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Abstract

I estimate a dynamic model of educational decisions when researchers do

not have access to measures of study effort. Students choose the academic level

of their program and the probability to perform well. This differs from a pure

discrete choice model that assumes performance follows an exogenous law of

motion. I investigate high school tracking policies and obtain the following

results: (1) encouraging underperforming students to switch to less academic

programs reduces grade retention and dropout, (2) the decrease in the number

of college graduates is small, and (3) a pure discrete choice model would ignore

changes in unobserved study effort and find a large decrease in the number of

college graduates.
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1 Introduction

Students follow different curricula during secondary education, depending on their

preferences and ability. Many countries separate students in academic or vocational

tracks. Academic curricula do not focus on skills that are directly useful in the labor

market but provide preparation for higher education. To achieve the European 2020

target of 40% college-educated people, many countries aim to induce more students to

choose academic curricula. In the US, there is a similar trend towards more academic

course taking, especially in STEM (Science, Technology, Engineering, Math)-fields.1

This trend raises two related concerns. First, it is unclear how many students ex-

perience a causal effect of a more academic curriculum on success in higher education.

Second, students who would experience large difficulties in completing an academic

trajectory would waste time and effort they could otherwise spend on training skills

that are of direct use in the labor market. Mismatch and failure can demotivate stu-

dents and lead to unfavorable outcomes such as grade retention and dropout. These

outcomes generate large costs for both students and society. In this paper, I investi-

gate how to design policies that help in matching students to a study program. This is

a general concern in the design of educational systems, but it is especially important

in countries that allocate students into entirely different tracks at an early age.2

I use a dataset that combines rich information on student characteristics and

ability, study program attendance, and performance in secondary education with

data on higher education careers. I use micro-data of Flanders, the largest region of

Belgium. Study programs consist of tracks and elective courses within each track.

Tracking occurs gradually. Students choose a program when they enter high school at

1The 2011 NAEP report compares high school students graduating in 2005 to students graduating
in 1990. They find that they take more academic credits (16 on average instead of 13.7). The
percentage of students that followed a rigorous curriculum also increased from 5% to 13% (Nord
et al., 2011).

2Germany and Austria differentiate from the age of 10. Belgium and the Netherlands differentiate
from age 12. Most of these early tracking countries also face much higher rates of grade retention
(OECD, 2013).
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age 12 but this choice can be updated almost every year. Students that underperform

can switch out of an academically rigorous program or have to repeat the grade. I

study the impact of study programs that differ in their academic level on higher

education enrollment and graduation and the extent to which the gradual tracking

policy helps to improve these outcomes. Next, I look at an alternative policy that

prevents students from repeating grades.

I develop a dynamic model of educational decisions in which high school students

make yearly decisions about their level of academic effort. They do this by making

a discrete choice between the study programs in their choice set and by deciding on

the probability of good performance at the end of the year. Allowing students to

influence both the study program and the distribution of performance is novel and it

is particularly important for the counterfactual simulations in this paper as we expect

students to change their (unobserved) study effort in response to tracking policies.

The decision of a study program is based on the effort cost of studying today and

the impact on future utility. The effort cost depends on (1) a fixed cost, independent

of the expected performance, and (2) a variable cost, increasing in the probability

to obtain a good performance outcome at the end of the year. Good performance is

costly but required to continue in the program and eventually graduate. I allow for

uncertainty in the form of performance and taste shocks, which could lead students to

make decisions that are ex-post suboptimal. From a social perspective, mismatches

also arise, in particular, because students do not take into account the costs of grade

repetition and drop out on government spending.

In a pure discrete choice model, the Conditional Choice Probabilities (CCPs) in

the data can be rationalized as choices made by optimizing agents in a given policy

context. This way, utility can be identified and new CCPs can be calculated in

counterfactual policy simulations (Magnac and Thesmar, 2002; Rust, 1987). Many

dynamic models additionally include (other) state variables that transition over time

but are assumed to be outside the control of the agents in the model, i.e. they
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are modeled as exogenous laws of motion. In the classic Rust (1987) bus engine

model, CCPs capture the effect of mileage on replacing a bus engine. Conditional

on this decision, transitions of mileage are outside the agent’s control. In contrast

to the CCPs, they are interpreted as primitives and kept fixed in counterfactual

simulations. Therefore, a counterfactual increase in replacement cost would predict

postponing some engine replacements, but it cannot predict a less intensive use of

buses with older engines. In educational models, state transitions are often the result

of a stochastic performance outcome, such as course grades or credits (Arcidiacono

(2004), Arcidiacono et al. (2016), Declercq and Verboven (2018), Eckstein and Wolpin

(1999), and Joensen and Mattana (2017)). By not determining it within the model,

it excludes any effect a policy can have on the study effort students exert.

I adapt the pure discrete choice model by adding an unobserved choice variable:

“effective study effort”. This is a scalar that allows students to set the distribution of

state transitions. In this context, it means they choose the probability to be success-

ful at the end of the year. Making this a choice variable does not change the fit of

the model to the data (as we can perfectly match this probability in the data using

a flexible function of state variables), but it changes the impact of counterfactual

simulations if study effort is expected to change. This innovation does not require

additional data. Instead, I make use of an Euler equation that arises naturally in

dynamic models but is not exploited in a pure discrete choice model: a first-order

condition that equates the (unobserved) marginal cost of improving the distribution

of performance today to the marginal benefit it is expected to generate in the future.

The benefit of a better performance outcome (i.e. a better state) is easy to derive from

a dynamic model. At its optimal level, this has to be consistent with the observed

distribution of performance. In a pure discrete choice model, this trade-off does not

arise as agents are assumed to be unable to change the performance distribution,

regardless of its cost. The identifying power of this first-order condition allows me to

transform flow utility and state transitions (primitives in the pure dynamic discrete
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choice models and identified in Magnac and Thesmar (2002)) to a new set of primi-

tives: the fixed cost of a study program and the marginal costs of increasing effective

study effort. Because primitives of the pure discrete choice model serve as inputs for

the identification of the primitives in the current model, it is straightforward to ap-

ply standard approaches to identify and estimate a model with persistent unobserved

heterogeneity and avoid solving it during estimation by applying CCP estimation

and finite dependence (Arcidiacono and Miller, 2011; Hotz and Miller, 1993; Hu and

Shum, 2012).

To look at the impact on higher education, I simultaneously estimate the struc-

tural effect of high school study program and grade retention on enrollment in and

graduation from higher education. I control for gender, parental education, and two

continuous measures of cognitive ability at the start of high school. To allow for

persistent heterogeneity that is not captured by these controls, I allow for a discrete

factor structure in the form of two unobserved types. The primitives during high

school are functions of these observables and types and therefore generate heteroge-

neous predictions of high school decisions and outcomes. Moreover, they also have

a direct impact on enrollment in and graduation from higher education. This allows

me to control for both observed and unobserved characteristics of students in the

estimation of the effects of high school programs and study delay on higher education

outcomes. Unobserved heterogeneity and the causal effects of high school outcomes

can be identified without strong functional form assumptions by exploiting rich panel

data (Freyberger, 2018; Hu and Shum, 2012). The Flemish context is particularly

useful for this purpose as most students make choices and obtain (at least one) per-

formance outcome every year, during at least six years. Furthermore, some variables

do not have a direct impact on higher education, which helps the identification of

causal effects under weaker assumptions on the nature of unobserved heterogeneity

(Heckman and Navarro, 2007). The results are also robust to applying an alterna-

tive identification strategy that follows Carneiro et al. (2003) and uses a large set of
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measures of unobserved traits to identify the types.

I find a positive impact of a higher academic level of study programs on obtaining

a higher education degree, and a negative impact of past grade retention. Counter-

factual simulations are therefore needed to predict the impact of policies that are

expected to change both in opposite directions. Allowing underperforming students

to switch to a program of lower academic level (downgrade) as an alternative for re-

peating a grade has important benefits in the long run. Without this possibility, the

number of students with grade retention and high school drop out would increase by

a third and the number of college graduates would decrease by 4%. A second coun-

terfactual shows that this policy can be improved. Prohibiting students to repeat a

grade (if they have the option to downgrade), would decrease the number of retained

students by a third and dropout by 11%. Enrollment in higher education would go

down but the number of students that obtain a higher education degree would not

decrease significantly. A welfare analysis shows that this policy can create a loss for

students, but it is largely offset by the taxpayers’ gains through decreased educational

spending and increased tax returns. The large impact of initial conditions on effort

costs suggests these gains should be invested in early childhood education.

I compare this to the predictions of a pure discrete choice model and find an

underestimation of the positive effects in both simulations. This can be explained

by students reacting to the policy by improving their study effort. This makes them

less likely to repeat grades or dropout, and more likely to graduate from an academic

program. This in turn has an impact on higher education. In the policy where

underperforming students are no longer allowed to repeat a grade, a pure discrete

choice model would predict an important reduction in the number of college graduates

(2.5%) while a model that allows for changes in study effort finds a much smaller and

statistically insignificant effect of less than 1%.

This paper contributes to three strands of literature. First, I contribute to the

estimation of dynamic discrete choice models in general, and educational decision
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making in particular. Since the seminal contribution of Keane and Wolpin (1997),

dynamic discrete choice models have often been used to evaluate the impact of coun-

terfactual policies on educational decisions. This includes the decision to stay in high

school, go to college, or choose a major.3 Allowing students to be forward-looking is

important because they are expected to react in advance to an impact on their utility

in the future. In the pure discrete choice model, the only channel through which

students can respond is through observable choices like a study program or the years

of schooling. This excludes any direct response on performance outcomes through

the study effort they exert during the year. This means that the model is not capable

of generating the results that were found in theory (Costrell, 1994), field experiments

(Dubois et al., 2012), and natural experiments (Garibaldi et al., 2012). Therefore,

some recent papers have included observable measures of study effort in the model

(Fu and Mehta, 2018; Todd and Wolpin, 2018), but these are often unavailable and

can only proxy for the actual effort students exert. I propose an alternative strategy

that can be used when only program and performance data are available. Similar to

Hu and Xin (2019), I allow for an unobserved choice variable that influences state

transitions. The difference between our approaches is that I do not impose an ex-

clusion restriction in the state transition rule.4 Instead, I make use of a first-order

condition coming from the dynamics in the model. A similar idea is applied in some

job search models when the probability to find a job is modeled as a choice variable

(Cockx et al., 2018a; Paserman, 2008; van den Berg and van der Klaauw, 2019). I em-

bed this idea within the framework of dynamic discrete choice models in the spirit of

Rust (1987), Hotz and Miller (1993) and Arcidiacono and Miller (2011): I formulate

3See e.g. Eckstein and Wolpin (1999), Arcidiacono (2005), Joensen and Mattana (2017) or
Declercq and Verboven (2018). The same type of models have also been used to look at the impact
of wage returns on educational decisions (Arcidiacono, 2004; Beffy et al., 2012).

4Hu and Xin (2019) demonstrate this by using time as an exclusion restriction in a finite horizon
model. This rules out using it when the horizon is infinite or when other primitives depend on time.
The latter is particularly important in educational choice models such as this application. This is
because the grade a student is in, combined with the years of study delay are perfectly collinear with
the calendar year. Both are expected to influence the flow utility of a program, thereby violating
the exclusion restriction.
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identification and estimation strategies that are generally applicable when researchers

want to allow agents to have a direct impact on the distribution of state variables

through an unobserved choice. I discuss the importance of this approach in the con-

text of educational decisions and quantify the impact by showing the differences it

generates in relevant policy simulations.

A second strand of literature investigates the returns to educational investments.

Altonji et al. (2012) review the literature on the effects of high school curriculum

on educational attainment and wages, initiated by Altonji (1995). Several papers

find positive effects for intensive math courses (Aughinbaugh, 2012; Goodman, 2019;

Joensen and Nielsen, 2009; Rose and Betts, 2004). Papers that compare academic

and vocational curricula stress the importance of comparative advantages and hetero-

geneous effects (Kreisman and Stange, 2017; Meer, 2007). While investing in certain

high school programs matters, selection into them is not random. This explains

why investing in early childhood education is effective because it induces students to

opt for better programs in later life through dynamic complementarities (Cunha and

Heckman, 2009; Cunha et al., 2010; Heckman and Mosso, 2014). A separate literature

looks at the causal impact for an individual student of being retained in school (Cockx

et al., 2018b; Fruehwirth et al., 2016; Jacob and Lefgren, 2009; Manacorda, 2012).

I contribute to this literature by jointly analyzing high school program choice and

grade retention within a structural model.5 This approach has several advantages:

(1) it allows me to simulate an implementable policy to reduce grade retention, which

goes beyond an interpretation of treatment effects by taking into account the impact

of the threat of grade retention on effort decisions, (2) counterfactual policies illus-

trate dynamic complementarities by comparing remedial strategies in high school to

the effects of initial conditions, (3) I identify new primitives that quantify the cost of

grade retention and differences in effort costs between students with different initial

5I distinguish between high school programs of different academic level (tracks) and look at
differences within tracks, based on math-intensity and the inclusion of classical languages in the
curriculum.
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conditions.

Finally, I contribute to the literature on educational tracking policies. Several

papers look at the impact of tracking students at an early age (Cummins, 2017; Duflo

et al., 2011; Fu and Mehta, 2018; Hanushek and Woessmann, 2006; Pekkarinen et al.,

2009; Roller and Steinberg, 2020) or the long-run impact of the academic track for

specific groups of students (Dustmann et al., 2017; Guyon et al., 2012). Cockx et al.

(2018b) look at average treatment effects for outcomes within high school for stu-

dents that are forced to repeat grades or switch tracks. Recent evidence also suggests

that switching track can diminish the negative consequences of early track choice

(De Groote and Declercq, 2020; Dustmann et al., 2017). I contribute to this liter-

ature by investigating the impact of flexibility in tracking policies during secondary

education.

The rest of the paper is structured as follows. Section 2 highlights the method-

ological contribution of the paper by discussing the intuition in a simple two-period

binary choice model and by showing how the model is identified without additional

data. Section 3 describes the institutional context, the data, and policy issues, and

section 4 applies the model to the data. I discuss the estimation results in section 5

and I simulate tracking policies in section 6. Finally, I conclude in section 7.

2 The cost of effort

This section describes the methodological contribution of the paper. To provide

intuition, I discuss this in a two-period, binary choice model of educational decisions

in which unobservables only enter through iid taste and performance shocks. Students

choose to drop out of school and they can do that in period 1 (high school) or period

2 (college). Performance enters the model as a dummy equal to one when a student

obtains a high school degree, which is required to access higher education. I will show

how this model is identified in the main text and refer to the appendix for a proof that
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holds in a more general case that allows for multiple alternatives, time periods, and

performance outcomes, as well as a time-invariant unobserved state variable. Finally,

I discuss how to estimate the model without solving it, using the CCP estimator

(Hotz and Miller, 1993).

2.1 A standard model set-up

Consider a student i right before entering the final year of high school in period t = 1.

He can decide to stay in school (j = 1) by finishing high school. He can also choose

to drop out of school (j = 0). If i stays in school, he incurs a flow utility equal to

u(xi) + εij1.

xi is a vector of time-invariant state variables that are known to the econometrician

and the student, such as parental background and observed measures of ability. εijt

is an extreme value type 1 distributed taste shock, unobserved by the econometrician

but observed at time t by the student. In the spirit of Keane and Wolpin (1997), I

call −(u(xi) + εij1) the “effort cost” of going to school.

After t = 1, i can obtain a high school degree. This creates a state variable in the

form of a dummy that is only available in t = 2: gi = 1. I allow for uncertainty and

assume students obtain a degree if

f(xi) + ηi > 0

with f(xi) an index and ηi a logit shock, realized in t = 2. The probability to obtain

a degree is then

Pr(gi|xi) =
exp(f(xi))

1 + exp(f(xi))
. (1)

Students who drop out (j = 0) in t = 1 never return to school and receive a

lifetime utility of dropping out. In t = 2, students that obtained a high school degree
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have to option to stay in school (j = 1) by going to college. They can also still opt

for drop out. The lifetime utility after leaving high school is specified as follows:

Ψj(xi) + εij2.

I do not distinguish between different sources of this utility and directly estimate Ψ0(.)

and Ψ1(.) as policy-invariant functions of xi.
6 To keep this model simple, I make

the following (strong) assumptions that are important to relax in the application,

but avoid some complexities in explaining the methodological contribution: I do not

allow for grade retention by assuming that students who failed have to drop out, and

I assume Ψ0(xi, gi) ≡ Ψ0(xi). This implies that a high school degree only has value

when it is used to get into college. As only differences in utility are identified, we

need to treat Ψ0(xi) as known (Magnac and Thesmar, 2002). I will, therefore, set

Ψ0(xi) = 0 and interpret the other Ψj(xi) as differences in expected lifetime utility.

2.2 Solution when performance is not determined within the

model

If we assume the state transition, i.e. the probability to obtain a degree, is exogenous

to the student, we can directly solve the model by backward induction. In t = 2, i has

a choice only when he obtained a high school degree. Since t = 2 is the final period,

this is equivalent to a static model. He chooses to go to college if Ψ1(xi) + εi12 > εi02

and drop out otherwise. Let dit be a dummy equal to 1 if i chooses to go to school

at time t. The probability to go to school in t = 2 for students with a high school

degree is given by:

Pr(di2 = 1|xi, gi = 1) =
exp(Ψ1(xi))

1 + exp(Ψ1(xi))
. (2)

6These values could follow from differences in expected discounted wages, but also because of an
intrinsic value of (not) going to college.
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In period 1, the problem is dynamic. Students do not know if they will be suc-

cessful in school. They only know the distribution of gi and make a decision under

uncertainty. There is also uncertainty about the next period taste shocks. The life-

time utility of drop out is given by Ψ0(xi)+εi01 = εi01. The lifetime utility of choosing

the high school option is represented by the conditional value function (added with

taste shock εi11) :

v(xi) = u(xi) + βγ + β (Pr(gi|xi) ln (1 + exp Ψ1(xi, gi = 1))) (3)

with γ the Euler constant, β ∈ (0, 1) the one-period discount factor and ln (1 + exp Ψ1(xi, gi = 1))

the logsum expression, net of γ.7 The probability to go to school in period 1 is then

given by

Pr(di1 = 1|xi) =
exp v(xi)

1 + exp v(xi)
. (4)

After fixing β, we can estimate f(xi), u(xi), and Ψ1(xi) using a parametric form

with the logit probabilities in (1), (2), and (4) in a likelihood function. They can also

be recovered nonparametrically from log odds in the data.8

2.3 The wrong primitives

Assume now we want to use this model for a counterfactual that changes the impact

of a high school degree. For example, we would like to know the change in college

enrollment when college utility Ψ1 increases. This would have a direct impact on

college enrollment among high school graduates through (2). In a dynamic model,

this would also have an impact before the college enrollment decision because a high

school degree is required to enter college. We can see this in (4) with conditional value

7The logsum expression is the result of integrating over the type 1 extreme value taste shocks.
8E.g. Pr(di2 = 1|xi, gi = 1) at each realization of xi can be used to recover the value of higher

education: Ψ1(xi) = ln
(

Pr(di2=1|xi,gi=1)
1−Pr(di2=1|xi,gi=1)

)
.
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functions specified in (3), which is increasing in Ψ1. With a constant Pr(gi|xi), more

students will have a high school degree and will be able to choose to go to college,

further increasing college enrollment.

However, this is likely an underestimation of the effect. Staying in high school to

go to college only makes sense for students who obtain a high school degree. This

gives them a reason to exert more study effort to make sure they succeed. Therefore,

keeping Pr(gi|xi) fixed in (4) is problematic. In particular, f(xi), the estimated index

that predicts high school completion, is likely not policy invariant. Students with

the same characteristics xi will be more likely to obtain a high school degree after

the change in college utility. Furthermore, an increase in study effort is expected to

decrease the flow utility of going to school. Therefore u(xi) is also not policy-invariant.

