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Abstract

The extensive literature on minimum wages has found evidence for compression of relative
wages and mixed results for employment. This literature has been plagued by a number of
problems. The median-minimum wage-ratio has been used as the independent variable. First,
the median is endogenous. Second, the minimum wage policies are also endogenous. Third,
it is difficult to disentangle (i) compression of relative wages and (ii) truncation due to disem-
ployment effects. Fourth, compression combined with an upward sloped labour supply curve
implies both negative demand effects for the least skilled workers and positive supply effects
for higher types. We offer solutions for all four problems, by using instruments for the mean
and the minimum, by using data on personal characteristics, and by a careful specification of
the heterogeneity in employment effects. We apply our method to US data starting from 1979,
allowing for wide variation in minimum wages.
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1 Introduction

The extensive literature on the impact of minimum wages in the US typically reports strong com-
pression of relative wages and a small employment effect. Many papers cannot rule out that an
increase in the minimum wage will actually raise rather than reduce employment, see e.g. Card
and Krueger (1994), Dube et al. (2010), Cengiz et al. (2019), Bailey et al. (2020) and Fishback and
Seltzer (2020). Similar results have been reported for other countries, see Dolado et al. (1996) for
Europe, Machin and Manning (1994) and Stewart (2012) for the UK, Ahlfeldt et al. (2018) for Ger-
many and Engbom and Moser (2018) and Haanwinckel and Soares (2021) for Brazil.

Although this extensive literature has provided much insight, it has been plagued by a number
of persistent problems, see e.g. Autor et al. (2016) and Neumark and Shirley (2021). First, mini-
mum wage policies are endogenous, in particular at the state level. It isn’t pure coincidence that
California and Washington are among the states with both the highest median and the highest
statutory minimum wage. Second, most research uses the Kaitz index (the ratio of the minimum
to the median wage), as a measure of the bindingness of the minimum wage. However, the me-
dian is endogenous, due to either truncation of workers with low human capital or compression of
relative wages. Moreover, there might be reverse causality: some outside force may drive up both
the median and wage dispersion in a region, e.g. the IT revolution in San Francisco. The rise in the
median will then lead to a fall in the Kaitz index, which induces the researcher to conclude that a
less binding minimum wage leads to higher wage dispersion. Third, disentangling truncation and
compression effects is almost impossible when using data on wages only without making strong
functional form assumptions. Finally, there might be positive employment effects for low initial
levels of the minimum, but nobody will believe that these effects remain positive indefinitely for
higher levels of the minimum. Moreover, this effect is the unlikely to be the same for all levels
human capital. Employment for the lowest percentiles of the human capital distribution might be
reduced by an increase in the minimum, while higher percentiles still benefit. This paper addresses
these problems.

A short review of the literature on minimum wages over the past 40 years is helpful for under-
standing our approach. Our review starts with Meyer and Wise (1983)‘s analysis of the truncation
effect of the minimum on the wage distribution, using data on wages only. They hypothesize that
the minimum truncates an otherwise invariant wage distribution. The truncated lower tail can be
split into three parts. For the first part of the truncated workers, the wage is raised to the statutory
minimum, yielding a spike in the wage distribution. For the second part, there is non-compliance:
workers get paid below the statutory minimum. The third part measures the disemployed effect.
Meyer and Wise report a substantial loss of employment.

Subsequent research by Card and Krueger (1994), based on time series evidence and on a
difference-in-difference approach between New Jersey and Pennsylvania found much smaller em-
ployment effects. This finding initiated a flow of papers explaining the combination of small or
even negative truncation effects and strong wage compression.

A first strand of papers use monopsony models and models with search frictions, notably Bon-
temps et al. (2000), Machin et al. (2003), Flinn (2006) and Engbom and Moser (2018). These models
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can explain why an increase in the minimum wage might raise rather than reduce employment.
Models with search frictions predict that job seekers underinvest in search when the Hosios con-
dition is violated by job seekers capturing too smal a share of the match surplus. An outside legal
intervention in wage setting can alleviate this hold up problem.

A second strand followed up on an idea first expressed by Rosen (1974) to apply hedonic pric-
ing models for the analysis of minimum quality standards. In a Walrasian market, a minimum
wage is akin to a minimum quality standard for human capital. Contributions in this strand are
Teulings (1995, 2000) and Haanwinckel and Soares (2021). The idea is that small disemployment
effects of minimum wages can go hand in hand with strong wage-compression effects by a chain
of substitution effects, driving up the wages of those workers that are the closest substitutes for
workers whose human capital falls below the implicit minimum quality standard imposed by the
minimum wage and who therefore lose their job.

Motivated by this research, DiNardo et al. (1996), Lee (1999), and Teulings (2003) seek to ex-
plain the negative effect of the minimum on wage dispersion not from truncation of workers with
low human capital, as in Meyer and Wise (1983), but from compression of relative wages. In partic-
ular Lee (1999) and Teulings (2003) found that a minimum wage generates strong compression of
wage-differentials above the minimum. Lee (1999)’s paper was probably the first to use inter-state
minimum wage differentials as a source of variation, allowing to control for time and region fixed
effects. However, similar to Meyer and Wise (1983), he uses data on wages only. Hence, Lee has
essentially to assume that the fall in wage dispersion is due to compression and not truncation.
He concludes that the full increase in wage inequality during the eighties can be attributed to the
freeze of the nominal minimum wage during the Reagan presidency. However, the problem in
his analysis is that minimum wages were found to compress wages differentials not only in the
lower, but also in the upper half of the distribution, which is implausible. Teulings (2003) also
found strong compression, but mainly for the lower half of the distribution. He uses also data on
workers’ human capital, allowing separate inference on truncation (i.e. changing the distribution
of human capital) versus compression (changing the wage distribution for a constant distribution
of human capital).

Both Lee (1999) and Teulings (2003) used the Kaitz index as their independent variable. Autor
et al. (2016) have argued that this procedure is suspect when e.g. 50-10% log wage differential
serves as the endogenous variable. The median enters both the explanatory and endogenous vari-
able. Hence, measurement error in the median introduces an artificial correlation, biasing the esti-
mation results. Moreover, cities tend to have both a higher median and a larger wage dispersion
than rural areas. Again, this creates an artificial correlation biasing the estimation results. Correct-
ing for these biases, Autor et al. (2016) did not find significant evidence for compression effects
above the spike, thereby confirming the initial assumption of Meyer and Wise (1983). Though one
might dispute the validity of their instruments, their analysis shows convincingly the problem of
using the Kaitz index as the explanatory variable.

Neumark and Shirley (2021) question the general view that the disemployment effect are small
or even negative. They argue that there is clear evidence for negative employment effects for sub-
groups of low human capital workers. Their argument suggests that there is strong heterogeneity
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in the impact of minimum wages on employment, not only by the level of the minimum wage, but
also between subgroups of workers.

Cengiz et al. (2019) try to correct the Meyer and Wise (1983) model for the compression effects
above the minimum reported by Lee (1999) and Teulings (2003). Using data on wages only, they
start from Meyer and Wise (1983) estimate of the disemployment effect. From this estimate they
subtract the added probability mass for wage levels slightly above the minimum, arguing that
these workers earned less than minimum wage before its increase and should therefore not be
included in Meyer and Wise (1983) estimate of the disemployment effect. They found the disem-
ployment effect to be small. We argue in this paper that it is impossible to calculate the magnitude
of this effect from wage data only without making strong functional form assumptions.

From this short history of the extensive research on minimum wages, the main elements of
our design are easy to understand. We tackle the problem of the endogeneity of the median by
using the spike in the wage distribution rather than the Kaitz index as our explanatory variable.
We interpret the spike as the objective of the policy maker and the nominal minimum wage as the
instrument for implementing this objective. The spike will be determined by the real minimum
wage. Hence, it depends both on the nominal minimum wage and on counterfactual evolution
of nominal wages in general. We use a Bartik instrument for agglomeration externalities derived
from a companion paper, Chen and Teulings (2021), to instrument for the counterfactual wage.
Moreover we address the systematic differences in the wage distribution between cities and the
countryside by treating 34 SMSA’s as separate regions. We disentangle the truncation and the
compression effect by aggregating a vector personal characteristics into single index for workers’
human capital, following Teulings (2003), which we use for the analysis of both relative wages and
employment. We solve the problem of heterogeneity in employment effects by analysing the effect
on employment for each percentile of the human capital distribution and by allowing this effect
to be non-linear in the spike. Our specification does not make a priori choices regarding the sign
of employment effects for each quantile of the distribution. Moreover, it allows for a sign reversal
when the spike exceeds some critical threshold. We use data starting from 1979, when the spike
accounted for 5% of total employment for the country as a whole and even 10% in some low wage
regions, to allow for sufficient variation in the spike for reliably establishing this turning point.
These non-linearities allows us to quantify trade-offs legislators face when setting the minimum
wage.

We find strong evidence both for the compression of wage differentials above the spike and
for heterogeneous employment effects. The return to human capital for the median worker is
11% lower when the spike is 5% compare to the absence of a spike; it is even 30% lower for a
worker earning a wage just above the minimum. For the lowest quantiles of the human capital
distribution we confirm the conclusion of Neumark and Shirley (2021) of negative employment
effects for the lowest percentiles of the human capital distribution. However, starting from the 7th

percentile, the sum of the employment effects for all lower percentiles of a small minimum wage
is positive. Total employment in the lower tail of the distribution is maximized by a spike of 9%,
leading to positive employment effects up to the 16th percentile of the human capital distribution.
The additional employment of this spike relative to a situation without a minimum wage is 2.2%
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of total employment. Conditional on the specification of the model, these effects are precisely
measured. We argue that this strong positive employment effect demonstrates the relevance of
monopsony models above the hedonic pricing models.

We provide counterfactual simulations for several turning points in the evolution of the mini-
mum. We find that the changes in minimum wage have contributed substantially to the variation
in both the return to human capital and wage dispersion in the bottom half of the distribution and
that an increase in the minimum wage might be an effective instrument for boosting the labour
share in aggregate output. We do not attempt to provide a welfare theoretic framework for weigh-
ing the cost and benefits for various parts of the human capital distribution. However, those with
a strong preference for an equal wage distribution and a higher labour share and who care less
about the disemployment effect for the lowest percentiles of the human capital distribution will
find arguments for a high spike in this paper.

