 110.35 104.29 6.059 (4.482) 0 110.66 104.53 6.136 (4.328)
Had Job, Prev. Yr. .016 .651 .643 .008 (.010) .019 .653 .646 .007 (.009)
Months Employed,Prev.Yr. 0 3.575 3.516 .058 (.085) 0 3.582 3.518 .064 (.083)
Earnings, Prev.Yr. .081 2991.8 2873.1 118.65 (109.10) .084 3020.7 2893.8 126.84 (107.01)
Received Public Benefits .115 .590 .595 -.005 (.010) .118 .582 .590 -.008 (.010)
Months Received Benefits .127 6.554 6.542 .012 (.125) .129 6.469 6.493 -.024 (.122)
Numbers of Observations 10520 6333 4187 10976 6589 4387

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0) in the program. Benefits

include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses are standard errors. ** and * denote

that difference is statistically different from 0 at 5% and 10% level, respectively. Computations use the weights that account for sample

and interview design and interview non-response.
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Table 2: Point Identified Average Outcomes after Random Assignment

Sample for Labor Market Outcomes at Week 208 Sample for Public Benefits in Year 4
Variables: Enrollment Earnings Employment Enrollment Public benefits

Averages for Z = 1 .730**
(.006)

228.78**
(3.004)

.608**
(.006)

.732**
(.005)

747.21**
(23.40)

Averages for Z = 0 .043**
(.003)

206.60**
(3.552)

.570**
(.008)

.043**
(.003)

831.50**
(30.28)

ITT Effects .687**
(.006)

22.19**
(4.652)

.038**
(.010)

.689**
(.006)

-84.29**
(38.27)

LATEc 32.29**
(7.007)

.055**
(.015)

-122.28**
(56.78)

Proportions of Strata under Assumptions 1 to 4
πnt .270**

(.006)
.268**
(.006)

πc .687**
(.007)

.689**
(.006)

πat .043**
(.003)

.043**
(.003)

Other Point Identified Average Outcomes under Assumptions 1 to 4
E[Y (1)|at] 132.10**

(14.94)
.393**
(.037)

545.45**
(110.12)

E[Y (0)|nt] 223.79**
(5.967)

.600**
(.012)

880.67**
(47.98)

E[Y (1)|c] 236.82**
(4.022)

.624**
(.008)

707.81**
(28.26)

E[Y (0)|c] 204.53**
(5.655)

.569**
(.012)

830.09**
(49.69)

E[Y |Z = 1, D = 1] 230.63**
(3.614)

.611**
(.007)

698.35**
(25.87)

E[Y |Z = 0, D = 0] 209.96**
(3.709)

.578**
(.008)

844.25**
(33.18)

Note: Z denotes whether the individual was randomly assigned to participate (Z = 1) or not (Z = 0) in the program. D

denotes whether the individual was ever enrolled in the program (D = 1) or not (D = 0) during the 4 years (208 weeks) after

randomization. Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses are

standard errors. ** denotes estimate is statistically different from 0 at 5% level. Computations use the weights that account

for sample and interview design and interview non-response. The standard errors of LATEs, proportions of strata and other

identified average outcomes are calculated by 5000-repetition bootstrap.
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Table 3: Average Baseline Characteristics in the Sample for Labor Market Outcomes

Variable nt c at nt− c c− at nt− at
Female .467**

(.011)
.397**
(.007)

.324**
(.035)

.070**
(.015)

.073**
(.037)

.143**
(.036)

Age at Baseline 18.74**
(.052)

18.32**
(.029)

17.64**
(.133)

.428**
(.063)

.674**
(.137)

1.102**
(.143)

White, Non-hispanic .284**
(.011)

.263**
(.006)

.296**
(.034)

.021*
(.013)

-.033
(.036)

-.012
(.036)

Black, Non-Hispanic .472**
(.012)

.484**
(.007)

.488**
(.037)

-.012
(.015)

-.004
(.039)