2.4 Existing approaches in the literature

Performance takes the form of obtaining a high school degree. Later in this paper, it

will also refer to evaluations at the end of each year in high school. Other examples

of performance that have been used in dynamic discrete choice models are course

grades (Arcidiacono, 2004; Arcidiacono et al., 2016; Eckstein and Wolpin, 1999),

course credits (Declercq and Verboven, 2018; Joensen and Mattana, 2017), college

admission probabilities (Arcidiacono, 2005) or length of study (Beffy et al., 2012).

The papers avoid the problem by assuming students are not able to influence

study effort.9 This is a strong assumption that has been rejected in both field and

natural experiments (Dubois et al., 2012; Garibaldi et al., 2012). Nevertheless, in

many cases, it can be argued that the impact of a particular counterfactual through

this channel will be limited. As explained in the introduction of this paper, this is

9As in Keane and Wolpin (1997), one could instead ignore a year of schooling that is not suc-
cessfully completed, i.e. di1 = 1 only if we also observe gi = 1. This way, we do not need to take
stance on the process of gi. A counterfactual change in di1 now also captures the students that were
already in school but needed this extra incentive to get a degree. The problem with this approach
is that we do not observe how the probability to obtain a degree changes because of the policy and
we cannot run counterfactuals that change the implications of that.
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not the case for the counterfactuals put forward in this paper.

An alternative solution is to specify (3) and (1) such that u(.) and f(.) depend

on a vector of observed measures of effort e, with ∇f(e) > 0 and ∇u(e) < 0 as in

Todd and Wolpin (2018) and Fu and Mehta (2018). If e is also optimally chosen in

the model, it could capture the expected change in study effort and the invariant

mapping between f and x and u and x is no longer problematic. The problem with

this approach is that we need to observe measures of effort and identify their impact

on performance and utility, separately from student background. In most datasets,

such measurements are also unavailable or are unlikely to capture its full extent.

2.5 Alternative approach: new primitives

Instead of assuming the flow utility (=- effort cost) in high school is constant, we

now let it be a linear function of an index that characterizes the distribution of

performance, called effective study effort. Let the probability to obtain a high school

degree be given by φ(yi) with yi ∈ (0,+∞), a continuous choice variable, and ∂φ(yi)
∂yi

>

0 . We specify a linear utility function in yi:

u(xi, yi) = −C0(xi)− c(xi)yi. (5)

with c(xi) ≡ −∂u(xi,yi)
∂yi

the marginal effort cost of changing yi and C0(xi) ≡

−u(xi, 0) a fixed effort cost. I assume the probability to obtain a high school de-

gree is given by

φ(yi) =
yi

1 + yi
. (6)

With the current functional form assumptions, yi can be interpreted as the odds

of obtaining a high school degree (yi = φ(yi)
1−φ(yi)

). Therefore, we can interpret c(xi) as

the marginal cost to increase the odds by one unit and C0(xi) as the component of

the effort cost that does not change with the probability to obtain a degree. The fixed

cost, therefore, captures a distaste to go to school because of differences in preferences
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or social norms. The cost can also be negative because students might enjoy going to

school or parents can reward (or force) them to go. c(xi) > 0 is the marginal cost of

increasing the odds to obtain a degree. A higher level of yi corresponds to a higher

cost but also a higher chance to obtain a degree.

The equations above impose two assumptions that appear unintuitive if we con-

sider yi to be a measure of effort: (1) utility is linear in yi (see (5)) and (2) performance

depends only on yi, not on student characteristics (xi) (see (6)). To discuss these as-

sumptions, I start by clarifying how yi can be interpreted as a measure of effective

study effort.

For ease of interpretation, we could write effective study effort as yi = Yi(ei) with

ei a vector of all measures of effort that matter for performance (such as hours of study

or minutes of attention paid in class) and Yi(.) a production function. This function

could depend on individual characteristics (such as ability or parental inputs). In

this model, we assume the researcher does not know Yi(.) or ei, but specifies a trans-

formation of performance outcomes yi and allows this to be a choice variable of the

student. This provides a flexible way to model effort, especially without access to

effort data.

First, we can interpret marginal cost estimates as capturing differences in the cost

of studying because of differences in student characteristics, even without identifying

the production function. A student of low ability is expected to have a worse technol-

ogy Yi(.) and would, therefore, need a higher number of hours of study in ei for the

same increase in yi than a high ability student. In the model, this will imply a higher

marginal cost c(xi).
10 In models with more time periods, marginal costs can flexibly

depend on past choices and outcomes to also capture how this influences study effi-

ciency today. In contrast to the estimates of a production function, the interpretation

of marginal cost estimates is in utility units, not in their effect on performance. This

is important for defining the primitives of the model as we will allow performance to

10Further in this section we extend the state space with unobserved heterogeneity which allows
for similar statements about the impact of unobserved ability.
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change in counterfactuals.

Second, a counterfactual simulation is expected to change ei but choice probabil-

ities and welfare depend on yi = Yi(ei). Therefore, we do not require data on ei and

we do not need to make assumptions on Yi(.). We can even be more agnostic about

the source of the change in yi as it could also go through induced changes in study

efficiency.

The assumption that utility is linear in yi (5) is key for the identification of C0(xi)

and c(xi). This assures that fixed and marginal costs are primitives of the model and

can be used in counterfactual simulations. Note that this holds for the specific choice

of the researcher about yi, i.e. about how the performance outcome depends on a

choice variable that linearly enters the utility function.11 In a pure discrete choice

model, a researcher does not have this flexibility as utility and state transitions are

assumed to remain the same in counterfactuals. The linear structure is required

here to define the transformations of utility that are primitives. In this context, yi is

chosen to be the odds of obtaining a degree. This means that the linearity assumption

should be interpreted as an assumption that the marginal cost of improving the odds

does not change in counterfactual simulations. For counterfactuals that involve small

changes in the utility of students, this choice might not be very important as the

estimation approach will estimate the primitives in such a way that they predict the

data in the status quo. For larger changes in behavior, it is important to choose yi

according to the application. An alternative assumption would be to let yi be the

probability to obtain a degree. However, a policy-invariant marginal cost would imply

the unrealistic assumption that the cost to increase the probability to graduate from

50 to 51% is equally costly than to increase it from 98 to 99%. It is much more

reasonable to assume a cost function that is increasing and convex, i.e. the utility

function should be decreasing and concave. This is the case if yi is defined as the

11This is a crucial difference with a pure discrete (or a discrete/continuous) model that would
include some observable measure ei in the model as ei is data and cannot be specified by the
researcher.
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odds instead.12

The fact that yi is defined by the researcher also explains why xi does not enter

the probability to obtain a high school degree as we can always define a new y
′
i such

that φ(y′i) ≡ φ(xi, yi). In the application, I will show that in the case of discrete or

multiple performance outcomes, it can be useful to make the probability depend on

some elements of xi to impose a structure that uses a single measure of effective effort

to keep the model tractable with a diverse set of discrete performance outcomes.

2.6 Solution with endogenous performance distribution

The conditional value function of going to high school is now given by:

v(xi, yi) = u(xi, yi) + βγ + β (φ(yi) ln (1 + exp Ψ1(xi))) (7)

Instead of assuming the performance distribution is exogenous, we can let yi be a

choice variable by maximizing v with respect to yi. This gives the following first-order

condition (FOC):

dv(xi, yi)

dyi
=
∂u(xi, yi)

∂yi
+ β

(
∂φ(yi)

∂yi
ln (1 + exp Ψ1(xi))

)
= 0 if yi = y∗i (8)

with y∗i the optimal choice of yi,
∂u(xi,yi)
∂yi

= −c(xi) and ∂φ(yi)
∂yi

= (1 + yi)
−2.13

This FOC is an Euler equation that equalizes today’s marginal cost of effective study

effort to its marginal benefit in the next period. In this (simple) case, we obtain a

closed-form solution:

y∗i =

√
β ln (1 + exp Ψ1(xi))

c(xi)
− 1. (9)

We see that the optimal level of yi increases in the discounted surplus of being able

12Let ḡi = φ(yi), then du(xi,yi)
dḡi

= ∂ui

∂yi

dφ−1(ḡi)
dḡi

< 0 with ∂ui

∂yi
= −c(xi) < 0 and dφ−1(ḡi)

dḡi
= 1

(1−ḡi)2 >

0, d2u(xi,yi)
dḡ2

i
= −c(xi) 2

(1−ḡi)3 < 0.

13The second-order condition is always satisfied: d2v(xi,yi)
dy2

i
= −2β(1+yi)

−3 ln (1 + exp Ψ1(xi)) < 0.
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to enter college (β ln (1 + exp Ψ1(xi))) and decreases in its marginal cost c(xi). Note

that requiring an interior solution for yi puts an upper bound on marginal costs. If

they are larger than the discounted benefit of a high school degree, the student would

have no incentive to exert effort.14

We can now revisit the counterfactual of section 2.3. An increase in Ψ1 will result

in a higher value of yi (see (9)). According to (6), this leads to a better probability

to obtain a degree φ(yi). It also leads to lower flow utility because of the increase in

the variable component of the effort cost c(xi)yi (see (5)). Not only Ψ1 but also flow

utility and state transitions in the conditional value function (7) are now changing

because the model is capturing a change in study effort.

2.7 Identification

I first discuss the identification of this simplified model which shows how a first-order

condition can provide identifying power for the new primitives of the model. I then

explain the intuition of the general proof of identification that can be found in the

Appendix section A.

2.7.1 The simplified model

Ψ1(xi) is still identified from period 2 choices as before. The difference now is that the

performance index f(xi) and the flow utility u(xi) are endogenous (i.e. determined

within the model) and depend on two new primitives: fixed costs C0(xi) and marginal

costs c(xi). Magnac and Thesmar (2002) show that for given state transitions, we

can identify u(xi).
15 State transitions are nonparametrically identified from the data,

14This follows from an identification approach that uses a first-order condition and is satisfied
when students expect a non-zero probability of obtaining a high school degree. In applications, it
is standard to (implicitly) assume this on state transitions (see e.g. Arcidiacono (2005); Beffy et al.
(2012); Declercq and Verboven (2018); Eckstein and Wolpin (1999); Joensen and Mattana (2017)).
Hu and Xin (2019) show that exclusion restrictions can be used to identify a discrete unobserved
choice.

15Note that dynamic discrete choice models are nonparametrically unidentified. Magnac and
Thesmar (2002) show that we need to specify the distribution of εijt, the discount factor β and
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which implies the identification of the index f(xi). As they are now endogenous, we

identify them at their optimal level in the data: u∗(xi) and f ∗(xi). We cannot treat

them as primitives anymore, but they remain useful from an identification point of

view because we can use them to recover alternative primitives in a second step.

To see this, first note that the optimal level of effort in the data, y∗i , is a transfor-

mation of the identified index f ∗(xi). This is because (9) shows that students with the

same value of xi, choose the same level of yi : y∗i ≡ y∗(xi) and φ(y∗(xi)) ≡ Pr(gi|xi).

Therefore, from (1) and (6) at the optimized value of y∗i it follows that:

y∗i = y∗(xi) = exp(f ∗(xi)). (10)

With the identified objects Ψ1(xi), u(xi, y
∗(xi)) ≡ u∗(xi), and y∗i ≡ y∗(xi), we

can now proceed to the identification of the new primitives of the model. The FOC

allows us to identify marginal costs from the marginal benefits at y∗i . Rearrange (8)

and substitute (10) such that marginal costs (a primitive) can be written as a function

of the identified objects (assuming β is known):

c(xi) = β

(
ln (1 + exp Ψ1(xi))

(1 + y∗(xi))2

)
. (11)

To identify the fixed costs, we substitute y∗i = y∗(xi) into the utility function of

high school (5) and rearrange:

C0(xi) = −u∗(xi)− c(xi)y∗(xi). (12)

Intuitively, we are exploiting data on performance outcomes in a more structural

sense than in a pure discrete choice model. If two students have the same future value

Ψ1(xi) but different state transitions (so different f ∗(xi)), it now has to be rationalized

by differences in marginal costs. While students who make different choices in period

normalize the utility of one option to be able to identify u(xi).
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1 despite having the same future values and state transitions provide the variation to

identify the fixed cost component of utility.

2.7.2 The general case

Dynamic discrete choice models are identified only after fixing β, normalizing the

utility of one option, and specifying the taste shock distribution (Magnac and Thes-

mar, 2002). In the Appendix section A, I show that the degree of under-identification

is the same as in the standard set-up of a pure dynamic discrete choice model as in

Magnac and Thesmar (2002). It is therefore straightforward to generalize the model

to multiple periods, alternatives, discrete performance outcomes, and time-varying

state variables that affect all primitives of the model. Moreover, if we can identify

a time-invariant unobserved state variable in the pure discrete choice model, we can

also allow for it in the current model.

To summarize the extent of the proof, add a time subscript to the state variable xit

(which can contain t to allow for non-stationarity) and let νi be an unobserved time-

invariant state variable or “type”. Results from the literature on the identification

of dynamic models can be used to identify u∗j(xit, νi) and f ∗j (xit, νi) for each option

j in the choice set (up to standard normalizations). The researcher now also needs

to specify a transformation of f ∗j (xit, νi) for which it is reasonable to assume that

its effect on utility is linear and for which a FOC is expected to be satisfied in

the data. After this choice, we can use the FOC to map the endogenous objects

u∗j(xit, νi) and f ∗j (xit, νi) into the primitives of the model: the intercept of the utility

function (−C0
j (xit, νi) in the current model) and the marginal utility of the chosen

transformation of f ∗j (xit, νi) (−cj(xit, νi) in the current model).

The reason we can allow for both unobserved ability (in the form of types) and

effort choice follows directly from the fact that we do not attempt to separately

identify ability from a measure of effort we would observe in real life (such as hours

of study). The choice variable here is effective study effort. By construction, this
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merges the impact that ability, hours of study, or any other variable known to the

agent would have on performance. Performance outcomes in the data can still deviate

from a prediction based on effective study effort, but only through an unexpected

shock. This is why we could directly identify effective study effort from the observed

data by integrating over the shocks when unobserved ability did not enter the model

(see (10)). To allow for unobserved ability, we first need to identify how performance

depends on it before we can do this, but this is the same requirement as in a pure

discrete choice model.

2.8 The CCP method

The Hotz and Miller (1993) inversion theorem shows that the expected value of be-

having optimally in the future can be identified directly from the distribution of taste

shocks (ε), the conditional choice probabilities (CCPs) in the data Pr(dit|xi) and flow

utility u∗(xi). This is especially convenient in the multi-period case as it does not

require us to solve the model by backward induction during estimation, but it can

also be illustrated in the simpler model. With extreme value type 1 taste shocks and

a terminating action in the choice set, we can replace the expected value of behaving

optimally in the future by a simple expression of CCPs.

To see this, note that the probability to drop out in period 2 is given by

Pr(di2 = 0|xi) =
1

1 + exp Ψ1(xi)
,

taking logs and rearranging terms:

ln(1 + exp Ψ1(xi)) = − ln Pr(di2 = 0|xi).

This is the expression of the expected value of behaving optimally in the future (net

of the Euler constant) that also entered the conditional value functions. Substituting

this into the marginal costs (11):
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c(xi) = β

(
− ln Pr(di2 = 0|xi)

(1 + y∗(xi))2

)

and fixed costs still follow from (12).

3 Institutional background and data

This section describes the institutional context in Flanders (Belgium) and introduces

the data. I make use of the LOSO dataset in which I follow a sample of 5, 158

students that started secondary education in 1990.16 Students were actively followed

during high school and therefore the data contains many individual characteristics,

choices, performance outcomes, and test scores. Afterward, the students were asked

to respond to surveys about educational and labor market outcomes which provide

information about their higher education career. Details about the data and the

context are omitted from this text but discussed in Appendix B.

3.1 Study programs

After finishing six grades in elementary school, students enroll in high school in the 7th

grade, usually in the calendar year they become 12 years old. Students can choose

between all schools in Flanders since school choice is not geographically restricted

and free school choice is law-enforced. After obtaining a high school degree, they can

enroll in higher education.

In full-time education, they choose between different high school programs, grouped

into tracks that differ in their academic level. The academic track has the most aca-

16The LOSO data were collected by Jan Van Damme (KU Leuven) and financed by the Flemish
Ministry of Education and Training, on the initiative of the Flemish Minister of Education. Note
that throughout the paper I discuss the data for this sample of 5,158 students, which covers 80% of
the original sample. In the data appendix I discuss in detail why some observations were dropped.
This is mainly because some variables were missing, but also because students made choices that
were not consistent with the tracking systems as explained in this paper.
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demically rigorous curriculum. It provides general education and prepares for higher

education. The middle track prepares students for different outcomes. Therefore,

I follow Cockx et al. (2018b) and distinguish between a track preparing mainly for

higher education programs (middle-theoretical), and a track that prepares more for

the labor market (middle-practical). Students can also choose the vocational track.

This track prepares them for specific occupations that do not require a higher ed-

ucation degree. Within each track, there is a choice between several programs. I

aggregate them up to eight study programs. I split the academic track into four

programs: classical languages, intensive math, intensive math + classical languages,

and other. The middle-theoretical track is split between intensive math and other.

This aggregation still allows for a substantial number of students in each program

and corresponds to important differences in enrollment and success rates in higher

education (Declercq and Verboven, 2015).

A student graduates from high school after a successful year in the 12th grade

in the academic or one of the middle tracks, or the 13th grade in the vocational

track. Leaving in the vocational track after grade 12 is also not considered dropout

as students still obtain a certificate that is valued on the labor market (they do need

to finish the 13th grade to have access to higher education). Compulsory education

laws require students to pursue education until June 30th of the year they reach the

age of 18. From the age of 15, they can also decide to leave full-time education and

start a part-time program in which work and school can be combined.

Although each track prepares for different options after high school, enrollment

in almost any higher education option is free of selection. Students from any track

can enroll in almost any program of higher education (Declercq and Verboven, 2018).

Therefore, selection into higher education only takes the form of self-selection. Similar

to Declercq and Verboven (2015, 2018), I distinguish between three levels of higher

education (professional college, academic college, and university) and allow for STEM

and non-STEM majors. For universities, I also distinguish between five different
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campuses in Flanders.

3.2 Mobility

At the start of secondary education, all programs are available. The choice set in

the future depends on the past program and performance during the year. Upward

mobility, i.e. moving from a track of lower academic level to a more rigorous one, is

practically impossible, except for switches between middle tracks and the academic

track in the first two grades. Similarly, students can never enroll in programs with

classical languages if they did not choose it from the start. Math-intensive programs

are available from grade 9 on and the same restrictions apply. Finally, there can be

no more switching between full-time programs from grade 11 on.17

The restrictions imply that a wrong choice at age 12 can have large consequences

for educational attainment. As there can be uncertainty about performance and

future preferences, many students prefer to keep their options open by choosing the

academic track in the beginning and gradually move towards their final program.

Figure 1 summarizes both the movements within high school (left side) and between

high school and the final educational outcome (right side).18 Most students start in the

academic track but many transition to another one. There are similar movements from

the other tracks but almost always in a downward fashion. Nevertheless, students that

move down do not necessarily give up on obtaining a higher education degree. While

it is very common for students that graduated from the academic track to obtain

a higher education degree, most students in the middle-theoretical track and some

in the middle-practical track also obtain one. For students that graduated from the

17These rules are not always formal and students have the legal right to ignore them. Nevertheless,
this is a realistic description of the perceived rules by students as schools often advertise them as
being binding. Cockx et al. (2018b) apply a similar set of rules. In Appendix B I discuss the data
cleaning and more details about the rules. This shows that only a small number of observations
have to be dropped because they are inconsistent with this description.

18A more detailed overview of transitions to higher education can be found in the Appendix Table
A10 and Table A11. As in Declercq and Verboven (2018), I define a degree as three successful years
of higher education in a time span of six years.
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Figure 1: Transitions in the educational system

Note: Left: program chosen in grade 7, middle: last choice before leaving secondary education,

right: final educational outcome. See Appendix Table A14 for data on these transitions. Students

in the vocational track only obtain a full high school degree that gives access to higher education

after an additional 13th grade. They obtain another type of degree after grade 12 and are therefore

not considered dropouts if they leave before grade 13. Figure created using Google Charts.

vocational track, this is very uncommon. The students who started in the vocational

track also often drop out of high school, which excludes the possibility to go to higher

education.