The structure of the paper is as follows. Section 2 discusses some theoretical considerations
regarding the compression effect in hedonic models. Section 3 discusses the steps of our empirical
procedure. The data are discussed in Section 4, while the empirical specification and the estima-
tion results are presented in Section 5. Section 6 contains the counterfactual analysis. Section 7
concludes.

2 Some theoretical considerations

2.1 Walrasian models

Modelling spillover effects of a minimum wage to the wages above the minimum is not straight-
forward. Rosen (1974) was probably the first to observe that edonic pricing models with hetero-
geneity on both sides of the market are a prerequisite for assessing the impact of minimum quality
standards; a minimum wage is akin to a minimum quality standard for labour. Sattinger (1975)
and Teulings (1995, 2005) analyzed equilibrium assignment models of heterogeneous workers to
heterogeneous jobs, where the heterogeneity on each side is captured by a single index, say, the
worker’s human capital h and job-complexity z.1 Gabaix and Landier (2008)’s model of CEO com-
pensation has the same structure. This section shows why an increase in the minimum yields wage
compression in these models.

Returns to scale are constant in these models. Let x (h, z) be the log productivity of a worker
with human capital h in a job with complexity z; x (h, z) is assumed to be twice differentiable in
both arguments. Human capital is assumed to have both an absolute advantage in all job-types,
implying xh (h, z) > 0 (more human capital yields more input, irrespective of the job type), and a
comparative advantage in more complex jobs, implying xhz (h, z) > 0 (log supermodularity: more
human capital yields relatively more additional output in more complex jobs). The distributions
of the supply of human capital and the demand for product complexity are exogenous; both distri-

1A single index is not the same as a single factor of production. In fact, single index models have an infinite number
of factors of production, since each value of the index corresponds to a different factor of production. The elasticity
of substitution between two factors is a decreasing function of the distance between these factors measured along the
index: DIDES: Distance Dependent Elasticity of Substitution, see Teulings (2005).
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bution functions are assumed to be twice differentiable. For the sake of the argument, we ignore
other factors of productions. Finally, there is perfect competition on all markets.

Under these assumptions, absolute advantage implies that the equilibrium log wage function
w (h) is differentiable and strictly increasing, w′ (h) > 0, while comparative advantage implies
that the equilibrium assignment of worker- to job-types, z (h), is also a differentiable and strictly
increasing function, z′ (h) > 0, see Teulings (2005) for a proof.

Since types of labour are the only factors of product and since there is perfect competition,
wages account for the full value of output and profits are zero. Hence, profit maximization is
equivalent to cost minimization. Since production is characterized by constant return to scale, cost
minimization for a given quantity is equivalent to cost minimization per unit of output. Let h (z)

be the type of worker hired by an employer offering a job of complexity z; this function is therefore
the inverse of z (h), which exists since z′ (h) > 0. The employer chooses the optimal level of human
capital h (z) as to minimize cost per unit of output

h (z) = arg min
h

[
ew(h)−x(h,z)

]
,

w′ (h) = xh [h, z (h)] , (1)

where the second line is the first order condition of the program in the first line, substituting z for
z (h) and hence h (z) for h [z (h)] = h. This is a fundamental insight in this class of models: keeping
constant the level of human capital h, the slope of the log wage function w′ (h) (or equivalently:
the Mincerian return to human capital) is an increasing function of the complexity z (h) of the
job which an h-type worker holds in equilibrium. The same result applies in Gabaix and Landier
(2008)’s model of CEO pay, where the return to a CEO’s talent is proportional to the size of his firm.
Keeping constant his managerial talent, the larger are firms, the steeper is the CEO compensation
curve.

The impact of a minimum wage is conveniently demonstrated by a simple parameterization
of this model: human capital and jobs are uniformly distributed at the unit interval, h ∈ [0, 1] and
z ∈ [0, 1], and the productivity function satisfies

x (h, z) = −1

γ
eγ(z−h),

with γ > 0; as can be checked easily, this specification satisfies the restriction of absolute and
comparative advantage discussed previously. By equation (1) the first order condition reads

w′ (h) = eγ[z(h)−h]. (2)

It is easy to work out that the market equilibrium in this economy is z (h) = h. The situation is por-
trayed in Figure 1. The lower panel shows the assignment z (h) worker- to job-types, while upper
panel shows the wage function w (h). All job-types are done and all worker-types are employed,
where the worker with the least human capital is assigned to the simplest job, z (0) = 0, and the
worker with the highest human capital to the most difficult job, z (1) = 1. Hence, w′ (h) = 1. We
choose the numeraire of the model such that w (0) = 0, so that w (h) = h.
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Figure 1: Equilibrium Assignment z(h) and Wages w(h)
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Consider the effect of log minimum wage m; since w (0) = 0, m > 0 for this minimum to be
binding. The minimum wage causes the least skilled workers to lose their job. Let h̃ be the worker
with the lowest human capital who remains employed. Since h is distributed uniformly on the unit
interval, h̃ is the disemployment effect of the minimum wage as a fraction of total employment.
h̃ measures the truncation effect of a minimum wage on the wage distribution: wage dispersion is
reduced since the workers with the least human capital lose their job.

Let w̃ (h) and z̃ (h) denote the wage function and the equilibrium allocation for this minimum
wage. Both functions are also portrayed in Figure 1. Since all jobs have to be done and since
z̃′ (h) > 0, the equilibrium assignment z̃ (h) starts from z

(
h̃
)

= 0 and ends at z (1) = 1. One

can show that all worker-types who remain employed (that is: h ∈
[
h̃, 1
]
) hold jobs that are less

complex after rather than before the introduction of the minimum wage, z̃ (h) ≤ z (h), where
equality holds only for the highest type, h = 1. In words: a minimum wage causes the least skilled
workers (h < h̃) to lose their job. Since these jobs have to done anyway, all other workers move to
less complex jobs than before the introduction of the minimum wage, except for the worker with
the highest human capital who remains doing the most complex job.

Since w̃ (h) is differentiable and increasing, the wage of the least skilled worker who remains
employed is equal to the minimum wage:

w̃
(
h̃
)

= m.

Due to equation (2), the decrease in job complexity for all workers (except for h = 1) implies
that the slope of the wage function declines: w̃′

(
h̃
)
≤ w′ (h) = 1, where equality holds for h = 1

only. This flattening is the strongest for least skilled worker who remains employed, h̃. It gradually
declines for higher levels of human capital. At the upper support of the human capital distribution,
the wage function before and after the introduction of the minimum wage run parallel. Since our
example is constructed such thatw (h) is linear (and hencew′′ (h) = 0) in the absence of a minimum
wage, w̃′′ (h) > 0 with a minimum.

These arguments establish the slope of w̃ (h), but not its level. The latter follows from a Wal-
rasian argument, see Teulings (2005) for a proof. Consider a marginal increase in the minimum
wage, forcing workers with h < h̃ out of employment. Since wages are equal to the value of the
marginal product, the fall in aggregate output due to this increase in the minimum must be equal
to the wage sum of the workers who loose their job. Hence, the sum of wages for all workers who
remain employed must be equal before and after the introduction of the minimum wage:2∫ 1

h̃
ew̃(h) − ew(h)dh = 0, (3)

Since the wage function flattens, equation (3) implies that the wages at the bottom go up, while
these at the top go down. This is the compression effect of a minimum wage. Roughly stated, the

2The formula holds up to a term of O
(
m2
)
.
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two blue shaded areas in Figure 1 between the functions w̃ (h) and w (h) must have equal surface.3

We shall use equation (3) to calculate the aggregate shift in value added between labour and other
factors of production due to an increase in the minimum wage.

As equation (2) shows, this compression effect is proportional to γ. For γ = 0, the return to
human capital is independent of workers’ assignment to jobs z (h). Hence, there is no compression
effect in that case.

Summarizing the conclusion of this analysis. For γ > 0, the introduction of a minimum wage
has three effects:

1. truncation: workers with the least human capital, h < h̃, lose their job;

2. compression: the return to human capital w′ (h) falls for all levels of human capital, except for
the highest, the more so the lower h; hence, w′′ (h) rises;

3. the sum of wages for workers who remain employed remains constant; hence, workers with
h slightly above the disemployment threshold h̃ gain by the introduction of a minimum
wage, while workers at the top of the human capital distribution lose.

Note however that the compression effect in this model is driven by the truncation effect: work-
ers take less complex jobs after the introduction of a minimum wage since the least skilled workers
are eliminated from the distribution of employed workers. Without a truncation, this model does
not generate compression. Note furthermore that this model does not predict a spike in the wage
distribution.

2.2 Identification from only the wage distribution

Cengiz et al. (2019) seek to establish the disemployment effect of minimum wages just from the
shape of the wage distribution. They set out to establish the additional probability mass in the
wage distribution just above the minimum due to the compression effect and compare that ad-
ditional mass to the truncated mass below the minimum. The disemployment effect is measured
as the difference between this truncated mass minus the additional mass just above the minimum
(workers previously employed below the minimum who found employment in jobs that pay above
the minimum after its increase). This section applies the framework developped in the previous
section to argue that this method works only under restrictive functional form assumptions.

Empirically, the distribution of human capital is bell shaped (like the normal distribution)
rather than uniform. Consider an increase in the minimum wage. Does an increase in the fat-
ness of the lower tail of the wage distribution provide evidence in favour of either truncation or
compression? The answer is: hard to tell. Let w (h,m) denote the equilibrium log wage as a func-
tion of the human capital h of the worker and the applicable log minimum wagem. It is convenient

3The of both blue shaded areas requires ∫ 1

h̃

w̃ (h)− w̃ (h) dh = 0.

Hence, this condition is not exactly the same as equation (3).
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to construct the index h such that for a particular level of the log minimum wage mo, the function
is linear in h: whh (h,mo) = 0 (the subscript refers to the relevant partial derivative).4 Let h (m)

be lowest level of human capital that is employed for that level of the log minimum m (the equiv-
alent of h̃ from the previous section). Like in the previous section, we assume that, apart from
the truncation at h (m), the supply of human capital f (h,m) is exogenously fixed. Except for the
renormalisation due to this truncation, the density of the human capital distribution is therefore
invariant to changes in the minimum wage

f (h,m) =
f (h)

1− F [h (m)]
for h ≥ h (m) ,

where f (h) denotes the untruncated distribution of human capital that applies in the absence of a
minimum wage. The density function of the log wage distribution, g (w,m), is equal to the density
of human capital distribution f(h,m) times the Jacobian dh/dw = 1/wh (h,m):

g [w (h) ,m] = f (h,m) /wh (h,m) .