-.016
(.039)

Married .035**
(.004)

.016**
(.002)

.005
(.005)

.019**
(.005)

.011**
(.005)

.030**
(.006)

Has Child .237**
(.010)

.162**
(.005)

.148**
(.028)

.075**
(.012)

.015
(.030)

.089**
(.029)

Personal Education 10.27**
(.035)

10.05**
(.020)

9.637**
(.095)

.224**
(.044)

.408**
(.101)

.632**
(.100)

Household Inc.:<3000 .267**
(.008)

.255**
(.005)

.187**
(.021)

.012
(.010)

.068**
(.022)

.080**
(.022)

>18000 .181**
(.007)

.181**
(.004)

.233**
(.027)

.000
(.009)

-.052*
(.028)

-.052*
(.027)

Personal Inc.: <3000 .750**
(.010)

.799**
(.005)

.843**
(.026)

-.049**
(.012)

-.044
(.027)

-.093**
(.027)

>9000 .042**
(.005)

.030**
(.002)

.015*
(.008)

.012*
(.006)

.015*
(.009)

.027**
(.009)

Have Job at Baseline .224**
(.010)

.208**
(.006)

.216**
(.031)

.015
(.012)

-.008
(.033)

.008
(.032)

Weekly Hours Worked 22.07**
(.488)

21.29**
(.272)

20.44**
(1.652)

.775
(.585)

.853
(1.734)

1.629
(1.700)

Weekly Earnings 113.79**
(2.989)

102.76**
(2.041)

92.63**
(7.986)

11.03**
(3.989)

10.13
(8.328)

21.15**
(8.562)

Had Job, Prev. Yr. .667**
(.010)

.640**
(.006)

.651**
(.035)

.027**
(.013)

-.010
(.036)

.016
(.035)

Months Employed, Prev.Yr. 3.684**
(.102)

3.527**
(.057)

3.120**
(.310)

.157
(.125)

.407
(.324)

.563*
(.325)

Earnings, Prev.Yr. 3246.8**
(101.80)

2831.5**
(63.58)

2302.9**
(251.57)

415.30**
(127.99)

528.64**
(263.42)

943.94**
(273.94)

Received Public Benefits .607**
(.011)

.588**
(.006)

.596**
(.037)

.020
(.013)

-.009
(.038)

.011
(.037)

Months Received Benefits 6.744**
(.122)

6.503**
(.073)

6.518**
(.414)

.240
(.153)

-.014
(.437)

.226
(.424)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses

are standard errors. ** and * denote that estimate is statistically different from 0 at 5% and 10% level, respec-

tively. Computations use the weights that account for sample and interview design and interview non-response.

Missing values for each of the baseline variables were imputed with the mean of the variable.
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Table 4: Average Baseline Characteristics in the Sample for Public Assistance Benefits

Variable nt c at nt− c c− at nt− at
Female .464**

(.011)
.396**
(.006)

.330**
(.035)

.069**
(.014)

.066*
(.037)

.134**
(.036)

Age at Baseline 18.75**
(.049)

18.31**
(.027)

17.68**
(.126)

.435**
(.061)

.635**
(.135)

1.070**
(.133)

White, Non-hispanic .289**
(.011)

.265**
(.006)

.289**
(.035)

.024*
(.014)

-.024
(.037)

-.000
(.036)

Black, Non-Hispanic .461**
(.012)

.480**
(.007)

.503**
(.037)

-.019
(.015)

-.023
(.039)

-.042
(.039)

Married .036**
(.004)

.016**
(.002)

.006
(.005)

.020**
(.005)

.010**
(.005)

.030**
(.006)

Has Child .234**
(.009)

.163**
(.005)

.164**
(.029)

.072**
(.012)

-.001
(.031)

.071**
(.030)

Personal Education 10.27**
(.034)

10.05**
(.020)

9.663**
(.091)

.225**
(.043)

.382**
(.096)

.607**
(.094)