3.3 Performance and the tracking policy

The transitions in high school are not always a smooth and voluntary process. Each

study program comes with its performance standards. Teachers are expected to keep

the quality standards within the program at a certain level. This is done by handing

out a certificate to students, based on their performance during the year. An A-

certificate is given to students that did not fail a single course. They can move to

the next grade and continue in the program. If they failed on some courses, teachers
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need to decide on the certificate. This can still be an A-certificate, e.g. for students

that only failed a small number of courses, but it can also be a B- or a C-certificate.

A C-certificate means that the student failed on too many important courses and

must repeat the grade to continue in full-time secondary education. A B-certificate

indicates that the student failed on some important courses within the program. He

can proceed to the next grade, but not in every program. Alternatively, a student

with a B-certificate can decide to repeat the grade without being excluded from a

program. In most cases, a B-certificate excludes the track a student is currently in and

therefore encourages them to downgrade to another track. However, a B-certificate

can also exclude elective courses only (see appendix Table A12). Most of the time

students obtain an A-certificate. 7.1% of the certificates are B-certificates and 6.6%

are C-certificates. A C-certificate always leads to grade retention if students do not

want to leave full-time education, but also 1 out of 4 students with a B-certificate

chooses to repeat grades.

Although the number of B- and C-certificates each year is low, many students

obtain at least one of them during their high school career. 35% of students obtain a

B-certificate and 30% a C-certificate. This results in a large degree of grade retention.

Table A13 summarizes the number of students that obtain a B- or C-certificate or

accumulate study delay. It then compares their educational outcomes with that of

the average student. 32% of students leave high school with at least one year of study

delay. These students are 22 %points less likely to enroll in and 24 %points less likely

to graduate from higher education than students who were not retained. Part of this

is also explained by the higher dropout rates in high school.
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3.4 Implications for optimal policies and the required model

Figure 1 shows large differences between higher education outcomes when we compare

different tracks.19 These effects can be driven by observed and unobserved initial

conditions that could have a direct impact on higher education outcomes. Appendix

Table A9 shows the differences between student characteristics and their final program

in high school. The dataset contains measures of cognitive ability (language and

math), gender, and socioeconomic status (SES). The latter is defined as a dummy

equal to one if at least one of the parents has completed higher education. Academic

programs attract mostly female, high ability students with a high SES. In the model,

I will control for these characteristics and also allow for an unobserved type to capture

other characteristics (such as noncognitive ability).

Even if the effects are not all driven by initial conditions, it is still not clear if

encouraging students to choose academically rigorous programs will have an impact

on higher education outcomes as for many of them it might be too costly to exert

enough effort to succeed, leading to study delay or even drop out. Therefore, the

model should be able to identify how each policy affects two choices the students

make: their study program and their study effort.

I will evaluate two policies that change the choice set of students that obtain a B-

certificate. In the first counterfactual, I investigate the impact of allowing students to

avoid grade retention by switching to another program. I do this by simulating what

would happen if a B-certificate was equivalent to a C-certificate and forced students

to repeat a grade. A second counterfactual looks at a new policy that is currently

being implemented in Flanders. It simulates the impact of not allowing students with

a B-certificate to repeat the grade.20 This policy follows from a concern that grade

19Appendix Table A10 shows that there are also differences between study programs of the same
track.

20This measure is part of a bigger reform in secondary education and is being applied on cohorts
that enter high school from September 2019 on. In the actual implementation of the policy, it will
still be possible in some cases to repeat the grade but only if students get their teachers’ explicit
permission (source: answer by the Flemish minister in parliament at 4 October 2018 on question
2410 in period 2017-2018).
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retention is too high and costly for society. However, a potential threat is that this

might reduce the number of students in tracks that prepare for higher education and

thereby decrease the number of college graduates.

4 Application of the model

This section introduces a dynamic model of educational choices in the Flemish con-

text. It applies the methodological contribution discussed in section 2 to be able to let

students change their study effort in response to counterfactual policy changes. The

notation is similar to section 2 but needs to be adapted to a more realistic context.

Throughout the model, i refers to a student, t the time period in years, j = 1, ..., J are

mutually exclusive study programs and j = 0 is an outside option, i.e. not attending

school. The program choice is given by dit = j if j is chosen. After each year t in

high school, students obtain a vector of performance outcomes git+1 ∈ G that, com-

bined with the track and grade they are currently in, defines their choice set Φit+1.

At the end of high school, it reflects the high school degree. Students have to make

two decisions in each year: their study program (dit) and the distribution of their

performance outcomes through a single index yit. As in section 2, we close the model

at college entrance but from there we also predict college graduation as a function

of individual characteristics and (endogenous) high school outcomes to evaluate the

impact of counterfactuals that take place in high school. I assume a finite time model

by assuming students can no longer attend high school in t = 10.

4.1 The choice set

Each study program in high school belongs to one of four tracks: academic (acad),

middle-theoretical (midt), middle-practical (midp), and vocational (voc). Within the

academic track, students can also choose for math-intensive programs (math), and/or

classical languages (clas) in the curriculum. In the middle-theoretical track, they
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can also choose for a math-intensive program. The tracks are available throughout

secondary education, i.e. grade 7 to 12 (and 13 in the vocational track). The clas

option starts at the same time, while the math options start in grade 9. Next to the

full-time education system, there is also a part-time vocational program (part). This

program is available from the moment a student is 15 years old and does not have a

grade structure.

The choice set of students, Φit, is restricted. First, students can never upgrade

tracks according to the following hierarchy: acad > midt > midp > voc > part,

except for the first two grades in which mobility between acad, midt and midp is

allowed. Second, within those tracks, they can choose math and clas, but only if

they also did this from the first grade these options were available.21 Finally, from

grade 11 on, students who want to stay in full-time education must stay in the same

program.

Students progress in secondary education by obtaining a certificate at the end of

the year.22 As explained in the institutional context, the flexibility of a B-certificate

can have different implications for the choice set. Therefore, I use the certificate data

to create variables that capture the permission for a student to enter in each program.

Let the performance vector be git+1 = (gtrackit+1 , g
math
it+1 , g

clas
it+1). The main performance

outcome in the model is gtrackit+1 ∈ {0, 1, 2, 3, 4}. The lowest outcome (0) does not allow

any track in the next grade. Each increase corresponds to a track of higher academic

level being available (vocational (1), middle-practical (2), middle-theoretical (3), and

academic (4)). gmathit+1 ∈ {0, 1, 2} indicates if a student can go to math. Since there

are two tracks in which this is possible, we distinguish between the possibility to

choose math, only in track midt (gmathit+1 = 1) or in both midt and acad (gmathit+1 = 2).

gclasit+1 ∈ {0, 1} indicates if a student can go to clas.

21However it is allowed to switch from acad without extra math to midt with extra math in a
later grade.

22There is one exception. Students can enroll in grade 8 of the vocational track without having
succeeded grade 7. Therefore, the lowest performance outcome is a B-certificate and the effort costs
of students in grade 7 of the vocational track is captured by a fixed component only.
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After obtaining a high school degree, students can decide to enroll in different

higher education options or choose the outside option (not going to school). I distin-

guish between three levels of higher education, STEM and non-STEM majors, and

I distinguish between different locations. From the age of 18, students also have the

option to leave school without a high school degree. I assume this is a terminal choice,

i.e. they never return to secondary education.

4.2 End-of-year performance

Track restrictions

Let the performance measure in t+1, be the result of effective study effort yit and

a logistically distributed shock ηtrackit+1 such that:

gtrackit+1 = g̃ if η̄g̃jr < ln yit + ηtrackit+1 ≤ η̄g̃+1
jr (13)

where η̄g̃it denotes the threshold to obtain at least outcome g̃. This threshold is allowed

to differ through the program i is in at time t (j) and the grade he is in (r). At time t,

students know yit, but they do not know the realization of gtrackit+1 because of the shock

ηtrackit+1 . The information students do have at time t is the probability of obtaining an

outcome g̃ in a given program (dit = j) and grade (gradeit = r):

Pr(gtrackit+1 = g̃|yit, dit = j, gradeit = r) = F (ln yit − η̄g̃jr)− F (ln yit − η̄g̃+1
jr ) (14)

with F (a) = exp(a)
1+exp(a)

the cumulative distribution function of the performance out-

come. Setting η̄0
jr = −∞ and η̄5

jr = +∞ guarantees that all probabilities add up

to 1 in each program and each grade. Since (13) remains the same when adding or

subtracting the same term on all sides, I normalize one of the thresholds η̄1
jr = 0.

One way to interpret effective study effort is that the main performance outcome

is modeled as an ordered logit model with index ln yit. An alternative interpretation
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can be seen by rewriting (14) for the lowest realization of the performance outcome:

yit =
1− Pr(gtrackit+1 = 0|yit, dit, gradeit)

Pr(gtrackit+1 = 0|yit, dit, gradeit)
. (15)

This shows that the effective study effort of a student can be interpreted as the

odds of avoiding the lowest outcome (= no track available in the next grade). This

model for a discrete performance outcome is a natural extension of the binary case we

discussed in section 2 where we defined effective study effort as the odds of obtaining

a high school degree. By choosing the odds of avoiding the lowest outcome here,

students can change the probability of each realization. If yit is close to zero, they

are very likely to obtain the worse outcome. If yit is large, they will probably reach

the best outcome.

Note that in the final year of high school, a student can only obtain the best

possible performance outcome in his track or fail. The performance outcome then be-

comes binary and characterizes the high school degree (as in the example in section

2). Similarly, other institutional constraints make it impossible to achieve certain

realizations of the performance outcome. This implies that many of the thresholds in

(13) are known from the institutional context and not estimated.

Course restrictions

Additional course restrictions are also modeled as an ordered logit (conditional on

the realization of gtrackit+1 ) to predict gmathit+1 and gclasit+1. I specify indexes for each course

(math and clas):

αmathy ln yit + S ′iα
math
S + ν ′iα

math
ν + ηmathit+1 , (16)

αclasy ln yit + S ′iα
clas
S + ν ′iα

clas
ν + ηclasit+1.

with ηmathit+1 and ηclasit+1 logistically distributed shocks and αmathy and αclasy measuring

how much of the effective study effort matters for each elective course (compared to

30



its impact on track performance). The logit shocks ηmathit+1 and ηclasit+1 are assumed to be

independent of ηtrackit+1 but dependence between outcomes is captured by taking into

account the outcome gtrackit+1 to influence individual-specific threshold levels.23 I also

allow for comparative advantage in elective courses by estimating the influence of

student characteristics that can be observed (Si) or unobserved (νi), with νi a vector

of dummy variables for each unobserved type the student can be.

Finally, I define φḡijt(yit) as the joint probability of ḡ = {ḡtrack, ḡclas, ḡmath} which is

the product of the three ordered logit probabilities. Note that dependence of φḡijt(yit)

on i and t goes through xit and νias it comes from the dependence on the current grade

a student is in and the initial characteristics that influence comparative advantages

in elective courses.24

4.3 Study program

The expected lifetime utility of each program is represented by the conditional value

function:

vj(xit, νi, yit) + εijt (17)

= uj(xit, νi, yit) + β
∑
ḡ∈G

φḡijt(yit)V̄ (xit+1(ḡ), νi) + εijt for j ∈ se

with vj(xit, νi, yit) the conditional value function for student i with observed state

variable xit and unobserved type νi of choosing program j and effective study effort

yit at time t. εijt is an extreme value type 1 taste shock. The observed state variable

contains the information set students and the econometrician share. This includes the

observed student background (Si), but also time-varying and endogenous variables

23If gtrackit+1 < 3, then gmathit+1 = gclasit+1 = 0. If git+1 = 3, then gmathit+1 ∈ {0, 1} and gclasit+1 = 0.
24The current grade is a direct result of two elements in xit (the grade a student was in last year

and the performance outcome) and the current program choice j (as student might have a choice to
repeat a grade).
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such as the previous program choice and the performance outcome.25 It also contains

t to capture nonstationarities. Because all shocks in the model are assumed to be iid,

the unobserved type νi will capture persistent differences between students that are

not captured by the observables.

The first term is the flow utility of schooling, uj(xit, νi, yit). As in Keane and

Wolpin (1997), I interpret flow utility as the negative of an effort cost of going to

school. The second term is the expected value of the future, discounted at β ∈ (0, 1).

This depends on the ex-ante value functions V̄ (xit+1, νi), i.e. the value functions

integrated over the future iid shocks. As in Rust (1987), this implies that students

do not know future realizations of taste shocks, but they know the distribution. The

performance vector g is the only stochastic element in x. Integrating over future states

is therefore equivalent to writing a weighted sum over potential outcomes in the set

G, with the joint probability of the performance outcome (φḡijt(yit)) as a weight.

As explained in section 2, I do not consider the effort costs to be a primitive of

the model. Instead, I assume it is the linear sum of a fixed cost (C0
j (xit, νi)), and a

variable cost of effort (cj(xit, νi)yit):

uj(xit, νi, yit) = −C0
j (xit, νi)− cj(xit, νi)yit. (18)

Students will choose the program j and effective study effort yit that gives them

highest expected lifetime utility. C0
j (xit, νi) and cj(xit, νi) are the primitives of the

model to estimate. As in Section 2, the linearity assumption implies a constant, and

policy-invariant marginal cost of increasing the odds to avoid the lowest performance

outcome.

25I do not include choices or outcomes before t−1 in xit. This way the model satisfies a first-order
Markov property.
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4.4 Closing and solving the model

I assume leaving secondary education is a terminal action, i.e. students never return

to high school. They either leave the education system or (if they obtained a high

school degree) they choose one of the higher education options. To avoid making

assumptions on how students expect their wages and college success to evolve, I

close the model at higher education enrollment and parameterize its expected lifetime

utility. In particular, I assume the conditional value functions for choice options after

high school take the following form:

vijt(xit, νi, yit) = Degree′itµ
degree + ΨHEE

j (xit, νi) if t = T SEi + 1 (19)

with T SEi the last period student i spends in high school, Degreeit ∈ xit a vector of

dummy variables for the different types of high school degrees a student can obtain,

µdegree a vector of parameters to estimate and ΨHEE
j (.) a function of the state variables

that predicts the higher education enrollment (HEE) decision.26 The lack of a future

value term in this conditional value function requires the parameters to be interpreted

as the total expected lifetime utility from enrolling in option j. If the student obtained

a high school degree, j is a specific higher education option or an outside option

of which the utility, net of the value of a degree, is normalized: ΨHEE
0 = 0. I

distinguish between three different levels of higher education (professional college,

academic college, and university), two majors (STEM and non-STEM), and (for

universities) five locations. If the student did not obtain a high school degree, he

can only obtain the value of j = 0. By normalizing ΨHEE
0 = 0, all cost parameters

in high school should be interpreted as the one period difference with respect to

the expected lifetime value of leaving high school without a degree. Note that this

includes potential wages for high school dropouts. Therefore, a high cost of schooling

26I estimate a common value of a high school degree, an interaction effect with the academic level
of the program and a separate effects for finishing 12th grade in the vocational track and obtaining
a high school degree in the vocational track due to the specific nature of the vocational track that
requires students to study an additional year in order to obtain the degree.
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can also be interpreted as an opportunity cost.

Since only differences in utility are identified, I could set the flow utility of leaving

school to 0 for the current and future periods (as I did in the simplified model of

Section 2). However, in contrast to a static model, normalizing the utility of one

option in every state is not innocuous (Kalouptsidi et al., 2018). Here it would imply

an assumption that students only exert effort in school to have the possibility to go to

higher education, and not for other benefits that come from obtaining a high school

degree (in particular, the better labor market opportunities for students that do not

go to college). Therefore, I also estimate the value of a high school degree and set

vi0t = Degree′itµ
degree. As in Eckstein and Wolpin (1999), the value of a degree can be

identified from choices in secondary education. In particular, differences in dropout

rates between students with low and high chances of obtaining a high school degree

help to identify this effect, but exclusion restrictions are needed to separate this from

differences in fixed costs. Therefore, I allow distance to college to (endogenously)

affect performance in high school, but it is excluded from fixed costs.27

Each year students without a high school degree that did not drop out choose

between the study programs j that are in their choice set Φit. If they are legally

permitted to do so, they can also drop out by choosing the outside option. They

do this by choosing the option with the highest conditional value function, in which

the optimal level of the effective study effort is chosen. If they have a high school

degree, they can choose between the outside option and different higher education

options. This utility is also maximized with respect to the effective study effort yit.
28

Appendix section C describes the full solution of the model.

27Also some functional form assumptions help for identification. As explained in the estimation
subsection, I restrict the differences in fixed costs over grades to be linear in each track. This
helps identification here because higher grades also imply a decrease in uncertainty about eventual
graduation and a higher discounted value of the degree.

28The decision will often be a joint decision by parents and their child, after advice from teach-
ers. I do not distinguish between these different actors and simply assume some utility function is
optimized, regardless of who makes the decision. See Giustinelli (2016) for a paper that does makes
this distinction using additional data.
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4.5 Graduation in higher education

I simultaneously estimate the parameters of a reduced form conditional logit model

with ΨHED
j (xit, νi) the estimated index that predicts graduation in each campus-

level-major combination, conditional on student characteristics, high school program,

study delay, and the higher education enrollment decision. Note that I did not make

any assumptions on students’ expectations of higher education success. I simply es-

timate parameters for ΨHEE
j (.) to capture the expected lifetime utility of enrolling in

each college option. The reason I can do this is that the counterfactual simulations

of this paper will only change the high school system, not the higher education sys-

tem. Therefore, it will result in different high school outcomes (program, dropout,

years of study delay), leading to differences in higher education outcomes, but not

to differences in the mapping between high school and higher education outcomes.

Therefore, the parameters of ΨHEE
j (.) and ΨHED

j (.) are policy-invariant and can be

used in counterfactuals. This part of the model is similar to dynamic treatment effect

models where some behavioral assumptions can be avoided, while still looking at the

causal impact of a counterfactual (Heckman et al., 2016).

4.6 Estimation

As shown in Appendix A, the primitives of the model can be identified after fixing β,

normalizing the utility of one option, and specifying the taste shock distributions.29

To estimate the model, we need to impose further structure because of the limited

number of observations in each realization of the state. I summarize the estimation

algorithm here but discuss it in detail in Appendix D.

To allow for unobserved heterogeneity, I estimate the model using the two-stage

CCP estimator of Arcidiacono and Miller (2011):

29I follow Arcidiacono et al. (2016) and set the discount factor β = 0.9. I obtain almost identical
results with β = 0.95 (see Appendix F).
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Stage 1: estimate type distribution and reduced forms

Step 1: initial types

Assume there are two unobserved types in the population and assign each student

a random probability to belong to each type. Use these types as weights in what

follows.

Step 2: higher education estimates

Impose functional forms for ΨHEE
j (.) and ΨHED

j (.) and estimate them as param-

eters of a conditional logit, using maximum likelihood. Importantly, I allow them to

depend on initial characteristics of students (both observed and unobserved) as well

as the high school outcomes: final study program and accumulated study delay.

Step 3: reduced forms of high school data

Recover the optimal levels of the effective study effort and the performance thresh-

olds by estimating an ordered logit model with index ln y∗j (xit, νi), the log of the opti-

mal value of the effective study effort, conditional on choosing program j. The index

is specified as a parametric but flexible function of (xit, νi). I also estimate an ordered

logit to recover the parameters of the performance outcomes on elective courses. As

in Arcidiacono et al. (2016), I obtain predicted values of CCPs by estimating a flexible

conditional logit.

Step 4: update types

Use the CCPs in high school, together with predicted performance outcomes,

higher education enrollment, and higher education graduation by type to update the

individual type probabilities using Bayes rule.