The relative change in the density function of log wages at the minimum is therefore equal to

d

dm
[log g (m,m)]|m=mo =

(
f ′ [h (mo)]

f [h (mo)]
+

f [h (mo)]

1− F [h (mo)]

)
h′ (mo) (4)

−whm [h (mo) ,mo]

wh [h (mo) ,mo]
,

using whh (h,mo) = 0. The first term is the truncation effect: the change in the lower support of
the human capital distribution among employment. The second term is the compression effect:
the flattening of the wage function. Since f ′ (h) is positive in the left tail of a bell shaped dis-
tribution, both effects are positive. If the truncation effect is large (that is: low disemployment)
and the compression effect is small, then the first term dominates. In the reverse case, the second
term dominates. The change in the fatness of the left tail of the wage distribution is therefore an
uninformative statistic regarding the relative size of the truncation versus the compression effect.

This argument sketches the outline of a potential solution to this problem in the approach of
Cengiz et al. (2019). When information on workers’ human capital is available, the lower support
h (m) can be established empirically. This allows us to disentangle both effects. This strategy is
pursued in remainder of this paper.

3 Empirical specification

We consider a world which consists of multiple regions r which are observed at multiple points in
time t; the index s refers to a combination of region r and time t; we refer to each s as an economy.
We ignore interregional mobility and dynamic interactions. The market equilibrium in economy s

4Following the argument in the previous section, w (h,m) is stricly increasing in h for any m. Hence, such an index
does always exist, by setting h = w (h∗,mo), where h∗ is some alternative human capital index. The normalization is
not essential, but makes the subsequent argument more easy to follow.
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is therefore independent of that in other economies. Each worker i is located in a single economy
s, so the index i uniquely identifies the economy s in which she lives.

Similar to the model in Section 2, the human capital of worker i can be summarized in a single
index hi. This index has an infinite support on the real domain. The wage-return to this index
may vary across economies, but the way in which various components of workers’ human capital
(like experience and years of education) are aggregated into this single index hi is invariant across
economies. However, the index hi is observed only partially:

hi = gi + εi, (5)

where gi is the observable part of the human capital index hi and εi ∼ N
(
0, σ2

s

)
the unobservable

component which is orthogonal to gi. Note that we allow the variance σ2
s of εi to vary between

economies to allow for changes in the role of unobservable components of hi in the course of time.
Let ms be the log minimum wage in economy s and let ws (h,m) be the log nominal wage

for a worker with human capital h in economy s when the log minimum wage is equal to m.
Hence, ws (h) ≡ ws (h,ms), the log wage function evaluated at the actual log minimum wage ms

in economy s, is the function that generates our data on log wages wi. Note that we allow the
wage function ws (h,m) to vary between economies for other reasons than the minimum wage. In
line with the analysis Section 2, we assume that this function is twice differentiable and strictly
increasing in h everywhere, except for the spike at the minimum wage, where the function is flat.
Let hs (m) be the upper support of the spike in economy s as a function of the log minimum
wage; at hs (m), ws [hs (m) ,m] is continuous but non-differentiable; the function is flat to the left
of hs (m); it is increasing to its right. hs ≡ hs (ms) is the upper support of the spike in our data.
Hence:

ws [hs (m) ,m] = m,

ws (h,m) > m, ∀h > hs.

The Meyer and Wise (1983) model is the special case of this model wherews (h,m) does not depend
on m for all h > hs (m).

The research questions we address is how ws(h,m) and the density function of human capital
depend on the minimum wage. The standard approach has been to use the Kaitz index (ratio of
the median to the minimum wage) as an index for the bindingness of the minimum wage. The
problem of this approach is that the median wage itself is endogenous, as it is potentially affected
by the truncation and compression effects. Even more problematic, there are systematic differences
between economies in their wage distribution unrelated to the minimum wage. In particular, both
the mean and dispersion of the wage distribution tend to be higher in cities due to agglomeration
externalities and other factors. This yields negative correlation between the Kaitz index and wage
dispersion, that is unrelated to the minimum wage. We therefore do not use the Kaitz index,
but the spike as a measure of the bindingness of the minimum wage. We view the minimum
wage as an instrument of the policy maker to manipulate the level of the spike. Hence, our first
stage regression analyses the effect of the minimum wage on the spike, while our second stage
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regression33s analyze the effect of this instrument for the spike on wages and employment.
Following this argument, we apply a 5-step estimation procedure for addressing our research

questions:

1. The construction of the index gi for observed human capital;

2. The estimation of the upper support of the spike hs for each economy;

3. The first stage regression for the spike;

4. The second stage regression for the effect of the spike on the wage function ws (h,m);

5. The second stage regression for the effect of the spike on the distribution of employment.

These steps will be elaborated in the subsequent subsections. Before doing so, we provide a
discussion of the data.

4 Data

We draw data from the Current Population Survey, Merged Outgoing Rotation Groups (CPS-
MORG) from 1979 till 2019. We use the hourly wage, years of education, occupation, industry
and other demography information as gender, age, marital status, and race. Our sample includes
all workers aged between 16 and 64.

For our classifications of regions, we first select 34 Metropolitan Statistical Areas (MSAs). We
then take the remaining part of each state as one non-city region. The definition of MSAs changes
overtime. To make the samples consistent, we match different IDs of these areas over time. From
1979 to 1985, we use 1970 Census ranking to identify MSAs. From 1986 to 1988, we use CMSA
and PMSA identifier. From 1989 to 2003, we use MSAFIPS and for the rest of samples we use
CBSAFIPS. Out of the total sample of 2,099,847 observations, 36.2% lives in MSAs. We have 47
Non-MSA state regions: as is common practice, we exclude Hawaii and Alaska. Furthermore, we
split New Jersey from NY-NJ MSA, and exclude Washington DC, leaving us with 34 MSAs and 47
non-city regions, 81 regions in total. The full list of MSAs is in Appendix Table A1. We use the
industry definition by Autor et al. (2003) and the crosswalk constructed by IPUMS.

Let qs be the spike in the wage distribution at the minimum wage. We operationalize the
definition of the spike by including all workers whose log wage is equal to ms plus or minus .01

(that is 1% above or below the minimum). The details of the construction of the spike are in the
Appendix, while summary statistics table are in Table A2.
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5 Estimation

5.1 Step 1: the human capital index

For the construction of the index gi for observed human capital, we apply a second order polyno-
mial for the function wi = ws (hi):5

wi = ω0s + ω1shi + ω2s

(
h2
i − σ2

s

)
(6)

= ω0s + ω1sgi + ω2sg
2
i + εwi,

gi = χ′xi,

where we substitute equation (5) for hi in the second line and where xi is the standard vector
of observable personal characteristics like gender, marital status, age, race and education. This
specification implies that we allow for a separate fixed effect ω0s, a separate return to human capital
ω1s and a separate second order effect ω2s for each economy s, while the parameter vector χ is
common to all economies. Using equation (5), we can work out the that the error term εw,i satisfies

εwi = (ω1s + 2ω2sgi) εi + ω2s

(
ε2
i − σ2

s

)
and has zero mean. Empirically, the error term captures not only unobserved human capital,
but also measurement error and the effect of search frictions. Angrist and Krueger (1991) show
that the measurement error accounts for 30% of the variance in log wages, while Gottfries and
Teulings (2021) show that search frictions account for another 10%. The actual interpretation of εi
does not matter for our estimation results, since we are only interested in the parameter vector χ
aggregating the components of xi into a single index for observed human capital gi.

Equation (6) allows full flexibility ω0s and ω1s across economies s. There are good reasons for
this: the return to human capital has increased between 1979 and 2019, in particular for higher lev-
els of human capital, see Autor and Dorn (2013). However, equation (6) allows too much flexibility.
In fact, it is under-identified.6 We therefore impose further structure:

E (xi) = 0 ⇒ E (gi) = 0, (7)

E (ω1s) = 1,

where the expectations are taken over all individuals in the sample in the first line and over all
economies in the second line.7 These assumptions imply that human capital index hi is scaled as
such that the ”average” worker in our sample (with hi = gi = 0) has a return to this index of unity
”on average” across regions and over the time span of our sample. This choice is just a normalisation

5Strictly speaking, this specification violates our assumption thatws (h) is strictly increasing. In practice, the support
of h is limited to the domain [−2, 2], so that this will not be a problem as long as |ω2s| < 4ω1s.

6We can apply a linear transformation to gi, g∗i = χ0 + χ1gi, that is observationally equivalent to equation (6) by
an appropriate change in the parameters ω0s, ω1s and ω2s:.ω∗

0s = ω0s − ω1sχ0 − ω2sχ
2
0, ω∗

1s = (ω1s − 2ω2sχ0) /χ1 and
ω∗
2s = ω2s/χ

2
1

7E (xi) = 0 implies that xi cannot contain an intercept.
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facilitating the interpretation of our results. Furthermore we impose additional structure on ω2s

ω2s = ωx (t− Et) , (8)

implying that ω2s is the same across regions, while the variation over time is restricted to a linear
time trend with zero mean over the time span of our sample. Hence, we impose ”on average lin-
earity” of ws (h,m) in h for the construction of the human capital index gi. Again, this is not really
a restriction, but a convenient normalisation, since we can include everything and its square in
the vector xi to capture any non-linearity in the relation between gi and wi to an arbitrary degree
of precision. We do so in our empirical specification, by allowing for a number of well known
non-linearities, e.g. the experience profile and the interaction between years of education and ex-
perience and by using dummies for each value of years of education. Moreover, deviating slightly
from our assumption that χ is constant across economies, we included cross effects of marital sta-
tus, gender, and a time trend to account for the changes in the attitude towards working women.
Similarly, we account for the differential impact of being black in Southern states.

Equation (6)-(8) is a simple NLLS model. It can be estimated in an iterative way, by first esti-
mating a standard OLS earnings with economy fixed effects

wi = ω0s + χ′xi + εwi.

These first round estimate of χ can be used to construct gi, which is then use to estimate ω0s, ω1s

and ωx by one OLS regression for all economies simultaneously

wi = ω0s + ωsgi + ωx (t− Et) g2
i + εwi, (9)

These estimates for ω0s, ωs and ωx can be used to reestimate the vector χ, etc., until the procedure
converges. The converged results are the maximum likelihood estimates of the NLLS model. In
practice, we stop after the first two steps, since the value of χ obtained after the second iteration
hardly differs from the first iteration.