Household Inc.:<3000 .262**
(.008)

.253**
(.004)

.198**
(.020)

.009
(.010)

.055**
(.022)

.064**
(.021)

>18000 .184**
(.007)

.184**
(.004)

.233**
(.028)

.000
(.009)

-.050*
(.029)

-.049*
(.028)

Personal Inc.: <3000 .746**
(.010)

.797**
(.005)

.840**
(.024)

-.051**
(.012)

-.043*
(.026)

-.094**
(.025)

>9000 .042**
(.005)

.030**
(.002)

.015**
(.007)

.012**
(.006)

.015*
(.008)

.027**
(.009)

Have Job at Baseline .227**
(.010)

.211**
(.005)

.213**
(.028)

.016
(.012)

-.002
(.030)

.014
(.029)

Weekly Hours Worked 21.80**
(.460)

21.41**
(.291)

20.63**
(1.426)

.392
(.594)

.774
(1.548)

1.165
(1.494)

Weekly Earnings 112.60**
(2.890)

103.55**
(2.180)

94.21**
(7.394)

9.025**
(4.094)

9.342
(7.954)

18.37**
(7.804)

Had Job, Prev. Yr. .667**
(.011)

.642**
(.006)

.668**
(.031)

.025*
(.013)

-.026
(.033)

-.001
(.032)

Months Employed, Prev.Yr. 3.644**
(.103)

3.553**
(.057)

3.060**
(.282)

.091
(.130)

.492
(.302)

.584*
(.299)

Earnings, Prev.Yr. 3241.9**
(99.19)

2863.6**
(65.20)

2390.4**
(233.19)

378.31**
(130.21)

473.14*
(250.73)

851.45**
(249.72)

Received Public Benefits .601**
(.010)

.581**
(.006)

.583**
(.033)

.020
(.013)

-.001
(.035)

.019
(.034)

Months Received Benefits 6.684**
(.122)

6.433**
(.076)

6.395**
(.378)

.251
(.158)

.038
(.408)

.289
(.385)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses

are standard errors. ** and * denote that estimate is statistically different from 0 at 5% and 10% level, respec-

tively. Computations use the weights that account for sample and interview design and interview non-response.

Missing values for each of the baseline variables were imputed with the mean of the variable.
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Table 5: Bounds on the Population Average Treatment Effects (ATE)

Earnings Employment Public Benefits
LB UB LB UB LB UB

Bounds under Each Assumption
Proposition 1 -69.86 201.02 -.150 .163 -632.86 1812.4
Bounded Outcome (A.5) (-78.34, 210.61) (-.167, .179) (-702.21, 1901.6)

Proposition 2 22.19 201.02 .038 .163 -632.86 -84.29
Monotonicity (A.6) (14.18, 210.61) (.021, .179) (-702.21, -22.13)

Proposition 3a -6.507 201.02 -.027 .163 -188.43 1812.4
Mean Dominance (A.7a) (-16.65, 210.61) (-.050, .179) (-265.90, 1901.6)

Proposition 3b 20.67 201.02 .033 .163 -145.90 1812.4
Mean Dominance (A.7b) (11.97, 210.61) (.015, .179) (-212.69, 1901.6)

Proposition 3c 22.57 201.02 .037 .163 -142.76 1812.4
Mean Dominance (A.7c) (13.72, 210.61) (.019, .179) (-210.62, 1901.6)

Bounds under Combined Assumptions
Proposition 4 20.43 201.02 .034 .163 -188.43 -84.29
(A.5, A.6, A.7a) (13.01, 210.58) (.018, .180) (-265.95, -22.09)

Proposition 5 22.97 201.01 .039 .163 -145.90 -84.29
(A.5, A.6, A.7b) (14.53, 210.56) (.020, .180) (-213.01, -21.83)