Repeat this until convergence of the joint likelihood of the data.
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Stage 2: estimate cost parameters

Use the logit probabilities with the CCP-representation of the conditional value

functions to estimate the value of a degree µdegree and a specification for fixed costs

C0
j (.) using maximum likelihood, with type probabilities as weights. I assume fixed

costs are functions of a program-specific constant, travel time, and switching costs

between tracks and specializations through elective courses. They also differ because

of individual characteristics Si and unobserved type νi through an effect that is allowed

to change in the level of the track and the elective courses. Finally, grade retention

enters through a stock variable (accumulated study delay) and a flow variable (a

dummy equal to one when repeating a grade). These effects are also allowed to differ

by the academic level.

Finally, marginal costs cj(.) can be recovered from the FOC at the optimal levels

of yit in each program and state (y∗j (xit, νi)), without imposing additional structure.

Standard errors are obtained using a bootstrap procedure.30

4.7 Identification, ability bias and unobserved types

A first requirement to identify the model is to recover CCPs and state transitions

as functions of the observed state variable xit and the unobserved type νi. If νi

would be observed, this step is trivial as we can simply use the observed choices and

outcomes for each realization of (xit, νi). Magnac and Thesmar (2002) then show that

we need to normalize the utility of a reference alternative, specify the discount factor

β and the distribution of εijt to identify the flow utility in the current policy context

(i.e. u∗j(xit, νi) ≡ uj(xit, νi, y
∗
j (xit, νi))). The identification of the indexes that predict

higher education enrollment and graduation are simpler because we do not need to

separately identify flow utility from the entire impact of (xit, νi) (French and Taber,

2011). In section 2 and Appendix A I show that once we recover flow utility and

30I sample students with replacement from the observed distribution of the data and use 150
replications. Since the EM algorithm takes some time to converge, I do not correct for estimation
error in the probabilities to belong to each type.

37



state transitions, we can identify fixed costs C0
j (xit, νi) and marginal costs cj(xit, νi)

by imposing a FOC. Intuitively, differences between flow utilities that follow from

good and bad performance outcomes, rationalize the state transitions we observe the

periods before.

The remaining identification problem is therefore no different than in a pure dis-

crete choice model as it is situated in the first requirement: we need to identify the

distribution of unobserved heterogeneity and its impact on CCPs and the transitions

of states. We can then apply the results of Magnac and Thesmar (2002) to identify

u∗j(xit, νi) (Hu and Shum, 2012) and Appendix A shows how to use this and the state

transitions to identify the type-specific primitives C0
j (xit, νi) and cj(xit, νi).

Unobserved heterogeneity is needed to rationalize decisions and outcomes that

differ for students that otherwise look identical. It enters the model in two forms:

(1) taste and performance shocks (εijt and ηit) and (2) a common type νi. As shocks

are not correlated, only the types capture persistent unobserved heterogeneity and

enter the CCPs and state transitions. This not only improves the fit of the model,

but it is also important to avoid the potential ability bias on the estimated effects of

high school outcomes on higher education outcomes, which are crucial for the policy

simulations. It is important to note that I include good measures of initial math and

language ability in xit.
31 Nevertheless, these measures of ability might still miss some

dimensions of persistent heterogeneity. Therefore, I add two unobserved types. The

estimation strategy shows that we can identify types in the parametric framework

of this model, but it is important to see that we exploit variation in the data that

achieves identification of unobserved heterogeneity and causal effects of high school

outcomes under a more flexible structure.

Hu and Shum (2012) prove the identification of a non-stationary first-order Marko-

vian model for CCPs and state transitions at time t using data from t + 1, t, t − 1,

31A sensitivity analysis in Appendix F shows that including these improves the fit of the model
and changes the magnitude of the main effects of simulations, especially if unobserved types are not
included.
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t− 2, and t− 3. They allow for a single unobserved trait that is allowed to transition

over time. Because high school takes six years to complete and we add two stages

after high school, this shows that no further structure is needed to identify CCPs

and state transitions at the end of high school and the enrollment stage of higher

education.

Identification is also aided by variables that affect higher education only through

their impact in high school. In particular, I assume that (grade-specific) travel time

to high school programs influences decisions and outcomes during high school but has

no direct effect after secondary education. Therefore, it does not enter the CCPs and

reduced forms that predict higher education enrollment and graduation. This allows

for the identification of causal effects of high school outcomes on higher education

without imposing further structure on the unobserved heterogeneity (Heckman and

Navarro, 2007).32 Note that Heckman and Navarro (2007) do not require an exclu-

sion restriction. One can for example also use an identification at infinity strategy

(Abbring, 2010; Heckman et al., 2016).

An alternative model restriction that avoids the full structure is that of a general

factor model. Every program choice and performance outcome in the model is indeed

a function of a common (discrete) factor. Heckman et al. (2016) use the restrictions

imposed by a factor model to identify treatment effects in a dynamic setting. To

identify a broad set of distributional treatment effects, they follow Carneiro et al.

(2003) and add a system of measurements of the unobserved trait. While this provides

clear identification and interpretation of the unobservable, they also mention recent

work by Freyberger (2018) that avoids the need for data outside the model as choices

and outcomes within the model can play the same role in the identification approach.33

32As we argue in De Groote and Declercq (2020), this context lends itself to the use of this
instrument as students have many school options available to them and parents are therefore not
expected to take this into account in their location decisions. Importantly, free school choice is
protected by the Belgian constitution and prevents schools from cream-skimming or prioritizing
students of the same neighborhood.

33Lin (2019) also applies this identification strategy of Freyberger (2018) in the context of a
dynamic programming model.
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In the case of a lagged dependent variable, allowing for one common factor requires six

outcomes or choices in the data to identify the model. The gradual tracking system

in Flanders provides a lot of variation for this purpose as we observe many program

decisions and performance outcomes, largely exceeding this number.

In line with these identification results, I also do two robustness checks and show

the results in Appendix F. First, as explained above, we can relax the exclusion re-

striction by adding measures of high school travel time to the equations that predict

higher education outcomes. I find that travel time to the different high school pro-

grams has no direct impact on higher education and the counterfactual results do not

change. Second, I additionally add (ordered) logit models that predict measurements

of initial skills and parental background to the likelihood function of stage 1 of the

estimation approach. I use a discretized measure of students’ IQ when they enter high

school, as well as answers by their last teacher in elementary school to questions that

indicate levels of conscientiousness, extraversion, and agreeableness.34 Furthermore,

I add parental reports of their income category and work situation around the same

time. I find that adding these measures does not have an important impact on the

counterfactual simulations. Furthermore, they give more insights into the nature of

unobserved heterogeneity. I find that unobserved types are important in capturing

non-cognitive skills. The impact on IQ, parental income, and work situation has the

same sign but it is much smaller (and not statistically significant for the work con-

dition). This can be explained by the inclusion of controls for cognitive ability and

SES.35

34I use the same questions as in Shure (2017).
35A potential downside of adding measurements is that it requires the finite number of types to

explain measures that are not of direct importance to the model. I therefore do not use them in the
main specification. I also do not use the measures as control variables as they are likely measured
with error, not available for everyone and they would make the state-space larger, making it more
difficult to obtain good estimates of the CCPs and state transitions in stage 1 of the estimator.
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5 Estimation results

This section discusses the structural schooling cost estimates and the estimates of

higher education outcomes. To check the fit of the model and to run counterfactual

simulations, I use these estimates to solve the model. Once I have solved the model

backward to find all the conditional value functions and effective study effort levels,

I forward simulate all taste and performance shocks to simulate choices of the study

program and the distribution of performance. The model fit and details about the

simulations are explained in the Appendix section E. The model does a decent job

in capturing the patterns in the data such that it can be used for the counterfactual

simulations in the next section.

5.1 Effort costs

I focus the discussion on the impact of student characteristics on effort costs using

Table 1 and the impact of study delay and switches in Table 2. Appendix Tables A15

and A16 contain the estimates unrelated to student characteristics and the interac-

tions of student characteristics with elective courses. Table A20 shows the intrinsic

value of a high school degree.

Table 1: Costs of schooling: student characteristics and academic level

Fixed costs Log of marginal costs

Baseline effect Interaction with Baseline effect Interaction with
academic level academic level

Male -19.161 (9.714) 17.748 (4.355) 0.740 (0.114) 0.098 (0.061)
Language ability 7.468 (5.485) -36.328 (5.132) -0.637 (0.075) -0.095 (0.088)
Math ability 1.117 (5.081) -23.197 (4.523) -0.217 (0.063) -0.370 (0.051)
High SES -19.232 (15.555) -18.782 (5.818) -0.676 (0.219) 0.016 (0.101)
Type 2 -41.781 (16.422) 85.647 (11.607) 3.265 (0.370) -0.368 (0.156)

Note: Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale = minutes of daily travel

time. The marginal costs in the model are a flexible function of state variables, this table summarizes them by

regressing their logarithmic transformation on the same variables that enter the fixed costs. Ability measured in

standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead of 1. High

SES= at least one parent has higher education degree. Level = academic level of high school program (0-3).

Bootstrap standard errors in parentheses.
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The functional form assumption on the fixed costs is the same as shown in the

tables. I divide them by a common fixed cost of travel time such that they can

be interpreted in daily minutes of travel time. The marginal costs are a nonlinear

function of probabilities in the data and other parameters of the model (see Appendix

D). For interpretation purposes only, I perform an OLS regression on the logarithmic

transformation of the estimated marginal costs with the same structure as the fixed

costs.

Male students have a 19-minute lower fixed cost to attend the benchmark voca-

tional program, but the sign of this effect changes for the most academic programs.

The marginal cost estimates reveal that they have a harder time obtaining good per-

formance outcomes. For the same increase in effective study effort, a male student

pays twice (exp(0.740)) the cost of a female student.

Higher cognitive ability leads to decreases in fixed costs, except for the benchmark

vocational track. Marginal costs are strongly affected too. An increase of 1% of a

standard deviation in language ability leads to a decrease of 0.6% in marginal costs in

the vocational track (level=0) and 0.9 in the academic track (level=3).36 The same

increase in math ability leads to a decrease of 0.2% in the vocational track, but a

much larger 1.3% decrease in the academic track.

Despite the controls for cognitive ability, the parental background still matters.

High SES students are more favorable towards programs of higher academic level and

marginal costs are lower. The magnitudes are similar to a standard deviation increase

in language ability. There is also still a lot of persistent heterogeneity in the data

that observable characteristics are not capturing. Appendix Table A17 shows that

30% of students belong to type 1 and 70% to type 2. Type 1 captures a group that

experiences little trouble in completing high school in tracks of high academic level,

compared to most students (type 2). One reason is that they have much lower fixed

costs when they opt for more academic programs, equivalent to 86 minutes of daily

36I also estimated a model where academic level is proxied by the hours of academic courses (which
varies over both tracks and grades) and obtain similar results.
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Table 2: Costs of schooling: repeating and switching

Fixed costs Log of marginal costs

Baseline effect Interaction with Baseline effect Interaction with
academic level academic level

Repeat 274.710 (33.156) 79.903 (13.121) 0.238 (0.194) -0.461 (0.124)
Study delay -9.932 (6.884) 10.026 (4.884) 0.637 (0.104) 0.109 (0.064)

Downgrade 169.088 (21.878) 0.174 (0.094)
Upgrade 325.724 (41.557) 0.262 (0.179)
Stay in clas -16.062 (14.652) 0.155 (0.431)
Stay in math -203.545 (26.127) 0.653 (0.276)

Note: Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale = minutes of daily

travel time. The marginal costs in the model are a flexible function of state variables, this table summarizes them

by regressing their logarithmic transformation on the same variables that enter the fixed costs. Clas= classical

languages included. Math= intensive math. Downgrade: switch to lower academic level. Upgrade: switch to higher

academic level. Bootstrap standard errors in parentheses.

travel time for each step. Marginal costs are also much lower, making it easier to stay

in academic programs. A type 1 student pays only 4% to 12% of the marginal cost

of a type 2 student.37

Table 2 shows the impact of track choices and grade retention during high school.

We see that study delay, i.e. past grade retention, increases marginal costs. This

could be a result of demotivation. The same increases in effective study effort might

be perceived as more costly for students with study delay because they lose interest

in studying. On the contrary, we find decreases in marginal costs when students

are repeating a grade in programs of high academic level. This can result from the

fact that students see the same course material for a second time, making it easier

to succeed. At the same time, the fixed cost estimates show that students strongly

dislike repeating a grade. This shows a clear trade-off: students dislike repeating a

grade, but it does help them to perform well in more academic programs. Finally,

students do not like to switch programs. Both down- and upgrading is associated

with much higher fixed costs, indicating a preference of students to stay in the same

program.

37In the benchmark (=vocational) track this is exp(−3.265) = 4%, in the academic track it is
exp(−(3.265 + 3× (−0.368))) = 12%.
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5.2 Higher education

All estimates for higher education outcomes can be found in Appendix Tables A21,

A22, and A23. We see that student characteristics that were important in explaining

the costs of schooling also have a direct effect on college enrollment and graduation.

This is also the case for the unobserved type of students, showing that it is important

to control for unobserved heterogeneity when assessing the causal impact of study

programs. Because the estimates of high school programs on higher education out-

comes are difficult to interpret, I calculate the total Average Treatment effects on

the Treated (ATT) of each study program and compare this to a comparison of the

raw means in the data in Table 3. The estimate is not the results of a counterfactual

Table 3: Higher education and high school outcomes: difference in means and ATTs

Enrollment Degree

Mean diff ATT Mean diff ATT

Study program
Academic

clas+math 5.1 (1.1) 1.7 (0.3) 20.1 (2.3) 8.2 (1.9)
clas 5.2 (0.9) 1.2 (0.2) 16.4 (2.6) 5.4 (2.1)

math 3.7 (1.0) 2.6 (0.3) 14.0 (2.2) 9.6 (1.8)
other benchmark benchmark

Middle-Theoretical
math 5.1 (1.1) 4.0 (1.5) -1.3 (4.2) 5.8 (3.9)
other -15.2 (1.8) -5.9 (2.1) -26.2 (2.6) -9.5 (2.8)

Middle-Practical -39.3 (2.2) -26.4 (2.8) -46.6 (2.6) -20.1 (3.2)

Vocational -80.7 (1.7) -64.6 (3.3) -71.5 (1.9) -37.2 (3.4)

One year of study delay -26.0 (1.7) -4.9 (1.1) -33.9 (1.4) -12.3 (1.3)

Data 58.2 44.0

Note: Effects on enrollment and degree completion after graduating from different high school programs, compared

to graduating from the academic track without clas or math option, and the effects of one year of study delay,

compared to 0. Average treatment effects on the treated (ATT) make use of the causal estimates of enrollment

and graduation equations. ATTs are calculated using indexes, specified in Appendix D, for each individual at the

realization of other variables. Effects on obtaining higher education degree are total effects, i.e. they also take

into account effects through enrollment. Clas= classical languages included. Math= intensive math. Bootstrap

standard errors in parentheses.
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simulation of the entire model but it is a "ceteris paribus" causal effect, i.e. it is the

effect of one variable if all other variables that were realized at the time of leaving

secondary education are kept fixed.38 Similarly, I calculate the effect of one year

of study delay by comparing outcomes for retained students in the counterfactual

scenario where they would not have accumulated study delay.

Most estimates point in the same direction as a simple comparison of means in the

data, but to a much smaller extent. I find that graduating from the academic track

(without classical languages or extra math) leads to an increase in college graduation

of 20 %points compared to the middle-practical track. The other track that prepares

for higher education, the middle-theoretical track, leads to an increase of 9.5 %points.

The estimates show that elective courses mainly matter for the type of higher edu-

cation but we also see that overall graduation rates are higher when students had

classical languages or intensive math in their program.

For study delay, I find a negative impact on higher education enrollment of 5

%points and an even stronger negative impact of 12 %points on obtaining a higher

education degree.

6 Counterfactual tracking policies

In the current tracking policy in Flanders, teachers decide if a student has acquired

the necessary skills to transition to the next grade in each of the programs. In some

cases, they have not acquired the skills to transition to the next grade, regardless

38The ATTs are calculated as follows:

ATT j
′

= Ex,ν

[
PHEj (xitHE (j′), νi)− PHEj (xitHE (j0), νi)|diTSEi = j′

]
for HE = {HEE,HED}

with Ex,ν an expectations operator over the empirical distribution of the observables x and the
estimated distribution of the unobserved types ν. PHEj is the probability of the higher education
outcome (enrollment or graduation) as a function of the state variables. xitHE

(j′) is the observed
state vector of student i in the data at the time the outcome is realized t = tHE and xitHE

(j0) is the
same vector but with the graduation track replaced by an arbitrary benchmark program j0. The
ATT then calculates the average effect on HE of graduating high school in j′ instead of j0 for the
group of students who graduated from j′ in the data.
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of their program choice. They then obtain a C-certificate which means they have to

repeat the grade. However, in many cases, they are allowed to transition to the next

grade but have to switch to a program of lower academic level or drop an elective

course. In this case, they obtain a B-certificate. This allows underperforming stu-

dents to avoid grade retention, but they can still opt for the same program if they

are willing to repeat the grade. I compare the current policy to two alternatives:

Counterfactual 1: Repeat

Students are forced to repeat a grade when they obtain a B-certificate. This

removes the option to avoid grade retention by switching to a different pro-

gram if they underperformed this year. It makes the system less flexible and

allows us to quantify the importance of the current flexibility.

Counterfactual 2: Downgrade

Students are forced to switch to a different program when they obtain a B-

certificate, without repeating the grade. It resembles a policy that will be

implemented in Flanders to reduce grade retention and allows us to quantify

the importance of offering students the possibility to ignore the advice of

teachers.

I first discuss the predicted effect of each policy using the proposed model. I

then compare the results of the policy simulations to the impact of initial conditions.

Finally, I compare my results to those of a pure discrete choice model. Details about

the calculation of welfare effects can be found in the appendix section E.4.

6.1 Policy impact

Table 4 compares the outcomes of the two counterfactuals to the status quo scenario.

The “Repeat” policy only shows worse outcomes. It does not manage to significantly

increase graduation rates from the academic track. Instead, dropout rates increase by
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Table 4: Counterfactual tracking policy

Status quo Policy change B-certificate
Repeat Downgrade

Panel A: educational outcomes % Change in %points
High school
Academic track 40.02 0.17 (0.30) -1.13 (0.32)
Middle-theoretical track 16.10 -0.96 (0.29) -1.52 (0.26)
Middle-practical track 8.14 -1.13 (0.24) -0.77 (0.26)
Vocational track 21.57 -2.01 (0.32) 5.03 (0.29)
Dropout 14.17 3.94 (0.33) -1.61 (0.25)

At least 1 B-certificate 37.53 -10.23 (0.71) -3.49 (0.34)
At least 1 C-certificate 30.69 -0.23 (0.33) -2.15 (0.24)
At least 1 year of study delay 33.22 9.48 (0.57) -9.82 (0.55)

Higher education
Enrollment 58.15 -1.76 (0.24) -1.40 (0.21)
Graduation 44.25 -1.70 (0.22) -0.30 (0.18)

Panel B: student welfare Change in $1000
Total student welfare -2.14 (0.26) -1.02 (0.14)

Fixed costs (-) 0.85 (0.12) -0.48 (0.10)
Variable costs (-) 0.49 (0.08) 0.21 (0.03)

Expected payoff after high school (+) -0.65 (0.10) 0.32 (0.07)
Taste shocks (+) -0.15 (0.10) -1.61 (0.19)

Note: Predictions from the dynamic model. C-certificate: repeat grade. B-certificate = students acquired skills

to proceed to next grade but only if they downgrade, i.e. switch to track of lower academic level or drop elective

course. Status quo = students can choose to downgrade or repeat grade after obtaining B-certificate, Repeat =

students must repeat grade after obtaining B-certificate, Downgrade = students must downgrade and not repeat

grade after obtaining B-certificate. Bootstrap standard errors in parentheses.