We run this regression for a subsample of the economies with the lowest spikes. We have two
reasons for doing so. First, a large spike implies that the wage function is flat for a substantial
part of the wage distribution, disturbing the estimation of χ. Second, we have a mild preference
for a human capital index hi which is ”on average” linear in the counterfactual economy, where
the minimum wage is only mildly binding. We approximate this by omitting the economies with
the highest spikes from sample used for the estimation of χ. Note that this is only a matter of
presentation and does not affect the validity of our method, since we will control for non-linearities
in the relation between log wages and the human capital index later on. We have experimented a
bit by omitting 10%, 20%, 30%, and even 40% of the economies with the highest spike. It does not
matter much for our estimates of the parameters χ. Moving from 30% to 40% does not affect our
estimates of χ in a significant way. We choose to use the estimation results excluding 30% of the
economies with the highest spike in the subsequent steps. Tables A3 and A4 shows the number
states and years that is included in bottom 70% regarding spike for each year and state respectively.
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The coefficients χ are presented in Table A5 in Appendix.
The mean of the distribution of gi in economy s evolves over time due the rise in educational

attainment and it differs between regions, due to strong agglomeration of highly educated workers
in metropolitan areas. For reasons discussed later on, it is convenient to define gi relative to a
proxy for its mean gs. However, we want to avoid demeaning by the sample mean, for similar
reasons as we want to avoid using the Kaitz index as a measure of the bindingness of the minimum
wage, since the mean is endogenous. Hence, we regress gi on fixed time and region effects and an
instrument, based on a companion paper on the size of regional agglomeration externalities, see
Chen and Teulings (2021). In line with the evidence in Gennaioli et al. (2013), we show that higher
educated agglomerate in particular regions. We use a Bartik instrument for gs, using the idea
that its evolution is driven by its industry mix. We use nationwide changes in the level of human
capital in a each industry. We hypothesize that regions where industries with rising human capital
are overrepresented experience a rise in gs.8 We exclude the own region from the calculation of
nation wide mean of these instruments, see Chen and Teulings (2021) for details. The coefficient
of this Bartik instrument is 0.410 (t = 12.62), implying that when for the industry mix of state, the
nation wide mean of g increases by one unit, the regional mean is predicted to increase by 0.410.
In the remainder of the paper, gi refers to this regionally demeaned version of the index.

Figure 2 shows the overall distribution of gi, controlled for the local mean in the way described
above. This distribution is approximately normal. It has zero mean by construction, see equation
(7), and its variance and standard deviation are 0.135 and 0.367 respectively.

Figure 2: Histogram of gi − ḡs

8Along the same lines, one can develop a second instrument, using nation wide changes in the industry mix rather
than nation wide changes in gs within industries. When entering both instrument, this second instrument was insignif-
icant, so we omit it from our estimation results.
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5.2 Step 2: the upper support of the spike

The next step in our empirical strategy is to establish the uppersupport of the spike hs for each
economy. The challenge here is that we have to account for the fact that hi is only partially ob-
served. Equation (6) implies

wi = ws (hi) = ws (gi + εi) .

Since ws (hi) > ms for hi > hs, hs can be estimated by means of a simple Probit model:

Pr (wi < ms + .01|gi) = Pr (gi + εi < hs|gi) = Φ

(
hs − gi
σs

)
, (10)

where we add add .01 to ms to be consistent with the definition of the spike. The Probit-parameter
on gi is an estimate of −σ−1

s ; the intercept is an estimate of hs/σs.
For small values of qs, the number of observations in the spike is low: an average economy

has slightly less than 1500 observations on workers in our data. A spike of 1.5% is equivalent
to roughly 25 workers. For a smaller number, the estimate of hs becomes highly unreliable. We
estimate the model for all economies with qs > 1.5%; 1414 economies meet this restriction. In all
subsequent stages where we use the estimation results on hs, we report both the results for the full
sample of economies and for the restricted sample for which the spike qs exceeds 1.5%.

Since the distribution of gi is approximately normal, see Figure 2, and using our assumption
that the distribution of εi is normal, we can calculate the share of observations that earn less or
equal to the minimum

Pr (wi < ms + .01) = Pr (hi < hs) = Φ

(
hs − gs
σhs

)
, (11)

σ2
hs = σ2

s + σ2
gs,

where σ2
gs and σ2

hs are the variances of gi and hi respectively for economy s. We use E(εi|s) = 0

and hence E(hi|s) = gs. The estimation results for equation (10) provide an estimate of σs, while
gs and σgs can be calculated from the data. Since σ2

hs is subject to substantial measurement error,
we instrument σhs by region and time fixed effects; a hat on a variable denotes the instrument (the
explained part of a first stage regression)

σhs = σ̂hs + εσhs,

σ̂hs = σhr + σht.

where σhr and σht denote vectors of region and time fixed effects.
There is convenient way to evaluate the estimates of hs. Ignoring non-compliance (the part of

the wage distribution below the minimum wage) for the sake of the argument, Pr (wi < ms + .01)

is equal to the spike qs. Define hqs as the inverse of qs with respect to the normal distribution:

hqs = σ̂hsΦ
−1 (qs) . (12)
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Hence
hqs ∼= hs − gs. (13)

Equation (13) can be tested. Since Var (hqs) = 0.128 > Var (hs) = 0.042, the measurement error
in hqs is likely to be larger than in hs. Hence, we run equation (13) as a regression taking hqs as the
endogenous variable. The estimation results for the restrictive sample of economies are reported
Table 1. Since hqs is a non-linear transformation of qs, we expect outliers among the error terms of
this regression. We therefore estimate this equation by both OLS and a robust method allowing for
non-normality of the error term.

Table 1: OLS and Robust Regression results for x̄s
(1) (2)

VARIABLES hqs hqs
hs 1.014 1.019

(59.45) (56.89)
ḡs 0.320 0.322

(2.04) (1.96)

R-squared 0.721 0.703
RMSE 0.108 0.114
Regression OLS Robust
Observations 1,414 1,414

t-statistics in parentheses

The coefficient for hs is indeed equal to unity. The coefficient for gs is positive, but much smaller
unity. However, a large share of the variation gs is already absorbed by the demeaning of gi by
means of fixed region and time effects and the Bartik, see the discussion of Step 1. OLS or robust
estimation makes little difference. We conclude that our estimation results for hs and the index hqs,
which derived from the data for qs, are mutually consistent.

5.3 Step 3: the first stage regression for the spike

We use the previous analysis of the relation between the spike qs and its upper support hs as
benchmark for the construction of an instrument for the spike. Suppose that Meyer and Wise
(1983)’s model had applied. Then, the wage function above the minimum wage minimum wage
would be independent of the minimum. Due to our normalisation of the index gi, it would be
linear ”on average” in wi with a unit slope. The coefficient of a regression of hqs on ms would
therefore be equal to unity in that case. The transform hqs is therefore a natural starting point for
the construction of an instrument.

Three factors determine the evolution of the real regional minimum wage:

1. Increases in the nominal federal minimum wage; since the federal minimum is not binding
in all states, changes in the federal minimum are not fully absorbed by the inclusion of time
fixed effects;
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2. Increases in the nominal state minimum wage;

3. The gradual increase in nominal wages reduces the real value of a fixed nominal minimum
wage. Since the nominal minimum wage is adjusted at irregular intervals, this factor plays
an important role in the variation of the minimum. In fact, the fall in the real minimum wage
during the Reagan presidency was fully due to the nominal freeze of the federal minimum.
To the extent that the evolution of real wages is the same across regions, it is fully absorbed
by time dummies. However, we can expect interregional heterogeneity in the evolution of
wages.

Our first stage regression allows for these three factors.

hqs = αr + αt + αmms + αwwIVs + εqt, (14)

where αr and αt are region and time fixed effects and where wIVs is an instrument for the real
wage. The variable ms covers both the effect of the federal and the state minimum wage. The
variable takes the value of either the federal or the state minimum wage that is binding. The third
factor is covered both by the region and time fixed effects and by the Bartik instrument discussed
in Step 2.

Table 2: Instrumental Variable First Stage Regression
(1) (2) (3) (4)

VARIABLES hqs hqs hqs hqs
ms 1.211 1.357 1.396 1.414

(21.97) (24.80) (34.24) (40.30)
Bartik IV -4.040 -4.319 -2.576 -3.138

(-7.01) (-7.55) (-3.60) (-5.09)

Observations 1,414 1,414 3,321 3,321
RMSE 0.886 0.890 0.838 0.870
RMSE 0.0724 0.0719 0.147 0.126
Time Dummy Y Y Y Y
Region Dummy Y Y Y Y
Regression OLS Robust OLS Robust

t-statistics in parentheses

Table 2 presents the results for equation (14). We present results for both the full and the re-
stricted sample of economies 9. Again, we present both OLS and robust estimation results. The
regression results are very similar for all four regressions. The coefficient on ms is between 1.2

and 1.4, where the estimation results for the full sample are in the upper part of that bracket. Had
Meyer and Wise (1983)’s model had applied, the coefficient would have been equal to unity. The
estimation results are in that range. More remarkable is the coefficient on the Bartik instrument.
The sign is accordance with the theoretical expectations (higher nominal wages reduce the spike),

9For some economies, the measured value of qs is zero. Hence, hqs cannot be calculated. For these economies, hqs is
set at the lowest value observed among other economies
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but its magnitude is much higher. For demeaning of gi, its coefficient was 0.410. Since the wage
function has ”on average” a unit slope in gi, this effect is ”reinstalled” by a coefficient of −0.410. The
actual coefficient is 6 to 10 times larger. This points to substantial agglomeration benefits, compare
Chen and Teulings (2021). Since this effect is discussed extensively in our companion paper and in
Gennaioli et al. (2013), we do not discuss this finding in the current paper.

We use the results for the robust regression on the full sample and the inverse of equation (12)
to calculate the instrument q̂s

q̂s = Φ
(
ĥqs/σ̂s

)
. (15)

5.4 Step 4: the second stage regression for wages

A simple approach to the estimation of the effect of the spike on the wage function would be to
regress individual log wages wi on a second order polynomial in gi similar to equation (6) for all
individuals earning more than the minimum wage, wi > ms + 0.01, and then to use simple regres-
sions to analyse how the coefficients ω0s, ω1s and ω2s depend on q̂s. This approach fails, however,
due to the selectivity at the lower bound: the individuals in the sample are positively selected on
earning a wage above the minimum wage. This problem could be resolved by estimating a non-
linear Tobit model for all economies simultaneously. This approach is computationally infeasible,
however, since there are several thousand economies in the full sample. Instead, we apply a 2-step
procedure to correct for this selection bias similar to the classic 2-step Heckman-method.