Proposition 6 24.61 201.04 .042 .163 -142.76 -84.29
(A.5, A.6, A.7c) (16.01, 210.59) (.023, .180) (-210.62, -22.13)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses

are 95% level confidence intervals for true parameters of interest. The confidence intervals of the bounds under

each assumption are calculated by the method of Imbens and Manski (2004). For earnings and employment, the

confidence intervals of the bounds under combined assumptions are calculated by the method of Chernozhukov,

Lee and Rosen (2011), while the bounds under combined assumptions are estimated by the half-median unbiased

estimators proposed by Chernozhukov, Lee and Rosen (2011). For public benefits, the confidence intervals are

calculated by the method of Imbens and Manski (2004). Computations use the weights that account for sample

and interview design and interview non-response. Standard errors are calculated by 5000-repetition bootstrap.
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A Appendix

A.1 Proof

We present only the proof of Proposition 2, as the proofs for the rest of the propositions are

similar. Under Assumptions 1 through 4, AIR show that LATEc = (E[Y |Z = 1] − E[Y |Z =

0])/(p1|1 − p1|0). By Assumption 6(ii), and since we have ordered Z such that p1|1 > p1|0,

the direction of the monotonicity in Assumption 6(i) is identified from the sign of LATEc.

Here we consider only the case when LATEc > 0, as the sharp bounds when LATEc < 0

are constructed in the same way. From equation (1) we can write ATE = πat(E[Y (1)|at] −
E[Y (0)|at])+πnt(E[Y (1)|nt]−E[Y (0)|nt])+πcLATEc. Under Assumptions 1 though 4, the sam-
pling process identifies each of the quantities to the right of this equation except for E[Y (1)|nt]
and E[Y (0)|at], and thus equation (2) follows. Since there are no restrictions on these two
means other than those imposed by Assumptions 5 and 6(i), these two assumptions directly im-

ply the bounds yu ≥ E[Y (1)|nt] ≥ E[Y (0)|nt] = Y
10
and Y

01
= E[Y (1)|at] ≥ E[Y (0)|at] ≥ yl.

The lower (upper) bound on ATE in Proposition 2 is obtained from equation (2) by setting

E[Y (1)|nt] at its lower (upper) bound and E[Y (0)|at] at its upper (lower) bound.
For sharpness, first, ATE attains its smallest value when E[Y (0)|at] = Y

01
and E[Y (1)|nt] =

Y
10
. Otherwise, always-takers or never-takers violate Assumption 6(i). Similarly, ATE attains

its largest value when E[Y (0)|at] = yl and E[Y (1)|nt] = yu. Otherwise, always-takers or

never-takers violate Assumption 5. Next, we will show that ∀α ∈ [LB,UB], there exist dis-
tributions consistent with observed data, and ATE = α evaluated under such distributions.

∀α ∈ [LB,UB], it can be written as α = Y
11
p1|1−Y

00
p0|0+ q1p0|1− q0p1|0, where q1 ∈ [Y

10
, yu]

and q0 ∈ [yl, Y
01
]. Let FY1|Z,D(y1|1, d) denote the distribution of the potential outcome Y (1)

conditional on Z = 1 and D = d. Similarly, FY0|Z,D(y0|0, d) denotes the distribution of the
potential outcome Y (0) conditional on Z = 0 and D = d. Then, define

FY1|Z,D(y1|1, d) =
{
FY |Z,D(y|1, 1), if D = 1

1[y1 ≥ q1], if D = 0

and

FY0|Z,D(y0|0, d) =
{
FY |Z,D(y|0, 0), if D = 0

1[y0 ≥ q0], if D = 1
.

ATE = E[Y (1)− Y (0)]
= E[Y (1)|Z = 1]− E[Y (0)|Z = 0]
= p1|1E[Y (1)|Z = 1, D = 1] + p0|1E[Y (1)|Z = 1, D = 0] − p1|0E[Y (0)|Z = 0, D = 1] −

p0|0E[Y (0)|Z = 0, D = 0]

= p1|1E[Y |Z = 1, D = 1] + p0|1E[Y (1)|Z = 1, D = 0] − p1|0E[Y (0)|Z = 0, D = 1] −
p0|0E[Y |Z = 0, D = 0]

= p1|1Y
11
+ p0|1q1 − p1|0q0 − p0|0Y

00
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= α.