4 %points, which is a 28% increase in the total number. Not surprisingly, the share of

students with grade retention increases by a large amount (9 %points). As a result,

enrollment and graduation rates in higher education decrease by 2 %points. I also

look at the welfare effects from the student’s perspective. I assume an opportunity

cost of $10/hour and interpret it in dollars. Student welfare decreases on average by

$2, 140, which is mainly driven by the increase in fixed costs and can be explained

by the cost of repeating grades. The increase in dropout also decreases the expected

payoff after leaving high school because these students can no longer enroll in college.

The increase in grade retention and the decrease in college graduates are also expected
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to have large negative externalities that are not considered in this exercise. I conclude

that the current flexibility in the tracking policy is better than a strict pass or fail

policy.

In the “Downgrade” policy, students who obtained a B-certificate are no longer

allowed to repeat the grade. This would lead to a decrease in grade retention rates by

10 %points and dropout rates by 1.6 %points. This does come at a cost in the short

run. Students switch to programs of lower academic level, which decreases enrollment

rates in higher education by 1.4 %points. However, graduation rates only decrease

by an insignificant 0.3 %points (or less than 1% of the total number), which can be

explained by the strong effect of study delay on graduation. Since the policy restricts

the choice set of students, their welfare unambiguously goes down. On average they

lose $1, 020, despite a reduction in the fixed costs of $480 and an increase in their

expected payoff after high school of $320.39 This is partly because they increase their

study effort in response to the policy, leading to a loss of $210 due to variable effort

costs, but the main cost of the policy comes from the reduction in their choice set

that makes them miss out on $1, 610, coming from unobserved taste shocks.

Despite the negative impact on student welfare, it can be argued that the “Down-

grade” policy is beneficial for society. First, OECD estimates show that the per capita

loss of $1, 020 is close to the government saving by providing financing fewer years

of schooling.40 On top of that, gains of a year in tax payments would bring in an

additional $1, 960. The decrease in drop out and the improved efficiency of higher ed-

39Since we close the model after high school, the utility of enrolling in college is the students’
expected lifetime utility at the time they leave high school. These expectations can be biased. By
simultaneously predicting higher education graduation, we can see that the negative impact of study
delay is much larger for graduation than for enrollment (see Table 3). Similarly, the counterfactual
impacts the college enrollment rate but it does not have a significant impact on the number of college
graduates. If students ultimately care about graduation, rather than enrollment, it suggests that
they might underestimate the negative consequences of study delay in the long run. It is therefore
possible that the increase in the expected payoff is substantially smaller than the increase in the
actual payoff.

40The OECD estimates the direct cost to the education system of a student who repeats a grade
to be $9, 713. Decreasing grade retention rates by 9.82 %points then generate a government saving
of $950 per student.
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ucation (which is 90% government-funded (OECD, 2012)) would generate even larger

returns.

I conclude that the current tracking policy is a good way to guide students in

their track choices, rather than having them repeat a grade if they fail. Nevertheless,

the choice they currently have to repeat a grade instead of downgrading leads to

costly increases in grade retention and dropout, without an impact on graduation

from higher education.

6.2 The importance of initial conditions

Although the “Downgrade” policy can be beneficial from a social perspective, many

students would be hurt by the policy change. Therefore, I compare the effect of the

policy to the impact of initial conditions as savings in high school could be invested

to improve initial conditions directly (Gigliotti and Sorensen, 2018; Lafortune et al.,

2018). I regress four predicted outcomes on student characteristics (in each policy

scenario). I look at the impact on obtaining study delay, dropping out of high school,

obtaining a higher education degree, and student welfare. The results can be found

in the appendix Table A24.

While the effect of policies do not depend a lot on student characteristics, the

impact of initial conditions on outcomes is large. A standard deviation decrease in

language ability makes a student 7 %points less likely to obtain study delay, 7 %points

less likely to drop out, 15 %points more likely to graduate from college and derive

$16, 270 more from the current high school system.41 The impact of math ability,

SES, or being female is identical in sign and similar in magnitude on most outcomes.

Math ability does have a smaller effect on study delay and gender is more important

to explain dropout and less important for higher education. Differences between the

41Note that for welfare, only differences are identified. Therefore, the constant is a nuisance
parameter and the effect of student background should be interpreted as the effect on student
welfare, keeping the utility of the outside good (not attending high school) fixed. This way, it
captures changes in fixed and variable effort costs, taste shocks and the expected payoff of leaving
high school, but not any effect it might have on the dropout utility.
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two unobserved types are about twice the size of any single observable characteristic.

The results put into perspective the impact of the policy change in high school

on student outcomes. The “Downgrade” policy can achieve large effects in terms of

reducing study delay, resulting in important savings on educational spending. The

impact on other outcomes is only marginal compared to the impact of initial condi-

tions. This highlights the importance of preparing students before they enter high

school, rather than having them exert additional effort (studying harder or repeating

grades in rigorous programs) during high school. This is consistent with the literature

on gains from early childhood education through dynamic complementarities (Cunha

and Heckman, 2009; Cunha et al., 2010; Heckman and Mosso, 2014). High schools

should aim at efficiently fostering the skills that students acquired before entering and

refrain from letting students repeat grades to graduate from more academic programs.

The savings that result from this could be used to improve these initial conditions

directly.42

6.3 Bias in the pure discrete choice model

To demonstrate the methodological contribution of this paper, Table 5 compares the

counterfactual predictions with those from a pure discrete choice model (i.e. a model

in which the distribution of performance is exogenous and not the results of a study

effort decisions).

A model in which students cannot adjust their study effort leads to less favorable

outcomes in both counterfactuals. For example, the increase in study delay in the

“Repeat” policy is 11.6 %points instead of 9.5. The decrease in the “Downgrade”

policy is 9.2 %points instead of 9.8. Also in higher education, we see more nega-

tive effects if study effort is ignored. Most importantly, we would falsely conclude

that there is an important negative impact on higher education graduation from the

“Downgrade” policy (−1.1 %points), while the proposed model only estimates an

42See Appendix section E.4 for back-of-the-envelope calculations of the expected effects.
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Table 5: Bias in the pure discrete choice model

Policy change B-certificate
Repeat Downgrade

Effective study effort as a choice variable Yes No Bias Yes No Bias

Panel A: educational outcomes Change in %points
High school
Academic track 0.17 -0.61 -0.78 (0.19) -1.13 -1.88 -0.75 (0.18)
Middle-theoretical track -0.96 -1.32 -0.35 (0.19) -1.52 -1.88 -0.36 (0.17)
Middle-practical track -1.13 -1.73 -0.60 (0.17) -0.77 -1.00 -0.23 (0.16)
Vocational track -2.01 -1.04 0.96 (0.24) 5.03 6.21 1.19 (0.20)
Dropout 3.94 4.70 0.77 (0.20) -1.61 -1.46 0.15 (0.12)

At least 1 B-certificate -10.23 -6.32 3.91 (0.44) -3.49 -0.86 2.63 (0.29)
At least 1 C-certificate -0.23 0.22 0.44 (0.20) -2.15 -1.69 0.45 (0.15)
At least 1 year of study delay 9.48 11.61 2.13 (0.36) -9.82 -9.19 0.63 (0.27)

Higher education
Enrollment -1.76 -3.02 -1.27 (0.17) -1.40 -2.27 -0.87 (0.11)
Graduation -1.70 -2.69 -0.99 (0.15) -0.30 -1.12 -0.81 (0.09)

Panel B: student welfare Change in $1000

Total student welfare -2.14 -2.23 -0.09 (0.09) -1.02 -0.99 0.03 (0.05)
Fixed costs (-) 0.85 1.26 0.41 (0.12) -0.48 -0.63 -0.14 (0.05)

Variable costs (-) 0.49 0.00 -0.49 (0.08) 0.21 0.00 -0.21 (0.03)
Expected payoff after high school (+) -0.65 -0.95 -0.30 (0.06) 0.32 0.14 -0.17 (0.04)

Taste shocks (+) -0.15 -0.02 0.12 (0.06) -1.61 -1.76 -0.14 (0.07)

Note: Predictions of two dynamic models. In a pure discrete choice model students cannot adjust study effort. In the

proposed model they can because they choose the distribution of performance through their choice of effective study effort.

Changes are with respect to the status quo prediction of each model. C-certificate: repeat grade. B-certificate = students

acquired skills to proceed to next grade but only if they downgrade, i.e. switch to track of lower academic level or drop

elective course. Status quo = students can choose to downgrade or repeat grade after obtaining B-certificate, Repeat =

students must repeat grade after obtaining B-certificate, Downgrade = students must downgrade and not repeat grade

after obtaining B-certificate. Opportunity cost of time: $10/h. Bootstrap standard errors in parentheses.

insignificant and small effect of −0.3.

The difference in results can be explained by an increase in study effort. Both

counterfactuals make it less favorable to obtain a B-certificate. In a dynamic model

with program choice, students can avoid this by choosing a program in which their

success rate is higher. In the proposed model they could also change the success rate

itself. Although it will be costly to do so, for many students this might be a better

option than to switch programs in advance or take the risk to fail. This extra incentive

to exert study effort has important implications. Although actual study effort remains
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unobserved, we can see that students adjust it by their willingness to pay the extra

cost to have better performance outcomes through an increase in effective study effort.

This is most clear from the decrease in the number of bad performance outcomes,

and especially B-certificates, in both counterfactuals. In both models, the number of

B-certificates goes down but the decrease in the pure discrete choice model is much

smaller. In the “Repeat” policy, the decrease is 62% of the decrease in a model where

students can adjust their study effort. In the “Downgrade” policy it is only 25%. This

has important implications. First, there is a smaller increase in study delay in the

“Repeat” policy and a stronger decrease in the “Downgrade” policy. Second, more

students are staying in more academic programs. This increase in study effort comes

at a cost. Both counterfactuals increase the variable costs (a component missing in

a pure discrete choice model), but they do this at the benefit of other components

of welfare such that the loss in total student welfare does not change significantly.

The more favorable higher education outcomes compared to a pure discrete choice

model are a result of the decrease in dropout, the increase in students graduating

from academic programs, and the decrease in study delay.

7 Conclusion

I estimated a dynamic model of effort choice in secondary education in which students

choose the academic level of the study program, as well as the distribution of their

performance. I find that policies that encourage students who underperform to opt

for programs of lower academic level do not have a negative effect on obtaining a

higher education degree and they significantly decrease grade retention and high

school dropout. This creates large savings for society that can be reinvested in early

childhood education to improve educational outcomes.

The institutional context makes it possible to do clear counterfactuals to inves-

tigate the trade-off between costs of academic effort (study effort, grade retention,
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risk of dropout) and the benefits in the long run (higher education degree). These

conclusions are also important for other countries that track students from an early

age like Germany, Austria, or the Netherlands. Also in more comprehensive educa-

tional systems like the US, we find a similar trade-off at the course-level. Students

often retake failed classes to graduate from high school or to increase their chances

to be admitted to college. Many colleges explicitly ask for a high GPA and a rigorous

academic curriculum in their admission criteria. Students, especially those of lower

ability, then face a similar trade-off between studying advanced courses at the risk of

retakes and a lower GPA or choosing a curriculum with less advanced courses. The

results in this paper suggest these increases in effort during high school can be very

costly for students and society, and might not improve future outcomes.

From a methodological perspective, I show that it is possible to allow students

to exert different amounts of study effort in counterfactual simulations, despite the

lack of data on study effort. I also show that this is important in the application

of this paper. Further research can apply the modeling strategy to other contexts.

Any model where agents are expected to have some, but imperfect, control over state

transitions can benefit from this approach and the data requirements are the same

as for a model in which state transition probabilities are not determined within the

model.

Future research could also combine this approach with recent extensions of the

pure discrete choice model along other dimensions, introducing additional uncertainty

about the performance distribution due to imperfect information of students about

their ability (Arcidiacono et al., 2016) and endogenous quality of schools or programs

due to the quality of peers and effort choices of teachers (Fu and Mehta, 2018). This

would allow for counterfactuals that change the educational system more substan-

tially, such as changing the age in which students are first tracked, rather than only

constraining choices of students within the current system.

A final area of further research is to empirically test the performance of the model.
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I argue that the pure discrete choice model should be adapted because it is unrea-

sonable to assume that counterfactual simulations will not have an impact on study

effort. However, it is not testable that students can indeed choose their study effort

because the pure discrete choice model is observationally equivalent. This is similar

to arguing for the use of a dynamic over a static model. Despite being observationally

equivalent (Manski, 1993), dynamic models are often preferred because their assump-

tions are more reasonable in several contexts and this could impact counterfactual

simulations. Similar to the literature on identifying dynamic behavior (Abbring and

Daljord, 2020; Magnac and Thesmar, 2002), future research could investigate how

exclusion restrictions and policy variation in the data could be exploited to test the

pure discrete choice model against one where agents also choose the distribution of

state transtions.
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A Identification

A.1 Identified objects in pure discrete choice models

Consider the standard set-up of a dynamic discrete choice model. Each period t,

agent i chooses an option j. The decision is based on observed characteristics xit,

an unobserved type νi and unobserved iid taste shocks εit = {εi1t, εi2t, ...}. The time

horizon can be infinite or (if xit includes t) finite. Each period agent i derives some

flow utility

uj(xit, νi) + εijt

and states transition according to a process that satisfies conditional independence

(Rust, 1987):

fj(xit+1|xit, νi) = fj(xit+1|xit, νi, εijt).

Agents maximize expected lifetime utility by choosing the option with the highest

conditional value function:

vj(xit, νi) + εijt = uj(xit, νi) + β

∫
V̄ (xit+1, νi)fj(xit+1|xit, νi)dxit+1 + εijt

with V̄ (xit+1, νi) the expected value of behaving optimally after integrating over

the taste shocks.

In the case where there is no unobserved type, Magnac and Thesmar (2002) show

that data on xit and the chosen option, identify uj(xit) after specifying the utility

of a reference alternative, the discount factor β and the distribution of εijt. State

transitions fj(xit+1|xit) are nonparametrically identified. We can then use uj(.) and

fj(.) for counterfactual simulations by assuming they are primitives and therefore

invariant to policy changes.

As the iid assumption on unobserved heterogeneity is restrictive, many applica-

tions would add an unobserved state νi to capture persistent unobserved heterogene-
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ity and identify uj(xit, νi) and fj(xit+1|xit, νi). I will allow for this in the rest of this

section.43

A.2 Identification of alternative primitives

To relax the assumption of policy-invariance, assume instead that the functions uj(.)

and fj(.) depend on choice behavior and what we identify are therefore the endoge-

nously determined objects u∗j(xit, νi) and f ∗j (xit+1|xit, νi). The goal is to derive other

primitives from the data that are more likely to be policy-invariant.

Assume agents can choose the distribution of state transitions through a single

index yit such that φj,x̃,x̃′(yit) is the probability for i in state (xit, νi) = x̃ to transition

to state x̃′ = (xit+1, νi) after choosing j. The optimal choice of yit in a given program

j and state (xit, νi) is then given by y∗j (xit, νi) = φ−1
j,x̃,x̃′(f

∗
j (xit+1|xit, νi)).44 We now let

this index linearly enter the utility function:

uj(xit, νi, yit) = u0
j(xit, νi) + uyj (xit, νi)yit (20)

with u0
j(xit, νi) a component that is independent of the choice of the index and

uyj (xit, νi) ≡
duj(xit,νi,yit)

dyit
the marginal flow utility from changing yit.

To connect what we observe in the data with the current model, we make the

following assumption:

Assumption: In the data, agents in option j choose yit to maximize expected

lifetime utility and obtain an interior solution y∗j (xit, νi) = φ−1
j,x̃,x̃′(f

∗
j (xit+1|xit, νi)) with

φj,x̃,x̃′ a known function that is invertible and differentiable in yit.

43There are several approaches to identify type-specific uj(xit, νi) and fj(xit+1|xit, νi), see for
example Magnac and Thesmar (2002); Kasahara and Shimotsu (2009); Hu and Shum (2012), and
the discussion on identification of the application in this paper.

44For a simple case, assume xit = (xi0, git) with initial observed characteristic xi0 and a dummy
for obtaining a degree git. Assume students choose the exponential of the index of a logit on
obtaining a degree when they are in an option j that gives this possibility. We can then write
φj,(xi0,0),νi,(xi0,1)(ỹ) = ỹ

1+ỹ and φj,(xi0,0),νi,(xi0,0)(ỹ) = 1− ỹ
1+ỹ .
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In contrast, the pure discrete choice model recovers f ∗j (xit+1|xit, νi) while remain-

ing agnostic about how it was determined. However, when proceeding to counterfac-

tual simulations, it is not updated, i.e. it is implicitly assumed that agents cannot

affect it.

As in the pure discrete choice model, we still assume that agents choose the option

j that generates the highest expected lifetime utility. Conditional value functions now

depend on yit:

vj(xit, νi, yit) + εijt = uj(xit, νi, yit) + β

∫
V̄ (xit+1, νi)φj,x̃,x̃′(yit)dxit+1 + εijt.

Solving this for the optimal yit, the following FOC has to be satisfied:

uyj (xit, νi) = −β
∫
V̄ (xit+1, νi)

∂φj,x̃,x̃′(yit)

∂yit
dxit+1 for yit = y∗j (xit, νi) (21)

with the left-hand side equal to the marginal flow utility i receives today from

increasing yit, and the right-hand side the expected decrease in future utility. Since

φj,x̃,x̃′ is invertible and differentiable, we can identify the optimal value of yit in the

data (y∗j (xit, νi)) and calculate the derivative at this point. Identification of all flow

utilities with optimal choices also implies the identification of V̄ (xit+1, νi). β is taken

as given. Therefore, we can identify uyj (xit, νi) using this FOC. With uyj (xit, νi),

y∗j (xit, νi) and u∗j(xit, νi) identified, we can use (20) to identify u0
j(xit, νi).

We have now identified two new primitives of the model: the marginal utility of

a change in the index of state transitions uyj (xit, νi), and a component in the utility

function that is independent of the distribution of state transitions u0
j(xit, νi). We

can do this for different choices of φj,x̃,x̃′(yit), giving some flexibility to researchers to

choose the primitives of the model. Two aspects are important for this choice. First,

by choosing φj,x̃,x̃′ , the researcher effectively chooses for which transformation of state
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transitions the linearity assumption holds, i.e. for which transformation the marginal

impact on flow utility can be considered a primitive of the model. Second, the choice of

φj,x̃,x̃′ should be consistent with a high-level assumption that the FOC (21) is satisfied

in the data (as an interior solution is required). If not, the FOC cannot provide the

identifying power we need. Note that we only need this to identify primitives from

the data. In counterfactual simulations, we can allow for corner solutions.

B Data appendix

B.1 The LOSO dataset

The dataset used for this paper is the LOSO dataset.45 The first part of the data

contains rich information of students and their parents, and choices and performance

measures during high school in the region of Flanders (Belgium). We can follow a

cohort of students starting high school in 1990. I also include results from follow-up

research, called “LOSO-annex”, which looked into the education and labor market

career in the first three years after leaving high school (academic years starting in

1996 until 1998 for most students, but later for those with study delay). This data

was later enriched by sending questionnaires during 2003-2005 to students that were

still in the educational system in the questionnaire before.

The students are not randomly selected over Flanders. Instead, two large subre-

gions of Flanders were defined that are considered to be representative of the entire

region.46 In these regions, almost all schools are included, and within each school,

every student is included. The first subregion is in the east part of Flanders and in-

cludes the municipalities Hasselt, Genk, Beringen, Leopoldsburg, Herk-de-Stad, and

Diest. The second subregion is more to the west and contains the schools in Dender-

45See also https://ppw.kuleuven.be/o en o/COE/losodatabank.
46To test the representativeness of the data, I compared higher education enrollment number (58%)

to population data. For Belgium as a whole, I find an almost identical number around the same time
period: 56% in 1996 and 57% in 1999 (UNESCO Institute for Statistics, indicator SE.TER.ENRR).
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monde, Hamme, and Zele. Data was collected from students, parents, teachers, and

schools, and they were actively contacted by researchers on multiple occasions. This

is why the data is of high quality and there is very little attrition. Even if a student

decides to leave his school for a school that was not initially part of the project, it

was still possible to collect the necessary information.