First, we regress log wages on a second order polynomial in gi as suggested above for each
economy s, simply ignoring the problem of selection bias:

wi = w̃s (gi) + ε̃wi,

w̃s (gi) = ω̃0s + ω̃1sgi + ω̃2sg
2
i .

Here w̃ (gi) >E(wi|gi) due to the selection bias introduced by including only individuals for which
wi > ms + .01. Let Biass (gi) be this selection bias in economy s as a function of the observed
component of the human capital index gi

Biass (gi) = w̃s (gi)− ws (gi) .

The bias at the upper support of the spike hs can calculated using the fact that by construction
ws (hs) = ms. Hence

Biass (hs) = w̃s (hs)− ws (hs) = w̃s (hs)−ms. (16)

Alternatively, Biass (hs) can be calculated from a first order Taylor expansion of ws (h) around
h = hs:

Biass (hs) = E [ws (hs + ε) |ε > 0] ∼= w′s (hs) E [ε|ε > 0] (17)

= σ̂sw
′
s (hs)

φ (0)

Φ (0)
,
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This Taylor expansion would hold exactly if ws (h) were linear in h. This expansion is a reasonable
approximation for small non-linearities in the wage function and for small σ̂s.

Equation (17) for Biass (hs) can be generalized to the calculation of the bias Biass (gi) for gi 6= hs

as follows:

Biass (gi) = E [ws (gi + ε) |ε > hs − gi] ∼= w′s (hs) E [ε|ε > hs − gi]

= σ̂sw
′
s (hs)

φ [(gi − hs) /σ̂s]
Φ [(gi − hs) /σ̂s]

= [w̃ (hs)−ms]
Φ (0)

φ (0)

φ [(gi − hs) /σ̂s]
Φ [(gi − hs) /σ̂s]

,

where the last step follows from combining equation (16) and (17). Similar to the second step of
the 2-step Heckman method, we use the last expression to calculate

ŵi = wi − Biass (gi) ,

and then run the wage regression

ŵi = ω0s + ω1sgi + ω2sg
2
i + εwi.

The estimate for ω0s, ω1s and ω2s do not suffer from selection bias.
Next, we run a regression of the parameters ω0s for each economy s on a polynomial in q̂s, the

Bartik instrument and fixed region and time effects, and the same for ω1s and ω2s. Again, we run
this regression for both the full and the restricted sample of economies and we use both OLS and
robust regression techniques. The estimation results are in Table 3.

A comparison of Panel A and Panel B shows that the estimated coefficients are very similar in
OLS and robust regression, but that they are estimated more precisely when accounting for outliers
by using robust regression. We therefore focus on the latter results. Next, the results for the full
and the restricted sample are qualitatively similar, but the coefficients are larger when using the
full sample. This is to be expected, since the variance in the explanatory variable q̂s is reduced in
the restricted sample. This yields a lower signal-noise ratio. Hence, we focus on the results for the
full sample.

The difference between Panel B and C, is the former uses a second order polynomial in q̂s, while
the latter uses a third order polynomial. Since the coefficients on the third order terms in Panel C
are significant for all three regressions for ω0s, ω1s and ω2s, we use the latter for our counterfactual
simulations in Section 6. However, the results for the second order polynomial are more easy to
interpret. The subsequent discussion therefore focuses on these results.

Recall that gs (the mean value of gi for economy s) is roughly normalized to zero for each
economy by means of region and time fixed effects and by the Bartik instrument (see Step 1).
Hence, ω0s is the log wage for mean worker in economy s, ω1s is the return to human capital for
this worker, while 2ω2s is the second derivative of the log wage functionws (hi,ms). The regression
results imply therefore that for a low spike q̂s, an increase in the spike raises the wage of the median
worker, reduces the return to additional human capital for this worker, while the second derivative
goes up. Due to the positive second derivative, the negative effect on the first derivative is lower
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Table 3: Regression with Biass corrected ω̂0s ω̂1s and ω̂2s

(1) (2) (3) (4) (5) (6)
VARIABLES ω0s ω1s ω2s ω0s ω1s ω2s

Panel A: with 2SLS Regression
q̂s 2.333 -2.403 2.864 2.720 -4.834 5.268

(4.16) (-3.79) (2.99) (9.87) (-13.82) (10.99)
q̂2
s -4.753 28.30 -43.94 -7.524 46.35 -60.22

(-0.96) (5.06) (-5.20) (-2.73) (13.23) (-12.55)
Bartik IV 5.945 0.134 -6.216 4.071 0.224 -3.659

(15.49) (0.31) (-9.48) (17.49) (0.76) (-9.04)

R-squared 0.988 0.701 0.624 0.985 0.579 0.497
RMSE 0.0454 0.0514 0.0776 0.0464 0.0589 0.0807

Panel B: with Robust OLS Regression
q̂s 2.506 -0.829 0.785 3.322 -4.914 5.297

(5.75) (-1.36) (0.86) (13.62) (-14.21) (10.94)
q̂2
s -6.710 16.18 -29.02 -16.68 53.46 -68.89

(-1.84) (3.17) (-3.78) (-6.89) (15.57) (-14.34)
Bartik IV 6.933 0.00568 -6.333 4.329 0.496 -3.910

(23.09) (0.01) (-10.03) (23.35) (1.89) (-10.63)

R-squared 0.993 0.731 0.663 0.991 0.676 0.575
RMSE 0.0366 0.0512 0.0769 0.0369 0.0524 0.0733

Panel C: with Robust OLS Regression
q̂s 0.427 3.484 -6.510 -1.262 7.527 -9.283

(0.85) (4.96) (-6.19) (-4.29) (18.22) (-15.75)
q̂s × lnq̂s -0.739 1.410 -2.284 -1.488 3.731 -4.111

(-2.79) (3.81) (-4.11) (-11.06) (19.75) (-15.25)
Bartik IV 6.987 -0.323 -5.784 4.889 -1.008 -2.255

(22.86) (-0.76) (-9.03) (26.21) (-3.85) (-6.03)

R-squared 0.993 0.731 0.665 0.991 0.689 0.579
RMSE 0.0366 0.0511 0.0767 0.0364 0.0511 0.0729

Time Dummy Y Y Y Y Y Y
Region Dummy Y Y Y Y Y Y
Observations 1,414 1,414 1,414 3,321 3,321 3,321

t-statistics in parentheses
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for higher levels of gi; it has disappeared for gi = 0.46,10 which is one and a quarter standard
deviations of gi above its mean. This fits the theoretical notion developed in Section 2.1 that the
effect should be zero at the uppersupport of the distribution of gi.

For a higher spike, the marginal effect of a further increase in the spike switches signs for all
three variables; for the level ω0s, this occurs at a spike of 10%; for the return to human capital at
5%; and for the second derivative at 4%. The wage of the mean worker is 16% higher11 for a spike
of 10% rather than 0%, while the return to the human capital index gi is 11% lower12 for a spike
of 5% rather than 0%. At the upper support of the spike, the compression of the return to human
capital is even 30%. Summarizing: we find strong compression effects for wage levels above the
minimum, in accordance with the theoretical model in Section 2, which persist even for quite high
levels of the spike.

5.5 Step 5: the second stage regression for employment

The final step is to estimate the employment effect. We use regressions on quantiles of the human
capital distribution to address this problem. Let gsp be the p-quantile of the distribution of gi
in economy s. We estimate gsp for the first 20 percentiles (p = .01, .02, .03...., .20), applying the
specification below:

gsp = βr + βt + βwwIVs + (βrp + βtp + βwpwIVs) p+ βppp
2 + β3pp

3 + β4pp
4 (18)

+
(
βq + βqpp+ βqppp

2 + βq3pp
3
)
q̂s + (βqq + βqqpp) q̂

2
s + εgsp.

This specification allows for region and time fixed effects and for the effect of the Bartik instrument,
both in the level and the slope with respect to p and the fourth order polynomial in p to allow for
the non-linearity in the general shape of the quantile function. The interesting terms are in the
second line where we analyze the effect of the spike on employment at various quantiles of human
capital distribution.

The estimation results are presented in Table 4, standard errors are clustered at the economy
level. A comparison of column (1) and (2) shows that the inclusion of p4 as an additional regressor
does not affect the cross-terms with q̂s and q̂2

s . This is important, since it shows that cross-terms are
not a proxy for an incomplete specification of the functional form of gsp as function of p. Since the
coefficient on p4 is highly significant, we retain it in subsequent columns.

The terms for q̂s and q̂2
s not crossed with p are not or only weakly significant (compared to the

t-values for other coefficients). They are hard to interpret as they measure the effect of q̂s on g in the
lowest quantile in economy s. This can only be true if all employment below that lower support is
completely eliminated by an increase in the spike, which is unlikely, in particular in the presence
of unobserved heterogeneity. Hence, we consider the regression excluding these effects in column
(3) and (4): βq = βqq = 0.

104.9/ (2× 5.3)
113.3× 0.1− 16.5× (0.1)2

12−4.9× 0.05 + 53.5× (0.05)2. Note that the return to the human capital index gi is normalized to unity ”on average”.
Hence, this effect can be interpreted as a relative change in the return to human capital.

22



Table 4: Employment Regression
(1) (2) (3) (4) (5)

VARIABLES gsp gsp gsp gsp gsp

q̂s -0.644 -0.644
(-4.83) (-4.83)

q̂s × p 36.15 36.15 21.32 28.78 -6.068
(19.86) (19.86) (12.51) (11.21) (-1.83)

q̂s × p2 -446.0 -446.0 -322.6 -507.2 -753.3
(-29.24) (-29.24) (-22.99) (-11.59) (-12.03)

q̂s × p3 1,359 1,359 1,008 2,449 8,460
(32.04) (32.03) (25.27) (8.15) (19.92)

q̂s × p4 -3,579 -22,917
(-5.18) (-23.96)

q̂2
s -1.118 -1.118

(-0.93) (-0.93)
q̂2
s × p 33.19 33.19 25.01 25.01 65.02

(3.46) (3.46) (2.74) (2.74) (6.71)
p2 3.637 41.61 39.25 42.78 49.51

(8.27) (47.31) (44.94) (36.40) (35.91)
p3 -35.32 -311.9 -305.2 -332.8 -297.5

(-28.82) (-57.25) (-55.90) (-41.57) (-30.52)
p4 658.5 658.5 727.0 690.7

(54.96) (54.96) (39.62) (30.75)
Bartik IV 0.0631 0.0631 0.247 0.277 -1.060

(0.60) (0.60) (2.29) (2.55) (-7.23)
Bartik IV ×p 2.154 2.154 0.812 0.589 7.263

(2.81) (2.81) (1.04) (0.75) (8.89)

Time ×p Y Y Y Y Y
Region ×p Y Y Y Y Y
Time Y Y Y Y Y
Region Y Y Y Y Y
Observation 66,420 66,420 66,420 66,420 66,420
R-squared 0.969 0.970 0.970 0.970 0.958
RMSE 0.0278 0.0274 0.0275 0.0274 0.0313

Robust t-statistics in parentheses
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For the interpretation of these results we consider a ”representative” economy, so that we can
drop the subscript s. Below, all subscripts refer to the relevant partial derivatives. We assume
that employment for the upper 80 percentiles of the human capital distribution is not affected by
changes in the spike. In that case, the change in the density function in the lowest percentiles is a
first order approximation of the relative change in the employment at that percentile.