The second line follows Assumption 1, the third line follows Law of Iterated Expectation,

and the fourth and fifth lines follow the defined distributions.

A.2 GMM Moment Function

We write the moment functions for average baseline characteristics of all the strata based on the

conditional expectation defined by {Z,D}. Let xk denote the expectation of a scalar baseline
variable for a certain stratum k. The moment function for this variable is defined as:

g({xk}) =


(x− xat)(1− Z)D
(x− xnt)Z(1−D)

(x− xc πcp1|1 − xa
πat
p1|1
)ZD

(x− xc πcp0|0 − xn
πnt
p0|0
)(1− Z)(1−D)

x−
∑

k πkxk


where {xk} = {xat, xnt, xc}. By Law of Iterated Expectation, E[g({xk})] = 0 when evaluated
at the true value of {xk}.

Alternatively, we could also write the moment function for the proportions of all the strata

and then estimate the model together with the average baseline characteristics simultaneously

by GMM. However, such GMM estimators do not behave well in our data. Thus, in our

application, we first identify the proportions of all the strata, and then estimate all the average

baseline characteristics given the identified proportions. As seen in g({xk}), for each variable,
we have 5 equations (4 derived from the conditional expectations defined by {Z,D} plus one
from the expectation for the entire sample) to identify 3 means, i.e., {xk}. Since the standard
errors obtained from this GMM model do not take into account the fact that the proportions of

the strata are also estimated, we employ a 500-repetition bootstrap to calculate the standard

errors of the estimated average baseline characteristics.
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A.3 Empirical Results on the LATEs

Appendix Table A1: Bounds for Earnings at Week 208

LATEnt LATEat ATE
LBnt UBnt LBat UBat LB UB

Bounds under Each Assumption
Proposition 1 -223.79 641.87 -733.57 132.10 -69.86 201.02
Bounded Outcome (-233.61, 651.70) (-758.51, 157.03) (-78.34, 210.61)

Proposition 2 .000 641.87 .000 132.10 22.19 201.02
Monotonicity (.000, 651.70) (.000, 157.03) (14.18, 210.61)

Proposition 3a -91.70 641.87 -91.70 132.10 -6.507 201.02
Mean Dominance (-118.63, 651.70) (-118.63, 157.03) (-16.65, 210.61)

Proposition 3b 6.834 641.87 -77.86 132.10 20.67 201.02
Mean Dominance (-4.625, 651.70) (-103.62, 157.03) (11.97, 210.61)

Proposition 3c 13.03 641.87 -72.43 132.10 22.57 201.02
Mean Dominance (1.260, 651.70) (-99.15, 157.03) (13.72, 210.61)

Bounds under Combined Assumptions
Proposition 4 .000 641.88 .000 132.08 20.43 201.02

(.000, 651.70) (.000, 158.98) (13.01, 210.58)

Proposition 5 3.032 641.89 .000 132.12 22.97 201.01
(.000, 651.70) (.000, 159.07) (14.53, 210.56)

Proposition 6 9.119 641.88 .000 132.12 24.61 201.04
(.000, 651.70) (.000, 159.07) (16.01, 210.59)

Note: Numbers in parentheses are 95% level confidence intervals for true parameters of interest. The confidence

intervals of the bounds under each assumption are calculated by the method of Imbens and Manski (2004). The

confidence intervals of the bounds under combined assumptions are calculated by the method of Chernozhukov,

Lee and Rosen (2011). The bounds under combined assumptions are estimated by the half-median unbiased

estimators proposed by Chernozhukov, Lee and Rosen (2011). Computations use the weights that account

for sample and interview design and interview non-response. Standard errors are calculated by 5000-repetition

bootstrap.
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Appendix Table A2: Bounds for Employment at Week 208