B.2 Sample selection

I only keep the 6,439 students in the dataset that are known as ’proefgroepleerlingen’.

These are students that are tracked from the start of high school, even if they move

to another school. The dataset also contains a large number of observations of inflow

in schools over time but these are not used in this study. From these students, I

eventually keep 5,158 students to estimate the model.

The model in this paper captures the main aspects of the education system but

also makes some simplifications, implying that it cannot explain every observation

in the data. Moreover, some data on the choices or outcomes that are needed for

the estimation are missing. Table A1 summarizes the attrition. More details on why

observations had to be dropped follow next.

B.3 Data interpretation

Some information in the data is not straightforward to use in the model. Therefore,

I create or adjust some of the information to capture the spirit of the educational

system with the model, without overly complicating it to capture all anomalies in the

data. In particular, I perform the following manipulations.

First, students who are successful in the first grade of the vocational track can go

to the first grade of another track. I do not allow for this possibility in the model. In-

stead, I make these students look as if they entered the non-vocational track after an

additional year of study delay in elementary school. Second, B-certificates often ex-

clude specific programs like technical education-science, or accountancy-informatics,
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and not always entire study programs as defined in the model. In many cases, only

“unrealistic” alternatives remain within the same study program that I include in the

model (e.g. a program that is not available in any school in the neighborhood). To

avoid modeling every single study program, as well as school choice, I instead use a

model with aggregated study programs and interpret the certificate data in a specific

way.

Certificates that exclude an entire track are straightforward to implement. This

already contains 67% of the data on B-certificates. In other cases, I proceed as follows.

I always assume a hierarchy: if a low track is excluded, the higher ones are excluded

too.47 I also use a slightly different definition of a B-certificate that is more consistent

over the different grades. I ignore the officially called “C-certificates” in grade 7 as

they do not restrict entry into grade 8 of the vocational track, and change them to

B-certificates that allow the vocational track in the next grade (or A-certificate if the

student is already in the vocational track). In other cases in the academic and middle-

theoretical track, I use the following procedure. This procedure was established to

be in line as much as possible with the spirit of the educational system, as well as to

minimize the number of choices in the data that would not be possible to be explained

by the model. I make groups of aggregated study programs that are less aggregated

than the ones used in the model, but more aggregated than how they appear in the

data. This aggregates over very small differences within programs between which a

B-certificate is not expected to ever make a distinction, except when teachers (and

probably students) are not aware of the existence of the program. A B-certificate then

excludes all classical language options if all the aggregated programs with classical

languages appear in the list of restrictions. It excludes math options and the entire

track if there is an exclusion within all the major aggregated options of these study

programs. For exclusion of the middle-practical track, one occurrence of a program

47The following example shows that this is reasonable to assume: out of 199 B-certificates that
exclude all programs in the middle tracks for students currently in an academic track, 197 certificates
also exclude the academic track.

A7



in the track in the list of restrictions restricts the entire track, unless choice behavior

and the corresponding grade is not consistent with that.

At this point, we went from explaining 67% of the B-certificate data to explaining

95%. The remaining 5% is assumed to be imposing irrelevant restrictions on the

students in the model and are replaced by A-certificates. An important part of this

5% also contains exclusions within the vocational track which are unrelated to the

academic level of the program and are therefore outside the scope of this paper.

B.4 Details about study programs

The official distinction between tracks differs slightly from the one proposed in the

paper. The official track names are “ASO”, “TSO”, “KSO”, “BSO”, and “BUSO”

and the distinction for most tracks is made from the third year on (i.e. grade 9). ASO

corresponds to the academic track, BSO and BUSO to the vocational track and both

TSO and KSO are middle tracks (that differ in their focus on respectively technical

education and artistic education). I then split up this middle track according to

programs that prepare primarily for higher education (middle-theoretical) and the

labor market (middle-practical), which is a common distinction made, e.g. in Cockx

et al. (2018b), but also by the researchers that collected the data.48

Although this official distinction does not exist in the first two grades of high

school, there is a distinction between programs preparing for the different tracks.

First of all, there is the distinction between a B-stream, preparing for the vocational

track only, and an A-stream, preparing for the other tracks. Within the A-stream one

can also distinguish between more or less theoretical programs, based on the hours

per week each school can decide what to teach (5 in grade 7 and up to 10 in grade 8).

This distinction was made by the LOSO researchers, although not directly linked to

48The supply of programs differs between schools in Flanders. Some schools specialize and offer
programs in only one track while other schools do not specialize and offer programs in all tracks. In
the model I do not distinguish between different schools as they are all regulated in the same way
and the restrictions implied by certificates also hold for other schools.
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the specific track they prepare for. Therefore, I looked at the most common transition

patterns to assign them to a track. In a few cases, the distinction within the A-stream

was not made, I then assumed students were in the same track as the year after.

As mentioned in Cockx et al. (2018b), upward mobility is theoretically possible

but practically infeasible which is why it rarely occurs in the data. Nevertheless, I

do allow for this flexibility in non-vocational tracks in the first two grades as I do

see some upward mobility when the official track structure is not yet established.

Note that any mobility between grade 11 and grade 12 is forbidden, except for a

switch between some programs from a middle track to the vocational track. I do not

allow for that in the model and drop the students that do this. I also exclude the

following uncommon choices in the model: dropping out of (full time) high school

and returning, and repeating the grade in a track of higher academic level or with

an elective course that was not chosen before. Furthermore, sometimes rules are not

strictly followed. Some cases can be illegal, but in other cases, parents could have

asked for special permission from teachers, the ministry of education, or as a result

of a court order. These special cases are dropped.

For the higher education options, the distinction between different levels (pro-

fessional college, academic college, university) is also used in official statistics on

Flemish education and corresponds to respectively “Hoger onderwijs van het korte

type”, “Hoger onderwijs van het lange type” and “Universiteit”. Today, the distinc-

tion between “Hoger onderwijs van het lange type” and “Universiteit” is no longer

made but the study programs within them are still similar. To define STEM majors, I

use a characterization by the Flemish government (https://www.onderwijskiezer.be/).

The different types of (higher) education are associated with large differences in labor

market outcomes. To demonstrate this, I use data of the "Vacature Salarisenquête",

a large survey of workers in Flanders in 2006, and compare the median wages of

30-39-year-olds (sample size of 20,534 workers). High school dropouts earned a gross

monthly wage of 2,039 EUR, high school graduates without a higher education de-
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gree earned 2,250 EUR, professional college graduates 2,600 EUR, academic college

graduates 3,281 EUR and university graduates 3,490 EUR. Students that graduated

in a STEM major earned 3,264 EUR, while students that graduated in a non-STEM

major earned 2,800 EUR.

B.5 Distance and travel time data

I use address data of students and schools to obtain coordinates using the Stata com-

mand “geocode3”. For the schools, I updated this manually when geocode returned

an error or was not very precise. I did this for schools with at least 10 student-time

observations using Google maps. I then use the “osrmtime” command to calculate

travel time by bike to the closest school that offers the study program.49 Note that

all schools attended by students in the sample are used, which includes also schools

outside of the ones assigned by the researchers (because students can switch to other

schools). I dropped students living more than 50km from any school as they are more

likely to be influenced by schools that I do not observe or are outliers because of

measurement error when geocoding.

At the higher education level, I look at the distance to the closest school for

each option (level and major) if it is not a university and I distinguish between

the five Flemish campuses for universities (Leuven, Ghent, Brussels, Antwerp, and

Diepenbeek). This is similar to Declercq and Verboven (2018). If students attend

a university abroad or in Wallonia, I assign them randomly to one of the Flemish

campuses, using a probability distribution that corresponds to the distribution of

students going to Flemish universities.

49A bike is the most popular mode of transportation. According to government
agency VSV, 36% of students use a bike, 30% the bus and 15% a car (source:
http://www.vsv.be/sites/default/files/20120903 schoolstart duurzaam.pdf). Since distance to
school is small, travel time by bike is also a good proxy for other modes of transportation.
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B.6 Policy relevance

Although similar issues arise in other educational systems, they are particularly im-

portant in the current context. Belgium spends 2.8% of its GDP on secondary edu-

cation, the highest number among OECD countries. Therefore, it is crucial to study

the effectiveness of the system in helping students to achieve their future goals in a

cost-efficient way. Since 96% of the cost is paid by society, it is also important to see if

students have the right incentives within the system to optimize total welfare (OECD,

2017). Belgium has a very high rate of grade retention in secondary education which

comes at a large cost. The total cost of a year of study delay in Belgium amounts to

at least $48,918/student or 11% of total expenditures on compulsory education, the

highest rate in the OECD (OECD, 2013).

C Solution of the model

I assume it is no longer possible to go to secondary education in Tmax = 10 such that

the model can be solved backward. Because of the extreme value assumption on the

taste shocks εijt, I can write the expected value of lifetime utility in the period where

secondary education is no longer allowed, using the logsum formula:

V̄ (xit+1, νi) = γ + ln
∑

j∈Φ(xit+1)

exp(Degree′it+1µ
degree + ΨHEE

j (xit+1, νi)) if t+ 1 = Tmax

with γ ≈ 0.577 the Euler constant and Φit+1 = Φ(xit+1) the choice set. V̄ is used

as an input in t (see (17)). First, students look for the optimal value of the effective

study effort in every possible option in secondary education: y∗ijt. As explained in

section 2, an interior solution in the data is required and the following FOC should

then be satisfied:

cj(xit, νi) = β
∑
ḡ

∂φḡijt(yit)

∂yit
V̄ (xit+1(ḡ), νi) if yit = y∗ijt. (22)
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As in the simple model of section 2, a sufficient condition to obtain an interior

solution is to assume that students always believe there is a positive probability

to avoid the worse performance outcome in any program. This avoids that y∗ijt =

0. Furthermore, a positive marginal cost makes sure that it is never optimal to

exert an infinite level of study effort. The FOC condition equalizes marginal costs

and (expected) marginal benefits. As this does not depend on taste shocks ε or

performance shocks η, it implies that students with the same state vector (xit, νi)

will choose the same effort levels in a given program: y∗ijt = y∗j (xit, νi). In contrast to

the simple model in section 2, I do not obtain a closed-form solution for y∗j (xit, νi).

However, I can still estimate the optimal levels in the data (see section D for details

about estimation). In counterfactual simulations, I run a grid search to find the new

optimum (see section E for details about the simulations).

When students know the optimal levels of effort in each program, they can choose

the program with the highest value of vj(xit, νi, y
∗
j (xit, νi)) + εijt. This results in the

following logit choice probabilities:

Pr(dit = j|xit, νi) =
exp(vj(xit, νi, y

∗
j (xit, νi)))∑

j′∈Φ(xit)
exp(vj′(xit, νi, y∗j′(xit, νi)))

(23)

with vijt given by (17) for options in secondary education and (19) for options after

secondary education. V̄ (xit, νi) can also be calculated using:

V̄ (xit, νi) = γ + ln
∑

j∈Φ(xit)

exp(vj(xit, νi, y
∗
j (xit, νi))).

These steps can be repeated until the first period to solve the entire model.

D Estimation details

I first explain the estimation of the model when the econometrician knows the type

νi of every student and then allow them to be unobserved.
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D.1 Higher education

I propose the following functional forms for higher education enrollment parameters

(ΨHEE
j (.)) and graduation parameters (ΨHED

j (.)) and estimate them as parameters

of a conditional logit, using maximum likelihood:

ΨHEE
j (xit, νi) = ϕHEE,0j

+ S ′i(ϕ
HEE,S,0 + ϕHEE,S,levellevel HEj + ϕHEE,S,STEMSTEMj)

+ ν ′i(ϕ
HEE,ν,0 + ϕHEE,ν,levellevel HEj + ϕHEE,ν,STEMSTEMj)

+ ϕHEE,distdistance HEij

+ d̃′iTSEi
ϕHEE,SE

+ delayiTSEi (ϕHEE,delay,0 + ϕHEE,delay,levellevel HEj + ϕHEE,delay,STEMSTEMj)

+ ϕHEE,levelxdelaylevel SEiTSEi
×delay

iTSEi

+X ′ijϕ
HEE,interact

Level HEj is the level of the higher education program. I follow Arcidiacono (2005)

and define the level for each type of higher education by the average math ability

of the enrolling students. I use professional college as a benchmark (0.20) and cal-

culate differences with academic college (0.59) and university (0.79). Distance HEij

is the distance in kilometers from the student’s home to the chosen option. d̃iTSEi is

a vector of dummy variables for each possible program a student can graduate from

in high school and delayiTSEi the years of accumulated study delay. Since there are

few students in the academic track that do not enroll in higher education, I do not

distinguish between elective courses and estimate a common effect of each track on en-

rollment in the benchmark professional college. I also include a vector of interactions

Xij that includes all interactions between characteristics of the high school program

the student graduated in (academic level, intensive math, classical languages) and
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the characteristics of the higher education program (level and STEM major).

I impose a similar model for graduation from higher education. I use a similar

functional form for ΨHED
j (.) as I did for ΨHEE

j (.), but I also add more interaction

effects in Xij to take into account the higher education enrollment decision.50 In

particular, I include dummy variables for choosing the same level, upgrading a level,

and choosing the same major. I add a shock that is distributed extreme value type 1

such that I obtain logit probabilities. Since these shocks are iid, it is important to take

into account the enrollment decision to capture the correlation between enrollment

decisions and the final degree a student obtains.

D.2 Reduced forms of high school data

In section 2, I explained how a measure of performance can be used to back out the

optimal level of the effective study effort. This is still possible in the current model

and follows from the FOC (22). A first implication of this is that students with the

same state vector will choose the same effort levels within each program. Let y∗ijt be

the optimal choice of yit, conditional on program choice j. We can now substitute

this in the definition of yit (15):

y∗ijt =
1− Pr(gtrackit+1 = 0|dit = j, xit, νi)

Pr(gtrackit+1 = 0|dit = j, xit, νi)

with the current grade deterministic in dit and xit and y∗ijt = y∗j (xit, νi). Note that

both xit and νi are observed here, therefore y∗ijt is easily obtained from the observed

probability to obtain the lowest performance outcome in each j when students behave

optimally in the data. However, the finite number of observations and the large

state space does not allow me to do this. Therefore, I recover the optimal levels

and the performance thresholds by estimating an ordered logit model for the track

50In contrast to college enrollment rates, there is sufficient variation in graduation rates within
programs of the same track. Therefore, I do not need to restrict the common parameters of the
effect of study programs to be the same.
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performance outcome with index ln y∗j (xit, νi) and cut points η̄trackjr . The functional

form of the index is similar to what is imposed for the fixed cost parameters (see

below, equation (25)), but I allow for more flexibility by letting each initial observed

and unobserved characteristic be track-specific and change (linearly) over different

grades. I also allow distance to higher education options to affect performance and I

add an effect of the lagged study program (academic level and dummy variables for

intensive math and classical languages). Note that some of the thresholds are not

identified from the data but from the institutional context that imposes restrictions

on mobility (i.e. some thresholds can be∞). I allow the thresholds to differ not only

by different programs but also by the grade a student is in. Because there is little

variation in the data, I restrict the program-specific part through three parameters

that capture differences in the increase in thresholds for obtaining a higher outcome

in each track. This is then assumed to be constant over grades and tracks (see Table

A18). The ordered logit model also generates the probabilities for each performance

outcome. For elective courses, I use the predicted values of ln y∗j (xit, νi) and estimate

the specification in equation (16). Both can then be used to construct the joint

probabilities φḡijt(y
∗
j (xit, νi)).

As in Arcidiacono et al. (2016), I also obtain predicted values of Pr(dit|xit, νi) (the

CCPs) by estimating a flexible conditional logit with an index, similar to the index

I used to predict effective study effort. I assume a functional form that is linear in

observed and unobserved characteristics for each student characteristic, and I allow

for more flexibility than in fixed costs by letting them be track-specific and change

linearly over different grades. I also allow distance to higher education options to

affect choices, while they are excluded from fixed costs. As explained further, the

CCPs will be used to avoid solving the model during estimation and to back out the

unobserved types in a first stage.
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D.3 Cost estimates

The FOC (22) allows us to write the conditional value functions without an unknown

marginal cost function. Substituting the utility function (18) in the conditional value

function (17), after substituting marginal costs by (22) gives:

vj(xit, νi, y
∗
j (xit, νi)) (24)

= −C0
j (xit, νi)

+ β
∑
ḡ∈G

V̄ (xit+1(ḡ), νi)

φḡijt(y∗j (xit, νi))−
∂φḡijt(yit)

∂yit

∣∣∣∣∣
yit=y∗j (xit,νi)

y∗j (xit, νi)

 .

We already recovered y∗j (xit, νi) and φḡijt(y
∗
j (xit, νi)) from the data.

∂φḡijt(yit)

∂yit
can be de-

rived from the distributional assumptions on the performance measure. As explained

in the text, it is the product of three ordered logit probabilities. We can apply the

chain rule, knowing that for each ordered logit model we can find the derivative with

respect to yit recursively:

∂ Pr(gait = 0|dit, xit, νi, yit)
∂yit

= −αay
1

yit
Pr(gait = 0|dit, xit, νi, yit)(1− Pr(gait = 0|dit, xit, νi, yit))

∂ Pr(gait = ḡ|dit, xit, νi, yit)
∂yit

= −αay
1

yit
(Pr(gait ≤ ḡ|dit, xit, νi, yit) Pr(gait > ḡ|dit, xit, νi, yit))

−
∑
g̃<ḡ

∂ Pr(gait = g̃|dit, xit, νi, yit)
∂yit

for g̊ > 0

with (a = track, clas,math) and αtracky = 1.

After solving the model for V̄ (xit+1(ḡ), νi), we can use the logit probabilities (23)

with these conditional value functions to estimate the value of a degree µdegree and a

specification for fixed costs C0
j (.) by using maximum likelihood. I assume the following
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functional form:51

C0
j (xit, νi) = µ0

j + µgrade
j gradeijt (25)

+ S ′i(µ
S,0
j + µS,levellevel SEijt + µS,mathmathijt + µS,clasclasijt)

+ ν ′i(µ
ν,0
j + µν,levellevel SEijt + µν,mathmathijt + µν,clasclasijt)

+ µtimetimeijt

+ retention′ijt(µ
ret,0 + µret,levellevel SEijt)

+ µupupgradeijt + µdowndowngradeijt

+ µstaymathmathijt ×mathit−1 + µstayclasclasijt × clasit−1.

µ is a vector of parameters to estimate. Si is a vector of time-invariant observed

student characteristics, νi is a vector of dummy variables that indicate to which type

the student belongs, timeijt is the daily commuting time to the closest school that

offers the study program in the current grade and gradeijt is the grade a student is

in (set such that 1 is the first year of high school). Level SEijt is the academic level

of the track a student is in with 0 the vocational track, 1 the middle-practical track,

2 the middle-theoretical track, and 3 the academic track and math and clas refer to

respectively programs with intensive math and with classical languages. Grade reten-

tion is captured by the 2x1 vector: retentionijt. This vector contains a flow variable:

a dummy equal to one if the student is currently in the same grade as the year before

(“Repeat”) and a stock variable that captures the years of study delay accumulated

in previous years (“Study delay”). Finally, upgradeijt and downgradeijt are dummy

variables indicating if a student is currently in a track with at a higher or lower aca-

demic level than the year before and µstaymath and µstayclas capture preferences to stay

in a program with the same elective courses.

Note that in section 4, the scale of the utility function was implicitly normalized

51Note that the part-time track does not have a grade structure. Therefore, I only model its fixed
cost. Due to a lack of variation, I only estimate a choice-specific constant, which implies that student
background should have the same effect on part-time and full-time dropout.
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to unity. Therefore, all parameters µ are identified. However, to directly interpret

the cost estimates, I rescale the parameters by dividing by µtime. This way, the cost

estimates can be measured in daily commuting time.