Let F (g, q) and f (g, q) ≡ Fg (g, q) be the distribution and density function respectively of the
observed part g of the human capital index in the representative economy, and let g (p, q) be the
observed human capital index g for quantile p, both as a function of the spike q. These definitions
imply that the function F (g, q) is the inverse of g (p, q) with respect to p:

F [g (p, q) , q] = p,

g [F (g, q) , q] = g.

These relations hold identically for all p, g and q, and hence their derivatives apply. Totally differ-
entiating the first equation with respect p and q and rearranging terms yields

f [g (p, q) , q] = 1/gp (p, q) , (19)

Fq (g, q) = −gq [F (g, q) , q]

gp [F (g, q) , q]
.

The latter equation is the effect of q on total employment for all workers with observed human
capital less than g. This expression can be applied for the evaluation of the relative effect of a
change in the spike on the employment for particular percentiles of human capital distribution.
Substitution of g = g (p, g) and hence F (g, q) = p yields the relative change in employment

Fq [g (p, q) , q]

p
= − gq (p, q)

p · gp (p, q)
= −f [g (p, q) , q]

p
gq (p, q) ∼= −

φ
[
Φ−1 (p)

]
σgp

gq (p, q) , (20)

where we substitute equation (19) in the second step and where we use the fact that the distribution
of g is approximately normal in the final step; hence f (g, ·) ∼= σ−1

g φ (g). The expression in the first
step requires the evaluation of gq (p, q) and gp (p, q). The evaluation of gq (p, q) is straightforward,
using the estimated coefficients in Table 4. The evaluation of gp (p, g) is more complicated, since it
involves all terms in the first line of equation (18), including the economy specific fixed effects. The
expression in the third step is therefore convenient since it only requires an estimate of σg, which
can be taken directly from the data, while the factor φ

[
Φ−1 (p)

]
/p is a number depending on the

quantile p only.13

Employment goes down for the lowest quantiles of the human capital distribution, up to p =

6%, but it increases for higher quantiles, up to p = 17%. The increase employment for these higher
quantiles outweighs the loss in employment for the lower quantiles. The marginal employment
effects for each quantile are in Figure 3 (see the Appendix for the derivation of the effect on the

13We obtain
p−1Fq [g (p, q) , 0] = − (.367)−1 φ

[
Φ−1 (p)

] (
28.8− 507p+ 2450p2 − 3579p3

)
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Table 5: Estimated marginal employment effect
p .01 .05 .10 .20

p−1φ
[
Φ−1 (p)

]
2.67 2.06 1.75 1.40

p−1Fq [g (p, q) , 0] −1.74 −2.55 0.50 2.55

density).

Figure 3: Estimated marginal employment effects using Table 4 columns 3-4

Suppose there exists a value qmax
Fg > 0 of q for which employment F (g, q) reaches a maximum.

This qmax
Fg maximize therefore total employment for workers with human capital gi less or equal

than g. qmax
Fg solves Fq

(
g, qmax

Fg

)
= 0, or equivalently

gq
[
F
(
g, qmax

Fg

)
, qmax
Fg

]
= 0. (21)

The second order condition of this problem is

gqq
[
F
(
g, qmax

Fg

)
, qmax
Fg

]
> 0⇒ βqqp > 0,

using equation (18) in the second step. Substitution of F
(
g, qmax

Fg

)
= p, we obtain

qmax
Fg = −1

2

βqp + βqppp+ βq3pp
2

βqqp
,

g = g
(
p, qmax

Fg

)
,

where we use column (3) from Table 4 for the sake of the argument. This is a system of two
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equations, that can be solved recursively for qmax
Fg and then for g as functions of p. Let qmax

F be the
maximum value that qmax

Fg can attain; such a maximum exists if βqpp < 0 and βq3p > 0. The value
of pmax

F for which that maximum is attained and the implied value of qmax
F reads

pmax
F = − βqpp

2βq3p
=

322.6

2× 1008
= 16%, (22)

qmax
F =

β2
qpp − 4βqpβq3p

8βqqpβq3p
=

322.62 − 4× 21.3× 1008

8× 25× 1008
= 9%.

Let ∆pmax = F (gmax
F , qmax

F )− F (gmax
F , 0) is the gain in employment for workers with observed

human capital less than g (pmax
F , qmax

F ) by setting q = qmax
F . It satisfies

∆pmax = pmax
F − p0,

g (p0, 0) = g (pmax
F , qmax

F ) .

The first equation calculates the growth in employment as the difference between employment
for workers with observed human capital less than gmax

F with a spike equal to qmax
F rather than

equal to zero. The second equation implicitly solves for the employment without a spike. This
equation can be solved by applying a Taylor expansion of g (p0, 0) around g (pmax

F , 0), using again
the approximate normality of the distribution of gi:

g (p0, 0) = g (pmax
F , 0) + gp (pmax

F , 0) ∆pmax,

∆pmax =
g (pmax

F , 0)− g (pmax
F , qmax

F )

gp
(
pmax
F , 0

) =
φ
[
Φ−1 (pmax

F )
]

σg
[g (pmax

F , 0)− g (pmax
F , qmax

F )] .

Again, the evaluation of g (pmax
F , 0)− g (pmax

F , qmax
F ) is straightforward, as it only involves the terms

in the second line of equation (18), using the expression for pmax
F and qmax

F in equation (22).14

∆pmax = 2%.

Summarizing our conclusions, starting from a spike of zero, an increase in the spike reduces
employment at the lowest quantiles up until the seventh percentile, but it increases employment
at higher quantiles. This increase outweighs the employment loss at lower quantiles. The highest
value of the spike that maximizes employment up to some quantile p is 9%. The corresponding
value of p is 16%. The total gain in employment up to p = 0.16 by setting the spike at 9% rather
than zero is 2% of total employment, or 12% of employment up for the bottom 16% of the human
capital distribution.

14

∆pmax = − (.367)−1 φ
[
Φ−1 (.16)

] (
28.8− 508 (.16) + 2455 (.16)2 − 3592 (.16)3 − 25× .09

)
(.16) (.09)

= − (.367)−1 .24
(
28.8− 508 (.16) + 2455 (.16)2 − 3592 (.16)3 + 25× .09

)
(.16) (.09)
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6 Counterfactuals

Our empirical results can be used for an analysis of the impact of the changes in the spike on the
distribution of wages and employment over the past forty years. The results of this exercise are
summarized in Table 7. We consider the average impact across all regions in 1980, 1991, 1998,
2004, 2010 and 2019. These years are chosen since they mark turning point in the policy regarding
minimum wages, see Table A2 in the Appendix. The calculation of a counterfactual with a smaller
spike for workers in the spike is involved since there is no one-to-one correspondence of the actual
wage to the counterfactual wage, because part of the workers in the spike will earn a wage above
the spike after the reduction of the spike. We therefore focus on counterfactuals with an increase in
the spike. Since 1980 is the year with the highest spike, we take this year as the point of reference.
The counterfactuals for other years raise the spike in all regions by the difference between nation
mean of the spike in that year and in 1980, so that the nation mean in the counterfactual becomes
equal to that in 1980. We also present the counterfactuals using the level of 2010 spike as the refer-
ence. We adjust the share q−s of workers earning less than the minimum by the same methodology,
using a simple regression

q−s = β0 + βqs + εq.

We find β = 0.52 (t = 34.8).15

For the calculation of the changes in employment, we apply equation (20) and using the co-
efficients from Table 4, column (4). For the calculation of the changes in log wages, we use the
coefficients from Table 3, Panel C for the full sample of economies. For the sake of simplicity we
assume that the average log wage of workers earning less than the minimum wage in economy s is
the same in the actual and the counterfactual. The precise numerical procedure for the calculation
is summarize below.

we take out all workers who earn less than the minimum., since we have not modeled this
part of the distribution. Our subsequent discussion refers to changes in the wage distribution for
the remaining workers. This limitation does not affect the change in the log wage differentials
very much, since the lowest percentile we consider (5%) is above the percentage paid below the
minimum wage for all economies. We first calculate for each individual i the counterfactual wage
that would have applied with this higher spike, using the regression results in Table 3, We derive
the implied value of counter factual log minimum wage mc.fact.

s by observing that this must be
equal to the highest counterfactual log wage in the bottom qc.fact.

s share of the wage distribution
(the superfix c.fact denotes the counterfactual value). Having established mc.fact.

s , we set the log
wages of workers in this bottom qc.fact.

s share of equal to mc.fact.
s . With this counterfactual log wage

for every worker, the calculation of the summary statistics in Table 7 is straightforward.

1. For each economy, sort observations by wi (i = 1 is the lowest wage).

15Let a superfix o denote the counterfactual and let qt denote the mean of the spike for year t across all regions. Then

qos = qs + q1980 − qt,
q−o
s = q−s + β (q1980 − qt) .
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2. Calculate pi = i/Ns where Ns is the number of observations for economy s.

3. Calculate:

(a) for all pi < 0.17: fi = 1 + σ−1
g

[
Φ−1 (p) gq (p, q)− φ

[
Φ−1 (p)

]
gqp (p, q)

]
(qos − qs);

(b) for higher values of pi, fi = 1.

4. Calculate poi = Σi
j=1fj/Σ

Ns
i=1fi (the counterfactual for pi).