LATEnt LATEat ATE
LBnt UBnt LBat UBat LB UB

Bounds under Each Assumption
Proposition 1 -.600 .400 -.607 .393 -.150 .163
Bounded Outcome (-.620, .421) (-.668, .454) (-.167, .179)

Proposition 2 .000 .400 .000 .393 .038 .163
Monotonicity (.000, .421) (.000, .454) (.021, .179)

Proposition 3a -.207 .400 -.207 .393 -.027 .163
Mean Dominance (-.272, .421) (-.272, .454) (-.050, .179)

Proposition 3b .011 .400 -.185 .393 .033 .163
Mean Dominance (-.013, .421) (-.247, .454) (.015, .179)

Proposition 3c .025 .400 -.176 .393 .037 .163
Mean Dominance (.000, .421) (-.240, .454) (.019, .179)

Bounds under Combined Assumptions
Proposition 4 .000 .400 .000 .393 .034 .163

(.000, .421) (.000, .458) (.018, .180)

Proposition 5 .003 .400 .000 .393 .039 .163
(.000, .421) (.000, .458) (.020, .180)

Proposition 6 .017 .401 .000 .393 .042 .163
(.000, .421) (.000, .458) (.023, .180)

Note: Numbers in parentheses are 95% level confidence intervals for true parameters of interest. The confidence

intervals of the bounds under each assumption are calculated by the method of Imbens and Manski (2004). The

confidence intervals of the bounds under combined assumptions are calculated by the method of Chernozhukov,

Lee and Rosen (2011). The bounds under combined assumptions are estimated by the half-median unbiased

estimators proposed by Chernozhukov, Lee and Rosen (2011). Computations use the weights that account

for sample and interview design and interview non-response. Standard errors are calculated by 5000-repetition

bootstrap.
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Appendix Table A3: Bounds for Public Assistance Benefits in Year 4

LATEnt LATEat ATE
LBnt UBnt LBat UBat LB UB

Bounds under Each Assumption
Proposition 1 -880.67 6990.6 -7325.8 545.45 -632.86 1812.4
Bounded Outcome (-959.40, 7069.3) (-7506.9, 726.53) (-702.21, 1901.6)

Proposition 2 -880.67 .000 -7325.8 .000 -632.86 -84.29
Monotonicity (-959.40, .000) (-7506.9, .000) (-702.21, -22.13)

Proposition 3a -335.22 6990.6 -335.22 545.45 -188.43 1812.4
Mean Dominance (-531.16, 7069.3) (-531.16, 726.53) (-265.90, 1901.6)

Proposition 3b -182.32 6990.6 -298.80 545.45 -145.90 1812.4
Mean Dominance (-272.08, 7069.3) (-488.95, 726.53) (-212.69, 1901.6)

Proposition 3c -172.85 6990.6 -284.64 545.45 -142.76 1812.4
Mean Dominance (-264.71, 7069.3) (-484.84, 726.53) (-210.62, 1901.6)

Bounds under Combined Assumptions
Proposition 4 -335.22 .000 -335.22 .000 -188.43 -84.29

(-531.16, .000) (-531.16, .000) (-265.95, -22.09)

Proposition 5 -182.32 .000 -298.80 .000 -145.90 -84.29
(-272.08, .000) (-488.95, .000) (-213.01, -21.83)

Proposition 6 -172.85 .000 -284.64 .000 -142.76 -84.29
(-264.71, .000) (-484.96, .000) (-210.62, -22.13)

Note: Benefits include AFDC/TANF, food stamps, SSI/SSA, and General Assistance. Numbers in parentheses

are 95% level confidence intervals for true parameters of interest. The confidence intervals are calculated by the

method of Imbens and Manski (2004). Computations use the weights that account for sample and interview

design and interview non-response. Standard errors are calculated by 5000-repetition bootstrap.
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