Finally, marginal costs cj(.) can be recovered from the FOC (22) without imposing

additional structure.

D.4 CCP estimation

Hotz and Miller (1993) introduced the CCP method as an alternative to solving

dynamic models, which is particularly useful if there is a terminal action (Arcidiacono

and Ellickson, 2011). Hotz and Miller (1993) show that the future value term can

be written as the conditional value function of an arbitrary choice and a nonnegative

correction term that depends on its probability in the data:

V̄ (xit+1, νi) = γ + vd∗(xit+1, νi, y
∗
j (xit, νi))− ln Pr(d∗it+1|xit+1, νi) (26)

with γ ≈ 0.577 the Euler constant, d∗it+1 an arbitrary option j = d∗ and vd∗(.) the

conditional value function of this option.

Case 1: j = 0 available in t+ 1

If it is possible to leave secondary education in t+ 1, we can choose j = 0 as the

arbitrary choice and substitute its value function (19) in (26), with ΨHEE
0 (.) = 0:

V (xit+1, νi) = γ + Degree′itµ
degree − ln Pr(d0

it+1 = 1|xit+1, νi). (27)
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We can now substitute (27) in (24), such that for all j ∈ se:

vj(xit, νi, y
∗
j (xit, νi)) (28)

= −C0
j (xit, νi) + βγ

+ β
∑
ḡ∈G


(
Degree′it(ḡ)µdegree − ln Pr(dit+1 = 0|xit+1(ḡ), νi)

)(
φḡijt(y

∗
j (xit, νi))−

∂φḡ
ijt(yit)

∂yit

∣∣∣∣
yit=y∗j (xit,νi)

y∗j (xit, νi)

)  .
The benefit of using the outside option j = 0 as the arbitrary choice is that this

removes the future value terms in the current period conditional value functions.

This is because the terminal nature of j = 0 allows us to write its conditional value

function directly as a function of observables and parameters (see section 4.4). As

in Hotz and Miller (1993), a nonparametric estimate of Pr(dit+1 = 0|xit+1, νi) can be

recovered from the data before estimating the model.

These conditional value functions can now be used as inputs in logit probabilities

to recover the fixed cost parameters without having to solve the model.

Case 2: j = 0 available in t+ ρit

For most students, we start modeling choices from the age of 12. At t + 1, they

are age 13 and do not have that option because of compulsory schooling laws. They

will get the outside option j = 0 at t + 6. I write ρit to be the number of years it

takes before the CCP correction term with the outside option can be applied: ρit =

max{1, 18−Ageit}. We now need to repeat the CCP method in future values until the

outside option is available. This is an application of finite dependence, introduced in

Arcidiacono and Miller (2011). In contrast to their application on problems that have

a renewal action in the future, I apply it to the terminal action of choosing to leave

secondary education in the outside option (no higher education). The exposition in

this section is similar to Arcidiacono and Miller (2011) and Arcidiacono and Ellickson

(2011).

The choice probabilities (23) at the optimal levels of the effective study effort can
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be written by using differenced value functions. Let v∗j (xit, νi) ≡ vj(xit, νi, y
∗
j (xit, νi))

be the conditional value function at the optimal level of effective study effort and

u∗j(xit, νi) ≡ uj(xit, νi, y
∗
j (xit, νi)) the flow utility at this level:

Pr(dit = j|xit, νi) =
exp

(
v∗j (xit, νi)− v∗j′(xit, νi)

)
1 +

∑
j◦∈Φ(xit)

exp
(
v∗
j◦

(xit, νi)− v∗j′(xit, νi)
)

with v∗j (xit, νi)− v∗j′(xit, νi) (29)

= u∗j(xit, νi) + β
∑
ḡ∈G

φḡijt(y
∗
ijt)V̄ (xit+1(ḡ))

− u∗j′(xit, νi)− β
∑
ḡ∈G

φḡij′t(y
∗
ij′t)V̄ (xit+1(ḡ)),

for any j
′ ∈ Φ(xit). Substitute the CCP representation of the future value as a

function of the CCP of an arbitrary choice and its conditional value function (26) in

(29):

v∗j (xit, νi)− v∗j′(xit, νi) (30)

= u∗j(xit, νi) + β
∑
ḡ∈G

φḡijt(y
∗
ijt)
(
γ + v∗d∗(xit+1(ḡ), νi)− ln Pr(d∗it+1|xit+1(ḡ), νi)

)
− u∗j′(xit, νi)− β

∑
ḡ∈G

φḡij′t(y
∗
ij′t)

(
γ + v∗d∗(xit+1(ḡ), νi)− ln Pr(d∗it+1|xit+1(ḡ), νi)

)
.

Define the cumulative probability of being in a particular state given the current state

variable and choice, and a particular decision sequence d∗i = (dit, d
∗
it+1, d

∗
it+2, ...d

∗
it+ρit

):

κ∗τ (giτ+1 = ḡ|xit, νi) = φḡid∗τ (y
∗
d∗(xiτ , νi)) if τ = t

κ∗τ (giτ+1 = ḡ|xit, νi) =
∑
ḡτ∈G

φḡid∗τ (y
∗
d∗(xiτ , νi))κ

∗
τ−1(giτ = ḡτ |xit, νi) if τ > t
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with φḡid∗τ (y
∗
d∗(xiτ , νi)) the probability of receiving performance outcome ḡ at time

t = τ + 1, in the program a student will be at t = τ according to the decision

sequence d∗i . Similarly, define κ
′
τ to be the transitions in a sequence where the choice

in t is different: d
′
i = (d′it, d

∗
it+1, d

∗
it+2, ...d

∗
it+ρit

).52 We can then repeat the CCP method

in each of the future periods and rewrite (30) as the sum of future flow utilities and

CCPs until the outside option becomes available at t+ ρit:

v∗j (xit, νi)− v∗j′(xit, νi)

= u∗j(xit, νi)− u∗j′(xit, νi)

+

t+ρit−1∑
τ=t+1

βτ−t
∑
ḡ∈G

[u∗d∗(xiτ (ḡ), νi)− ln Pr(d∗iτ |xiτ (ḡ), νi)]κ
∗
τ−1(ḡ|xit, νi)

−
t+ρit−1∑
τ=t+1

βτ−t
∑
ḡ∈G

[u∗d∗(xiτ (ḡ), νi)− ln Pr(d∗iτ |xiτ (ḡ), νi)]κ
′
τ−1(ḡ|xit, νi)

+ βρit
∑
ḡ∈G

V (xt+ρit(ḡ), νi)κ
∗
t+ρit−1(ḡ|xit, νi)

− βρit
∑
ḡ∈G

V (xt+ρit(ḡ), νi)κ
′

t+ρit−1(ḡ|xit, νi).

V (xt+ρit , νi), the value of behaving optimally when the outside option is avail-

able and can be written as in (27). The calculation of the value function is now

possible after choosing the arbitrary options in each period, the prediction of their

CCPs, and the predictions of optimal effort in the study program. However, further

simplifications follow from a good choice of “arbitrary” options.

Since upward mobility from the lowest track is never allowed, I argue that the

arbitrary choices should always be the lowest track available in each period: the

vocational track if a student is not 15 years old yet, and the part-time track if the

student is older. This choice significantly removes the number of CCPs and future

utility terms we need. From the moment students choose the vocational track, they

52We can also allow a more general alternative sequence in which the choice in each period is
different but here it is sufficient to only let the first choice be different.
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can no longer make choices until the part-time track becomes available. Similarly,

once students opt for the part-time track, they can no longer make other choices until

the outside option is available. Therefore, we only need a CCP at the time a student is

switching tracks in the sequence. Moreover, since the part-time track does not follow

a grade-structure, and students can never return to the standard grade-structure,

the state variables will not evolve anymore in a way that depends on choices made.

Arcidiacono and Ellickson (2011) explain that in this case, the future utility terms

after choosing that option can be ignored in estimation as they will cancel out in the

differenced value functions.

The same procedure is applied within u∗j(xit, νi) = −C0
j (xit, νi)−cj(xit, νi)y∗j (xit, νi).

By replacing the marginal cost of effort by the marginal benefit of effort in the data, fu-

ture value terms also enter directly into u∗j(xit, νi) (see (24)). Because
∑

ḡ∈G
∂φḡijt(yit)

∂yit
=

0, all terms that do not depend on performance drop out such that the same simpli-

fications arise because of finite dependence.

D.5 Unobserved heterogeneity

To allow for types to remain unobserved to the econometrician, I follow the two-stage

estimator of Arcidiacono and Miller (2011). I assume there are M = 2 unobserved

types m in the population, with an estimated probability to occur πm. For inter-

pretability, I model the types as independent from observed student background. A

dummy for belonging to type 2 then enters each part of the model as if it were an ob-

served student characteristic. To avoid an initial conditions problem, I condition the

type distribution on the age the student starts secondary education: age starti. This

is because students who accumulated study delay before secondary education will be

faced with different opportunities in the model because they will be able to drop out

more quickly. Since starting age depends on past grade retention, it is likely corre-

lated with unobserved ability, creating a bias in the estimates. By conditioning the
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unobserved types on age starti, we can allow for this correlation.53 The loglikelihood

function is

lnLi = ln
M∑
m=1

πm|age startL
m
i

with

Lmi =

TSEi∏
t=1

Lprogram,mit × Lperformance,mit+1 × Lccp,mit × LHEE,mi × LHED,mi

with Lprogram,mit and LHEE,mi given by logit choice probabilities (23), with con-

ditional value functions (28) and (19). LHED,mi is given by the conditional logit

probabilities on the different possibilities for higher education graduation outcomes.

The likelihood contribution of the performance outcome in secondary education is

given by ordered logit probabilities Lperformance,m
it+1 and Lccp,mit are the CCP predictors.

Note that the inclusion of unobserved types makes the function no longer additively

separable such that sequential estimation is not possible.

Arcidiacono and Miller (2011) show that additive separability can be restored. The

estimation procedure is an adaptation of the EM algorithm. It starts from a random

probability of each observation to belong to each type. The entire model can then be

estimated as explained above but weighs each observation-type combination by the

probability that the student belongs to the type. Afterwards, the joint likelihood of

the data conditional on each type is used to update the individual type probabilities,

conditional on the data, using Bayes rule. This is repeated until convergence of

the likelihood function. I use the two-stage estimator of Arcidiacono and Miller

(2011) which implies that in the calculation of the joint likelihood, reduced form

estimates of the CCPs are used for Lprogram,mit , instead of the choice probabilities from

the structural model. This means that the fixed cost parameters and the common

53This is similar to Keane and Wolpin (1997), who start their model at age 16 and condition the
types on the educational attainment at that age.
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component of the value of a degree are recovered in the second stage. Finally, the

FOC (22) is used to recover the marginal costs.

Standard errors are obtained using a bootstrap procedure. I sample students with

replacement from the observed distribution of the data and use 150 replications. Since

the EM algorithm takes some time to converge, I do not correct for estimation error

in the probabilities to belong to each type.

E Simulation details

All predicted values are calculated as follows. I first categorize students by their

demographic characteristics: gender, language ability, math ability, SES, and the age

they start high school. I discretize the observed ability distribution by creating four

equally sized groups for each measure. Every student then belongs to one group which

is a unique combination of these variables. Within each group, I use the average travel

times and distances. Each group is then used to calculate the value functions for each

unobserved type. To limit the number of calculations, I drop groups with less than

10 students and verify that this has a negligible effect on the distribution of student

characteristics.

E.1 High school

After obtaining the value functions, I proceed to simulation during high school. For

each type, I draw 10,000 students using the empirical distribution of the observable

characteristics. I also take draws of taste shocks for every option in every period,

as well as performance shocks in every period for every performance outcome. The

average statistics are then calculated on a total of 20,000 draws. Given the simulated

outcomes of high school, I use the closed-form expressions for higher education to

calculate enrollment and graduation.

This procedure allows for a substantial total number of draws while needing only
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a limited number of students to use for a grid search to find the optimal effort level

within each possible program. The grid search for effort levels starts at the optimal

value of the scalar yit in each program j in the data: y∗j (xit, νi) and looks for better

levels using five sequential loops and an additional step to check for a corner solution.

The first loop looks at changes in the log of the effective study effort by 1 unit with a

minimum of -5 and a maximum of +5. The second loop divides steps and thresholds

by five, the third by 25, the fourth by 125, and the fifth by 625, such that the final

precision is 0.0016 (which is about 0.16% for the effective study effort y). Finally, I

check if a corner solution is optimal by setting y = 0 and changing the performance

distribution to predict the worse outcome with probability 1.

Standard errors are obtained by using the different estimates of each bootstrap

sample and by repeating the entire procedure for each of them.

E.2 Higher education

Note that to evaluate the impact on higher education outcomes, a structural model

in high school is needed as it allows for policy counterfactuals that will not change

the primitives of the model, like the fixed cost of a study program, marginal costs of

effort within a program or the value of a degree, but it will change student behavior.

Without a structural model, we would not be able to assess the effects of changes

in policy. For outcomes after secondary education, we do not need to know the

same primitives of the model but only the way these outcomes are influenced by high

school outcomes, after controlling for observed and unobserved student characteris-

tics. Therefore, I model a reduced form function only. This is similar to the approach

in the dynamic treatment effect literature (Heckman et al., 2016), but I only apply it

to choices after leaving high school to be able to do counterfactual simulations during

secondary education in which students are forward-looking.

The estimated functions of both enrollment and graduation can be used to look at

the impact of counterfactual policies in secondary education. Let xitHE(Policy = 0) be
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the realized state vector of i at time tHE in the status quo scenario, and xitHE(Policy =

p′) the state vector in the counterfactual scenario. The expected impact on the

proportion of students with long-run outcome HE of policy p′ is then given by:

Ex,ν
[
PHE
j (xitHE(Policy = p′), νi)− PHE

j (xitHE(Policy = 0), νi)
]

for HE = {HEE,HED}

with Ex,ν an expectations operator over the empirical distribution of the observ-

ables x and the estimated distribution of the unobserved types ν. PHE
j is the prob-

ability of the enrollment decision or higher education degree outcome of each college

option as a function of the state variables.

E.3 Fit of the model

Table A2 shows the ability of the model to replicate the actual data. The model

does a good job of predicting the patterns in the data such that it can be used for

counterfactual simulations. We see that graduation rates in different track and higher

education outcomes are predicted very precisely. There is a slight overprediction in

the number of students with a B-certificate leading to a small overprediction in the

number of students with study delay.
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Table A2: Predictions of the model

Data Predictions

High school (% of students)
Academic 38.27 40.02 (2.07)

clas+math 5.06 5.03 (0.65)
clas 6.11 3.18 (0.42)

math 13.24 14.59 (1.27)
other 13.86 17.22 (1.29)

Middle-Theoretical 15.86 16.10 (1.24)
math 2.42 3.11 (0.46)
other 13.44 12.99 (0.97)

Middle-Practical 11.85 8.14 (1.19)

Vocational 19.43 21.57 (0.89)

Dropout 14.60 14.17 (0.67)

Students with at least 1 B-certificate 35.40 37.53 (0.81)
Students with at least 1 C-certificate 30.01 30.69 (0.77)
Students with at least 1 year of study delay 31.62 33.22 (0.91)

Higher education (% of students)
Enrollment 58.18 58.15 (0.75)
Graduation 44.01 44.25 (0.75)

University degree 12.43 11.22 (0.55)
Academic college degree 6.05 6.26 (0.38)
Professional college degree 25.53 26.77 (0.69)

Degree in STEM major 17.76 18.01 (0.65)

Note: Clas= classical languages included. Math= intensive math. Observed

outcomes in the data and predictions from the proposed dynamic model. Boot-

strap standard errors of predicted values in parentheses.
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E.4 Welfare

Opportunity cost

I assume an opportunity cost of $10/hour. This is chosen to approximate the

opportunity cost of students in high school and is consistent with Kapor et al. (2018).

Students are not allowed to work until they are 15 years old and the wage often de-

pends on their age. In 2012 the minimum wage ranged between €6.8 and €9.7/hour.54

Only a small amount of taxes is paid on this if they work a limited amount of hours.

To compare to OECD estimates, I use the PPP adjusted exchange rate of dollars

(0.82), which results in wages between $8 and $12. Note that the model is in years

while the estimates are scaled in minutes/day. Therefore, I multiply them by the

wage per minute ($10/60) and the 177 school days there are in a year.

Gains from reducing grade retention

The direct cost and the total foregone earnings can be found in Table IV.1.6 in

OECD (2013). I subtract the net income (49%) to only capture the externality. This

number was calculated by dividing column (7) by column (1) in Table A10.2 in OECD

(2012).

Reinvestment of gains

Estimates in the literature for the effect of a one-time “helicopter drop” increase

of $1,000 on the ability distribution are around 1% to 2% of a standard deviation

(Gigliotti and Sorensen, 2018; Lafortune et al., 2018). This implies that reinvesting

the efficiency gains of the “Downgrade” policy could result in substantial gains for

students. Using the estimates in Table A24 and the savings from avoiding grade

retention ($2, 910), a 1.5% effect per $1,000 on each of the observed ability measures in

the downgrade policy would bring back $1, 200 in student welfare, increase graduation

rates in higher education by 1.3 %points, reduce study delay by 0.4 %points and

dropout by 0.6 %points. This in turn also creates additional savings that could be

54https://www.jobat.be/nl/artikels/wat-is-het-minimumloon-voor-een-jobstudent/ (consulted
March 2018).
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reinvested.

The estimates should be interpreted with caution. First, gender, socioeconomic

status, and the unobserved type might all be capturing initial skills that are not

captured by the language and math ability measures. Therefore, a policy that changes

skills might have a bigger effect than estimated now. On the other hand, ability

measures could also capture other things that might not respond to increased funding,

e.g. parental characteristics that are not captured by the SES dummy.

F Sensitivity analysis

This Appendix discusses the impact of alternative model specifications on the coun-

terfactual simulations of this paper.

Table A3 looks at the impact of observed and unobserved ability. We see impor-

tant differences, especially on predicted higher education graduation. In the “Repeat”

policy we see an underestimation of the decrease in graduating from higher educa-

tion (-0.61 instead of -1.70 %points), while in the “Downgrade” policy we see an

overestimation of the decrease (-0.84 instead of -0.30 %points). These results can be

explained by a failure to take into account the ability bias on the estimated effect

of tracks. When isolated, both observable ability measures and unobserved types

move the estimate closer to the baseline results. However, for the “Repeat” policy it

is mainly coming from the inclusion of observable measures of ability, while for the

downgrade policy the types help more. Note however that the ability bias was also

smaller in the downgrade policy. These results can be explained by the nature of the

data. The availability of rich, continuous measures of ability helps a lot to capture

the main source of ability bias. This leaves room for unobserved types to capture

more subtle differences between students. Therefore, the limiting structure of having

a finite number of types becomes a smaller concern with rich data.