5. Calculate w+
i = wi + ws (gi, q

o
s)− ws (gi, qs)

6. Calculate woi : define js such that pojs = q−os + qos (the value of i at the uppersupport of the
spike in the counterfactual)

(a) for poi < q−os (workers earning less than the minimum in the counterfactual):woi =E(wi|pi < q−s ).

(b) w−s (the wage for the subminimum wage worker is unaffected)

(c) for q−os ≤ poi ≤ q−os + qos : woi = mo
s = w+

js

(d) for q−os + qos < poi : woi = w+
i

7. Define jsp such that pjsp = p and josp such that pojsp = p for p = .01, .05, .10, .20., .50, .90

8. Calculate: fjsp − 1 (the change in the density of employment; it is zero for p > .10 by con-
struction)

9. Calculate: p−1Σ
jsp
i=1 (fi − 1) (the relative change in employment)

10. Calculate log wage differential (trunc.): ∆ logwsptrunc = maxwjosp − wjsp and ∆ logWitrunc =

log Σi∈tfie
wi − log Σi∈te

wi

11. Calculate log wage differential (compres.): ∆ logwspcomp = wojosp − wjosp and ∆ logWicomp =

log Σi∈tfie
wo

i − log Σi∈tfie
wi
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Table 6: Counterfactual Estimation with q
∆log employment(2) log wage differential(3)

year s.d.gi qt
(1) q−t ∆mt

(4) 1% 5% 10% 20% 50-5 50-10 50-15 50-20 90-50 ∆ln ΣW
(5)
i

1980 0.345 actual 0.054 0.061 actual 0.652 0.570 0.516 0.441 0.671
1991 0.359 actual 0.006 0.024 dens -0.142 -0.033 0.321 0.000 actual 0.110 0.084 0.048 0.031 0.053

c.fact. 0.054 0.051 0.368 distr -0.109 -0.116 0.031 0.108 trunc. -0.033 -0.016 0.008 0.017 0.009 0.011
compr. -0.060 -0.034 -0.019 -0.014 -0.020 0.110

1998 0.367 actual 0.013 0.041 dens -0.121 -0.035 0.259 0.000 actual 0.150 0.094 0.049 0.029 0.064
c.fact. 0.054 0.064 0.299 distr -0.093 -0.102 0.020 0.084 trunc. -0.031 -0.016 0.007 0.010 0.009 0.008

compr. -0.048 -0.051 -0.019 -0.014 -0.014 0.093
2004 0.372 actual 0.006 0.025 dens -0.137 -0.032 0.312 0.000 actual 0.144 0.116 0.065 0.041 0.094

c.fact. 0.054 0.053 0.465 distr -0.106 -0.112 0.031 0.106 trunc. -0.045 -0.017 0.006 0.016 0.008 0.010
compr. -0.042 -0.043 -0.024 -0.020 -0.018 0.122

2010 0.366 actual 0.018 0.040 dens -0.108 -0.035 0.221 0.000 actual 0.161 0.117 0.070 0.053 0.117
c.fact. 0.054 0.061 0.241 distr -0.084 -0.093 0.013 0.069 trunc. -0.031 -0.013 0.005 0.007 0.006 0.007

compr. 0.014 -0.036 -0.013 -0.007 -0.011 0.081
2019 0.368 actual 0.010 0.055 dens -0.126 -0.034 0.277 0.000 actual 0.123 0.107 0.051 0.030 0.142

c.fact. 0.054 0.080 0.354 distr -0.098 -0.106 0.023 0.091 trunc. -0.042 -0.016 0.008 0.012 0.008 0.009
compr. -0.138 -0.035 -0.034 -0.022 -0.020 0.106

2010 0.366 actual 0.018 0.040 actual 0.803 0.691 0.585 0.494 0.788
1991 0.359 actual 0.006 0.024 dens -0.034 -0.008 0.078 0.000 actual -0.051 -0.033 -0.022 -0.022 0.053

c.fact. 0.018 0.030 0.152 distr -0.027 -0.029 0.008 0.027 trunc. -0.009 -0.004 0.004 0.004 0.002 0.003
compr. -0.017 -0.010 -0.007 -0.005 -0.006 0.030

1998 0.367 actual 0.013 0.041 dens -0.015 -0.004 0.031 0.000 actual -0.005 -0.024 -0.021 -0.024 0.064
c.fact. 0.018 0.044 0.065 distr -0.011 -0.013 0.002 0.010 trunc. -0.004 -0.002 0.002 0.001 0.001 0.001

compr. -0.005 -0.003 -0.001 -0.000 -0.005 0.013
2004 0.372 actual 0.006 0.025 dens -0.034 -0.008 0.077 0.000 actual 0.025 -0.001 -0.004 -0.012 0.094

c.fact. 0.018 0.032 0.199 distr -0.027 -0.028 0.008 0.027 trunc. -0.012 -0.005 0.003 0.003 0.003 0.003
compr. -0.022 -0.012 -0.009 -0.007 -0.007 0.044

2019 0.368 actual 0.010 0.055 dens -0.021 -0.006 0.046 0.000 actual 0.020 -0.014 -0.020 -0.022 0.142
c.fact. 0.018 0.059 0.119 distr -0.017 -0.018 0.004 0.015 trunc. -0.008 -0.003 0.002 0.002 0.002 0.002

compr. -0.045 -0.021 -0.009 -0.007 -0.007 0.027
2019 0.368 actual 0.010 0.055 dens -0.079 -0.020 0.176 0.000 actual

c.fact. 0.037 0.070 0.234 distr -0.061 -0.066 0.016 0.058 trunc. -0.022 -0.008 0.006 0.009 0.005 0.006
compr. -0.077 -0.027 -0.022 -0.010 -0.014 0.066

Note: 1: The unweighed average of the spike qs across regions for a particular year. 2: ∆ ln employment: (c.fact.) see equation (20) 3: The actual and
counter-factual log wage differentials among the workers. 4: The unweighed average of the log minimum wage ms across regions for a particular year. 5:
The difference between the actual and the counter-factual log of the sum of wage for all workers earning more than the minimum wage.
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7 Conclusion

Followed the extensive literature on the impact of minimum wages on wage distribution and the
employment, we examined the new evidence for spillover effects on wages and mixed results for
employment. We further addressed the issues on endogenous minimum wage policies, endoge-
nous median wage, discuss the shifts in the wage distribution, and to combine the spillover effects
with an upward sloped labour supply curve. Increase the minimum wage contribute to the in-
crease of wage in the lower part of the wage distribution, flatting the curve and reduce the disper-
sion. We further provide a method to evaluate the counterfactual scenario using instruments and
the specification of the heterogeneity in employment effects. We find strong evidence both for the
compression of wage differentials above the minimum and for heterogeneous employment effects.
For the lowest quantiles of the human capital distribution, the employment effect of the minimum
wage is negative irrespective the level of the spike. However, the sum of the employment effect
for all lower percentiles of a not too high minimum wage is positive. The additional employment
of this spike relative to a situation without a minimum wage is 2.2% of total employment. Con-
ditional on the specification of the model, these effects are precisely measured. We argue that this
strong positive employment effect demonstrates the relevance of monopsony models above the
hedonic pricing models, where the driving force of compression is disemployment.

We provide a counterfactual simulation for several turning years since 1980. We find that the
changes in minimum wage have contributed substantially to the variation in the return to human
capital and wage dispersion in the bottom half of the distribution and that an increase in the min-
imum wage might be an effective instrument for boosting the labour share in aggregate output.
We do not attempt to provide a welfare theoretic framework for weighing the cost and benefits
of various subgroups. Whatever level of the spike one prefers, is up to the reader, depending on
his or her political preferences. However, those with a strong preference for an equal wage dis-
tribution and a substantial labour share and who care less about the disemployment effect for the
lowest percentiles of the human capital distribution can derive arguments for a high spike from
this paper.

30



References

AHLFELDT, G., D. ROTH, AND T. SEIDEL (2018): “The Regional Effects of a National Minimum
Wage,” CESifo Working Paper Series 6924, CESifo.

ANGRIST, J. D. AND A. B. KRUEGER (1991): “Does Compulsory School Attendance Affect School-
ing and Earnings?” The Quarterly Journal of Economics, 106, 979–1014.

AUTOR, D. H. AND D. DORN (2013): “The Growth of Low-Skill Service Jobs and the Polarization
of the US Labor Market,” American Economic Review, 103, 1553–97.

AUTOR, D. H., L. F. KATZ, AND M. S. KEARNEY (2006): “The Polarization of the U.S. Labor
Market,” American Economic Review, 96, 189–194.

——— (2008): “Trends in US wage inequality: Revising the revisionists.” The Review of economics
and statistics, 90, 300–323.

AUTOR, D. H., F. LEVY, AND R. J. MURNANE (2003): “The Skill Content of Recent Technological
Change: An Empirical Exploration,” The Quarterly Journal of Economics, 118, 1279–1333.

AUTOR, D. H., A. MANNING, AND C. L. SMITH (2016): “The Contribution of the Minimum Wage
to US Wage Inequality over Three Decades: A Reassessment,” American Economic Journal: Applied
Economics, 8, 58–99.

AZAR, J., E. HUET-VAUGHN, I. MARINESCU, B. TASKA, AND T. VON WACHTER (2019): “Mini-
mum Wage Employment Effects and Labor Market Concentration,” Working Paper 26101, Na-
tional Bureau of Economic Research.

BAILEY, M. J., J. DINARDO, AND B. A. STUART (2020): “The Economic Impact of a High National
Minimum Wage: Evidence from the 1966 Fair Labor Standards Act,” Working Paper 26926, Na-
tional Bureau of Economic Research.

BONTEMPS, C., J.-M. ROBIN, AND G. J. VAN DEN BERG (2000): “Equilibrium Search with Contin-
uous Productivity Dispersion: Theory and Nonparametric Estimation,” International Economic
Review, 41, 305–358.

BOUND, J. AND A. B. KRUEGER (1991): “The Extent of Measurement Error in Longitudinal Earn-
ings Data: Do Two Wrongs Make a Right?” Journal of Labor Economics, 9, 1–24.

BROCHU, P., D. A. GREEN, T. LEMIEUX, AND J. TOWNSEND (2015): “The Minimum Wage,
Turnover, and the Shape of the Wage Distribution,” .

CARD, D. AND A. B. KRUEGER (1994): “Minimum Wages and Employment: A Case Study of the
Fast-Food Industry in New Jersey and Pennsylvania,” American Economic Review, 84, 772–93.