Table A4 compares the baseline estimation method with two approaches that use
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Table A3: Sensitivity analysis: observed and unobserved ability

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
Obs ability: YES, types: NO 33.93 (0.98) 15.24 (0.76) 43.78 (1.37)
Obs ability: NO, types: YES 31.11 (1.11) 14.62 (0.64) 46.70 (1.76)
Obs ability: NO, types: NO 31.29 (1.41) 11.43 (1.37) 50.87 (3.75)

Change in %points Change in $1000
Repeat policy

Baseline 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)
Obs ability: YES, types: NO 10.42 (0.59) 4.44 (0.37) -1.80 (0.33) -2.14 (0.24)
Obs ability: NO, types: YES 9.89 (0.61) 4.20 (0.38) -0.72 (0.41) -2.22 (0.26)
Obs ability: NO, types: NO 10.64 (0.70) 4.67 (0.55) -0.61 (0.57) -2.30 (0.27)

Downgrade policy
Baseline -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

Obs ability: YES, types: NO -10.35 (0.78) -1.46 (0.34) -0.57 (0.24) -0.96 (0.14)
Obs ability: NO, types: YES -9.22 (0.65) -1.83 (0.24) -0.26 (0.19) -0.72 (0.11)
Obs ability: NO, types: NO -9.16 (0.70) -1.13 (0.38) -0.84 (0.32) -0.69 (0.11)

Note: Predictions from the dynamic model under alternative specifications. Obs ability refers to the

variables on initial math and language ability. If types = YES, it means that two unobserved types are

allowed for in the estimation. Status quo = students can choose to downgrade or repeat grade after

obtaining B-certificate, Repeat = students must repeat grade after obtaining B-certificate, Downgrade =

students must downgrade and not repeat grade after obtaining B-certificate. Bootstrap standard errors

in parentheses.

different identifying assumptions. As discussed in section 4.7, travel time to high

school programs is excluded from equations that predict higher education enrollment

and graduation but exclusion is not required for identification (Heckman and Navarro,

2007). I therefore also estimate a specification in which I add measures of travel time

to several programs in the final grade of high school. I add time to the vocational

track, and differences in travel time for moving up a track for every other track. I also

add the difference in travel time between options with and without intensive math

and with and without classical languages. These travel times are interacted in the

same way as other observable student characteristics. The resulting simulations are

almost identical to the baseline results. In a final specification, I follow Carneiro et al.

(2003), Heckman et al. (2016), and Lin (2019) and use additional measurement data
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to identify unobserved heterogeneity. To do this, I add (ordered) logit models to the

likelihood function of stage 1 of the estimation approach to predict the variables listed

in Table A5. The results for counterfactual simulations are similar. Furthermore, we

can conclude from Table A6 and Table A7 that types especially help to capture non-

cognitive skills.

Table A4: Sensitivity analysis: identification unobserved ability

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
High school travel time not excluded 33.30 (0.93) 14.32 (0.64) 44.23 (0.81)

+ Measurements added 34.72 (0.95) 14.53 (0.70) 43.72 (1.23)
Change in %points Change in $1000

Repeat policy
Baseline 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)

High school travel time not excluded 9.73 (0.45) 3.81 (0.33) -1.75 (0.21) -2.06 (0.25)
+ Measurements added 10.21 (0.49) 3.89 (0.37) -1.84 (0.27) -1.99 (0.21)

Downgrade policy
Baseline -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

High school travel time not excluded -10.85 (0.63) -1.80 (0.23) -0.39 (0.17) -1.03 (0.15)
+ Measurements added -11.04 (0.69) -1.88 (0.28) -0.54 (0.21) -0.95 (0.14)

Note: Predictions from the dynamic model under alternative specifications. Travel times to high school

programs added in equations that predict higher education enrollment and graduation in both alternative

specifications. The final specification also adds measurements, summarized in Table A5, to the first stage

of the estimation procedure. Bootstrap standard errors in parentheses.

Finally, Table A8 shows that results are robust for using two commonly used

discount factors in the literature.
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Table A5: Measurements: summary statistics

Obs Mean SD Min Max

Variable Description
Question asked to teacher elementary school (scale of 1 to 5 with 1 the lowest)

CONS1 Could pay attention in class; 3,938 3.635 1.293 1 5
has sufficient intellectual capabilities to follow;
is smart

CONS2 Was motivated for school work; 3,938 3.725 1.243 1 5
wanted to do it really well;
worked without reluctance

CONS3 Could tell a coherent story; 3,936 3.667 1.187 1 5
explore a topic;
stay on the subject

AGREE1 Did not distrube class intensionally; 3,917 4.259 1.108 1 5
did not aim to boycot learning

AGREE2 Held herself to the class rules; 3,935 4.088 1.122 1 5
waited for her turn;
it was not necessary to constantly call her to order

AGREE3 Was averse to hostilities; 3,934 3.992 1.104 1 5
was friendly and kind to others;
experienced no pleasure in teasing and bullying of others

EXTRA1 Was open to the teacher; 3,935 3.854 1.146 1 5
was spontaneous;
not defensive

EXTRA2 Made an energetic and vital impression; 3,933 3.898 1.064 1 5
looked happy

EXTRA3 Made contact with fellow students; 3,924 3.989 1.023 1 5
was open and approachable

Definition
IQ IQ score, discretized using cutoffs 80, 90, 100, 110 and 120 5,084 3.647 1.361 1 6
Income Monthly household income in BEF after taxes (1 EUR ≈40 BEF), 5,158 2.471 1.347 1 5

discretized using cutoffs 40k, 60k, 80k, 100k
Work At least one parent is active on the labor market. 4,749 0.861 0.346 0 1

Note: description and summary statistics of measurements of initial traits used in sensitvity checks.

Table A6: Measurements: part 1 of 2

CONS1 CONS2 CONS3 AGREE1 AGREE2 AGREE3

Male 0.070 (0.062) -0.670 (0.066) -0.226 (0.058) -1.048 (0.076) -1.024 (0.066) -0.818 (0.064)
Language ability 1.624 (0.089) 1.062 (0.071) 1.304 (0.069) 0.367 (0.050) 0.362 (0.049) 0.293 (0.054)
Math ability 0.792 (0.080) 0.581 (0.057) 0.438 (0.059) 0.248 (0.051) 0.289 (0.054) 0.186 (0.054)
High SES 0.476 (0.072) 0.415 (0.076) 0.447 (0.080) 0.075 (0.089) -0.030 (0.086) 0.032 (0.078)
Type 2 2.239 (0.071) 2.996 (0.076) 2.496 (0.072) 1.898 (0.073) 2.096 (0.068) 2.069 (0.069)

Cut point outcome 2 -3.234 (0.093) -3.163 (0.091) -3.327 (0.090) -3.480 (0.109) -3.573 (0.102) -3.582 (0.117)
Cut point outcome 3 -1.012 (0.056) -1.307 (0.065) -1.224 (0.058) -2.255 (0.077) -1.998 (0.073) -1.838 (0.070)
Cut point outcome 4 0.615 (0.061) 0.310 (0.057) 0.471 (0.061) -1.425 (0.068) -1.049 (0.067) -0.589 (0.060)
Cut point outcome 5 2.548 (0.073) 2.290 (0.066) 2.650 (0.072) -0.099 (0.064) 0.588 (0.062) 0.987 (0.061)

Note: Estimates of ordered logit model on measurements used in sensitivity checks. Bootstrap standard errors in parentheses.
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Table A7: Measurements: part 2 of 2

EXTRA1 EXTRA2 EXTRA3 IQ Income Work

Male -0.547 (0.064) -0.144 (0.064) -0.231 (0.059) 0.559 (0.061) -0.123 (0.050) 0.165 (0.099)
Language ability 0.258 (0.050) 0.310 (0.052) 0.219 (0.048) 1.619 (0.062) 0.142 (0.042) 0.788 (0.082)
Math ability 0.263 (0.046) 0.342 (0.052) 0.209 (0.044) 1.395 (0.079) 0.145 (0.042) 0.087 (0.061)
High SES 0.142 (0.073) 0.317 (0.072) 0.215 (0.069) 0.196 (0.065) 1.662 (0.081) 1.788 (0.251)
Type 2 2.477 (0.071) 2.272 (0.072) 2.021 (0.065) 0.502 (0.061) 0.142 (0.051) 0.160 (0.101)

Cut point outcome 2 -3.099 (0.096) -3.470 (0.120) -3.784 (0.136) -4.021 (0.099) -0.471 (0.043)
Cut point outcome 3 -1.349 (0.062) -1.457 (0.061) -1.733 (0.073) -1.975 (0.061) 0.563 (0.043)
Cut point outcome 4 -0.077 (0.059) 0.055 (0.056) -0.300 (0.056) 0.144 (0.054) 1.703 (0.046)
Cut point outcome 5 1.697 (0.061) 1.919 (0.068) 1.485 (0.058) 2.519 (0.060) 2.865 (0.059)
Cut point outcome 6 5.003 (0.090)
Constant 1.694 (0.086)

Note: Estimates of (ordered) logit model used in sensitivity checks. Bootstrap standard errors in parentheses.

Table A8: Sensitivity analysis: discount factor

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline (β = 0.9) 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
Alternative (β = 0.95) 32.95 (0.11) 13.98 (0.68) 44.56 (0.87)

Change in %points Change in $1000
Repeat policy

Baseline (β = 0.9) 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)
Alternative (β = 0.95) 9.45 (0.53) 3.50 (0.35) -1.99 (0.21) -2.53 (0.28)

Downgrade policy
Baseline (β = 0.9) -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

Alternative (β = 0.95) -10.19 (0.76) -1.81 (0.28) -0.26 (0.18) -1.13 (0.17)

Note: Bootstrap standard errors in parentheses.

G Tables
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Table A9: High school program and student background

Students Male Language Math High

Study program ability ability SES

All 5158 (100.0%) 0.50 0.00 0.00 0.28

Academic 1974 (38.3%) 0.40 0.71 0.64 0.49

clas+math 261 (5.1%) 0.46 1.15 1.05 0.63

clas 315 (6.1%) 0.37 0.94 0.68 0.58

math 683 (13.2%) 0.49 0.74 0.75 0.51

other 715 (13.9%) 0.32 0.41 0.36 0.38

Middle-Theoretical 818 (15.9%) 0.53 0.11 0.19 0.22

math 125 (2.4%) 0.70 0.32 0.47 0.30

other 693 (13.4%) 0.50 0.07 0.14 0.21

Middle-Practical 611 (11.8%) 0.51 -0.06 -0.02 0.22

Vocational 1002 (19.4%) 0.51 -0.76 -0.75 0.10

13th grade 609 (11.8%) 0.49 -0.67 -0.69 0.11

12th grade 393 (7.6%) 0.54 -0.89 -0.85 0.08

Dropout 753 (14.6%) 0.67 -0.92 -0.86 0.07

Part-time 431 (8.4%) 0.71 -0.97 -0.90 0.06

Full time 322 (6.2%) 0.62 -0.86 -0.81 0.08

Note: Ability measured using IRT score on tests at start of secondary education. Score

normalized to be mean zero and standard deviation 1. High SES= at least one parent

has higher education degree. Clas= classical languages included. Math= intensive math.

Students in vocational track only obtain full high school degree after an additional 13th

grade. dropout split between students directly opting for full time dropout or first choosing

part-time option.
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Table A10: High school program and higher education outcomes: summary statistics

Higher education

Enrollment Degree
Study program

All 58.2 44.0

Academic 96.9 84.2
clas+math 99.2 94.3

clas 99.4 90.5
math 97.8 88.1
other 94.1 74.1

Middle-Theoretical 82.0 51.7
math 99.2 72.8
other 78.9 47.9

Middle-Practical 54.8 27.5

Vocational (13th grade) 13.5 2.6

Dropout 0 0

Note: Percentage of all students (including

dropouts), conditional on high school program.

Clas= classical languages included. Math= inten-

sive math. Students in vocational track only obtain

full high school degree after an additional 13th grade.
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Table A11: High school program and level and major college degree: summary statis-
tics

Academic level higher education Major

University Academic Professional STEM
college college

Study program

All 12.4 6.0 25.5 17.8

Academic
clas+math 67.0 14.2 13.0 54.0

clas 48.6 10.5 31.4 22.2
math 33.7 18.3 36.2 47.0
other 9.5 6.9 57.8 16.2

Middle-Theoretical
math 7.2 20.8 44.8 56.0
other 0.7 3.3 43.9 17.5

Middle-Practical 0.2 2.9 24.4 12.3

Vocational (13th grade) 0 0.2 2.5 0.3

Note: Percentage of all students (including dropouts), conditional on high school program. Three

types of higher education options in decreasing order of academic level: university, academic college,

professional college. Graduation rates add up to the total rate of 44.0%. Each level has different

programs that could be STEM. Graduation from STEM programs is reported. Clas= classical

languages included. Math= intensive math.
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Table A13: Impact performance during secondary education

Students High school Higher education
Dropout Enrollment Degree

All 100 14.6 58.2 44.0

At least 1 B-certificate 35.4 21.0 36.6 19.9
At least 1 C-certificate 30.0 38.6 28.9 14.7
At least 1 year of study delay 31.6 26.7 37.7 18.8

Note: First column: share of students for each performance outcome during high school. Column

2-4: share of students for each long run outcome, conditional on obtaining a bad performance

outcome in high school. A-certificate: proceed to next grade, C-certificate: repeat grade, B-

certificate: repeat or downgrade.
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Table A15: Costs of schooling: main estimates

Fixed costs Log of marginal costs

Time 1 (.) -0.001 (0.001)
Grade 9.010 (7.804) 0.277 (0.060)

Academic
clas+math 76.866 (53.524) -4.845 (0.844)

clas -141.766 (47.669) -3.316 (0.444)
math -12.592 (49.785) -3.273 (0.369)
other -225.277 (49.520) -1.956 (0.281)

x grade -22.407 (7.063) 0.068 (0.086)
Middle-theoretical

math 102.125 (50.984) -3.397 (0.465)
other -181.509 (44.300) -1.923 (0.245)

x grade -7.705 (5.000) -0.117 (0.080)
Middle-practical -25.446 (43.907) -1.648 (0.335)

x grade -21.545 (4.873) -0.218 (0.083)
Vocational 112.558 (46.284) -4.248 (0.530)
Part-time 270.638 (31.720)

Note: Estimates of a sample of 5,158 students or 33,239 student-year obser-

vations. Scale = minutes of daily travel time. Grade variable starts counting

in high school. The marginal costs in the model are a nonparametric function

of state variables, this table summarizes them by regressing their logarithmic

transformation on the same variables that enter the fixed costs. Bootstrap

standard errors in parentheses.

Table A16: Costs of schooling: student characteristics and elective courses

Fixed costs Log of marginal costs

Interaction with Interaction with Interaction with Interaction with
classical languages intensive math classical languages intenstive math

Male -4.097 (8.294) -50.776 (11.655) 0.527 (0.357) 0.866 (0.269)
Language ability -57.070 (11.140) 29.557 (13.243) -1.113 (0.410) -0.824 (0.343)
Math ability -21.824 (9.085) -71.002 (14.949) -0.479 (0.402) 0.542 (0.316)
High SES -36.216 (9.500) -25.388 (11.322) -0.483 (0.391) 0.263 (0.295)
Type 2 83.543 (12.452) 35.493 (11.792) -0.186 (0.428) -0.022 (0.331)

Note: Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale = minutes of

daily travel time. The marginal costs in the model are a flexible function of state variables, this table

summarizes them by regressing their logarithmic transformation on the same variables that enter the

fixed costs. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs

to unobserved type 2 instead of 1. High SES= at least one parent has higher education degree. Clas=

classical languages included. Math= intensive math. Bootstrap standard errors in parentheses.
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Table A17: Type probabilities in %

Type probabilities
Type 1 Type 2

Overall 29.55 70.45
Age 12 33.07 66.93
Age 13 9.86 90.14
Age 14 10.67 89.33

Note: Estimates of unobserved types in the

student population by age they start high

school.

Table A18: Performance thresholds

Performance threshold for outcome

Increase to obtain outcome 3 0.871 (0.036)
Increase to obtain outcome 4 1.102 (0.043)
Increase to obtain outcome 5 1.744 (0.054)

Note: Optimal y is specific for each grade-track and thresholds for avoiding lowest outcome

in them are normalized to 0. These differences are estimated but constrained to be the same

over grades and tracks. Constraints on thresholds are used to avoid impossible outcomes

because of institutional context. Grade 7-10 allow more than two realizations of main

performance outcome.Bootstrap standard errors in parentheses.
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Table A19: Performance elective courses

Performance

Log effective study effort (ln y)
x clas 0.902 (0.339)

x math 0.124 (0.102)

Male
x clas 0.931 (0.469)

x math 0.058 (0.205)
Language ability

x clas -0.251 (0.524)
x math 0.053 (0.171)

Math ability
x clas -0.785 (0.532)

x math 0.488 (0.196)
SES

x clas -0.424 (0.352)
x math 0.027 (0.193)

Type 2
x clas 0.332 (0.517)

x math 0.392 (0.223)

Cut points clas
x grade -0.096 (0.138)

x constant 2.222 (2.062)
Cut points math

x grade 2, outcome 2 -4.679 (0.624)
x grade 2, outcome 3 -3.540 (0.556)
x grade 3, outcome 2 -5.222 (1.313)
x grade 3, outcome 3 -3.177 (0.574)
x grade 4, outcome 2 -5.676 (3.625)
x grade 4, outcome 3 -1.603 (0.528)

Note: Bootstrap standard errors in parentheses.
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Table A20: Value of obtaining degree

Degree values

High school degree 512.195 (101.307)
x level 108.083 (60.670)
x vocational -146.819 (99.334)

12th grade certificate vocational track 529.825 (65.461)

Note: Estimates of µdegree. Scale = minutes of daily travel time. Level =

academic level of high school program (0-3). Bootstrap standard errors

in parentheses.

Table A21: Estimation results higher education (1)

Higher education
Enrollment Degree

Male -1.013 (0.108) -0.840 (0.129)
x HE level 0.302 (0.206) 0.529 (0.246)

x STEM 0.827 (0.067) 0.598 (0.142)
Language ability 0.340 (0.126) 0.262 (0.144)

x HE level 2.130 (0.230) 0.641 (0.255)
x STEM -0.186 (0.088) -0.172 (0.136)

Math ability 0.111 (0.109) 0.611 (0.137)
x HE level 1.433 (0.229) 0.149 (0.335)

x STEM 0.472 (0.098) -0.154 (0.147)
SES 0.563 (0.126) 0.633 (0.136)

x HE level 1.875 (0.191) 0.643 (0.245)
x STEM 0.084 (0.084) -0.078 (0.129)

Type 2 -0.613 (0.157) -1.830 (0.174)
x HE level -4.741 (0.248) 0.901 (0.310)

x STEM -0.639 (0.090) 1.006 (0.165)

Note: Estimates of higher education outcomes as specified in Ap-

pendix D. HE Level = level of higher education (average ability).

Bootstrap standard errors in parentheses.
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Table A22: Estimation results higher education (2)

Higher education
Enrollment Degree

Academic degree 4.227 (0.266)
+ clas + math -0.330 (0.385)
+ clas -0.009 (0.278)
+ math 0.501 (0.198)
other benchmark

Middle-theoretical degree 3.426 (0.205)
+ math -0.195 (0.277)
other -0.442 (0.160)

Middle-practical degree 2.050 (0.161) -0.721 (0.233)
Vocational degree benchmark -2.030 (0.332)
Study delay 0.182 (0.150) -0.580 (0.271)
High school level x study delay -0.326 (0.077) -0.150 (0.121)
HE level

x high school level 0.163 (0.186) -0.227 (0.266)
x clas 3.031 (0.296) 1.618 (0.283)
x math 2.596 (0.222) 1.313 (0.258)
x study delay -0.312 (0.225) 0.034 (0.368)

STEM
x high school level -0.455 (0.062) -0.108 (0.114)
x clas -0.271 (0.123) 0.480 (0.193)
x math 1.335 (0.086) 0.389 (0.158)
x study delay -0.234 (0.083) 0.165 (0.148)

Note: Estimates of higher education outcomes as specified in Appendix D.

Clas= classical languages included. Math= intensive math. High school level

= academic level of high school program (0-3). HE Level = level of higher

education (average ability). Bootstrap standard errors in parentheses.
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Table A23: Estimation results higher education (3)

Higher education

Enrollment Degree
Distance (km) -0.018 (0.001) -0.003 (0.001)
Same HE level as enrollment 1.715 (0.112)
Same major as enrollment 2.411 (0.088)
Upgrade HE level -1.653 (0.283)
University -3.957 (0.398) -4.604 (0.447)
Academic college -2.842 (0.339) -2.971 (0.317)
Professional college -1.287 (0.274) -1.338 (0.177)
STEM 0.289 (0.171) -1.059 (0.298)

Note: Estimates of higher education outcomes as specified in Appendix D. HE

Level = level of higher education (average ability). Bootstrap standard errors

in parentheses.
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