——— (1995): “Time-Series Minimum-Wage Studies: A Meta-analysis,” American Economic Review,
85, 238–43.

31



——— (2000): “Minimum Wages and Employment: A Case Study of the Fast-Food Industry in
New Jersey and Pennsylvania: Reply,” American Economic Review, 90, 1397–1420.

——— (2016): Myth and Measurement: The New Economics of the Minimum Wage Twentieth-
Anniversary Edition, Princeton University Press, 2 ed.

CENGIZ, D., A. DUBE, A. LINDNER, AND B. ZIPPERER (2019): “The Effect of Minimum Wages on
Low-Wage Jobs*,” The Quarterly Journal of Economics, 134, 1405–1454.

CHEN, Y. AND C. N. TEULINGS (2021): “Agglomeration, Sorting and the Return to Human Capi-
tal,” Working paper series, University of Cambridge.

DICKENS, R., S. MACHIN, AND A. MANNING (1998): “Estimating the effect of minimum wages
on employment from the distribution of wages: A critical view,” Labour Economics, 5, 109–134.

DICKENS, R. AND A. MANNING (2004): “Has the National Minimum Wage Reduced UK Wage
Inequality?” Journal of the Royal Statistical Society. Series A (Statistics in Society), 167, 613–626.

DICKENS, R., A. MANNING, AND T. BUTCHER (2012): “Minimum Wages and Wage Inequality:
Some Theory and an Application to the UK,” Working paper series, Department of Economics,
University of Sussex Business School.

DINARDO, J., N. M. FORTIN, AND T. LEMIEUX (1996): “Labor Market Institutions and the Distri-
bution of Wages, 1973-1992: A Semiparametric Approach,” Econometrica, 64, 1001–1044.

DOLADO, J., F. KRAMARZ, S. MACHIN, A. MANNING, D. MARGOLIS, C. TEULINGS, G. SAINT-
PAUL, AND M. KEEN (1996): “The Economic Impact of Minimum Wages in Europe,” Economic
Policy, 11, 319–372.

DUBE, A., T. W. LESTER, AND M. REICH (2010): “Minimum Wage Effects across State Borders:
Estimates using Contiguous Counties,” The Review of Economics and Statistics, 92, 945–964.

——— (2016): “Minimum Wage Shocks, Employment Flows, and Labor Market Frictions,” Journal
of Labor Economics, 34, 663–704.

ENGBOM, N. AND C. MOSER (2018): “Earnings Inequality and the Minimum Wage: Evidence from
Brazil,” Working paper series, CESifo.

FISHBACK, P. V. AND A. SELTZER (2020): “The Rise of American Minimum Wages, 1912-1968,”
Working Paper 26937, National Bureau of Economic Research.

FLINN, C. J. (2006): “Minimum Wage Effects on Labor Market Outcomes under Search, Matching,
and Endogenous Contact Rates,” Econometrica, 74, 1013–1062.

GABAIX, X. AND A. LANDIER (2008): “Why has CEO Pay Increased So Much?*,” The Quarterly
Journal of Economics, 123, 49–100.

GENNAIOLI, N., R. LA PORTA, F. LOPEZ-DE SILANES, AND A. SHLEIFER (2013): “Human Capital
and Regional Development,” The Quarterly Journal of Economics, 128, 105–164.

32



GOLDSMITH-PINKHAM, P., I. SORKIN, AND H. SWIFT (2020): “Bartik Instruments: What, When,
Why, and How,” American Economic Review, 110, 2586–2624.

GOOS, M., A. MANNING, AND A. SALOMONS (2010): “Explaining Job Polarization in Europe:
The Roles of Technology, Globalization and Institutions,” Cep discussion papers, Centre for Eco-
nomic Performance, LSE.

GOTTFRIES, A. AND C. N. TEULINGS (2021): “Returns to on-the-job search and the dispersion of
wages,” Working paper series, CEPR.

HAANWINCKEL, D. (2017): “Supply, Demand, Institutions, and Firms: A Theory of Labor Market
Sorting and the Wage Distribution,” Working paper series, CEPR.

HAANWINCKEL, D. AND R. R. SOARES (2021): “Workforce Composition, Productivity, and La-
bor Regulations in a Compensating Differentials Theory of Informality,” The Review of Economic
Studies, rdab017.

HAGEDORN, M., I. MANOVSKII, AND Y. WANG (2018): “Search Frictions and Wage Dispersion,”
Working paper series, University of Oslo.

JUHN, C., K. M. MURPHY, AND B. PIERCE (1993): “Wage Inequality and the Rise in Returns to
Skill,” Journal of Political Economy, 101, 410–442.

KATZ, L. F. AND K. M. MURPHY (1992): “Changes in Relative Wages, 1963-1987: Supply and
Demand Factors,” The Quarterly Journal of Economics, 107, 35–78.

LEE, D. S. (1999): “Wage Inequality in the United States during the 1980s: Rising Dispersion or
Falling Minimum Wage?” The Quarterly Journal of Economics, 114, 977–1023.

MACHIN, S. AND A. MANNING (1994): “The Effects of Minimum Wages on Wage Dispersion and
Employment: Evidence from the U.K. Wages Councils,” Industrial and Labor Relations Review, 47,
319–329.

MACHIN, S., A. MANNING, AND L. RAHMAN (2003): “Where the Minimum Wage Bites Hard:
Introduction of Minimum Wages to a Low Wage Sector,” Journal of the European Economic Associ-
ation, 1, 154–180.

MEYER, R. H. AND D. A. WISE (1983): “Discontinuous Distributions and Missing Persons: The
Minimum Wage and Unemployed Youth,” Econometrica, 51, pp. 1677–1698.

NEUMARK, D. AND L. F. M. CORELLA (2019): “Do Minimum Wages Reduce Employment in De-
veloping Countries? A Survey and Exploration of Conflicting Evidence,” NBER Working Papers
26462, National Bureau of Economic Research, Inc.

NEUMARK, D., J. I. SALAS, AND W. WASCHER (2014): “More on Recent Evidence on the Effects of
Minimum Wages in the United States,” IZA J Labor Policy, 3.

33



NEUMARK, D. AND P. SHIRLEY (2021): “Myth or Measurement: What Does the New Minimum
Wage Research Say about Minimum Wages and Job Loss in the United States?” Tech. rep., Na-
tional Bureau of Economic Research.

NEUMARK, D. AND W. WASCHER (2000): “Minimum Wages and Employment: A Case Study of
the Fast-Food Industry in New Jersey and Pennsylvania: Comment,” American Economic Review,
90, 1362–1396.

ROSEN, S. (1974): “Hedonic Prices and Implicit Markets: Product Differentiation in Pure Compe-
tition,” Journal of Political Economy, 82, 34–55.

RUGGLES, S., K. GENADEK, R. GOEKEN, J. GROVER, AND M. SOBEK (2017): “Integrated Public
Use Microdata Series: Version 7.0 [dataset],” Tech. rep., Minneapolis: University of Minnesota.

SATTINGER, M. (1975): “Comparative Advantage and the Distributions of Earnings and Abilities,”
Econometrica, 43, 455–68.

STEWART, M. B. (2012): “Quantile Estimates of Counterfactual Distribution Shifts and the Effect of
Minimum Wage Increases on the Wage Distribution,” Journal of the Royal Statistical Society: Series
A (Statistics in Society), 175, 263–287.

TEULINGS, C. N. (1995): “The Wage Distribution in a Model of the Assignment of Skills to Jobs,”
Journal of Political Economy, 103, 280–315.

——— (2000): “Aggregation Bias in Elasticities of Substitution and the Minimum Wage Paradox,”
International Economic Review, 41, 359–398.

——— (2003): “The Contribution of Minimum Wages to Increasing Wage Inequality,” The Economic
Journal, 113, 801–833.

——— (2005): “Comparative Advantage, Relative Wages, and the Accumulation of Human Capi-
tal,” Journal of Political Economy, 113, 425–461.

TEULINGS, C. N. AND T. VAN RENS (2008): “Education, Growth, and Income Inequality,” The
Review of Economics and Statistics, 90, 89–104.

34



Appendix

The effect of q on the employment f (g, q) for a fixed value of g satisfies

fq (g, q) =
d
[
gp [F (g, q) , q]−1

]
dq

= −gpp [F (g, q) , q]Fq (g, q) + gqp [F (g, q) , q]

gp [F (g, q) , q]2
(23)

= f (g, q)2 × {gpp [F (g, q) , q] gq [F (g, q) , q] f (g, q)− gqp [F (g, q) , q]} ,

where we use equation (19) in the second step. Differentiating the inverse of equation (19) with
respect to g, rearranging terms and substitution of equation (19) for gp (p, q) yields

gpp (p, g) = − fg [g (p, q) , q]

f [g (p, q) , q]3
∼= σg

Φ−1 (p)

φ [Φ−1 (p)]2
,

where we use the fact that g is distributed approximately normal in the final step.16 Substitution
of this relation and p = F (g, q) in equation (23) yields an expression for the relative change of the
density at quantile p

σg
fq [g (p, q) , q]

φ [Φ−1 (p)]
∼= σ−1

g

[
Φ−1 (p) gq (p, q)− φ

[
Φ−1 (p)

]
gqp (p, q)

]
. (24)

Using the assumption of approximate normality and limx→−∞
φ(x)
xΦ(x) = −1, equation (24) and (19)

imply

lim
p→0

{[
Φ−1 (p) gq (p, q)

]−1 fq [g (p, q) , q]

f [g (p, q) , q]

}
∼= σ−1

g lim
g→−∞

{
1−

φ
[
Φ−1 (p)

]
Φ−1 (p)

gqp (p, q)

gq (p, q)

}
= σ−1

g ,

lim
p→0

{[
Φ−1 (p) gq (p, q)

]−1 Fq [g (p, q) , q]

F [g (p, q) , q]

}
= lim

g→−∞

{
−
[
Φ−1 (p) pgp (p, q)

]−1
}

∼= σ−1
g lim

g→−∞

{
−
φ
[
Φ−1 (p)

]
Φ−1 (p) p

}
= σ−1

g .

The relative change of the distribution and the density converge to each other for p→ 0 (or equiv-
alently: g → −∞)

fq (g, q)

f (g, q)
∼=
Fq (g, q)

F (g, q)
∼=

g

σ2
g

gq [F (g, q) , q] .

We use the estimation results from table 4 and estimate the marginal effect of change of spike
on the density fq(g,q)

f(g,q) equation (24) and probability functions Fq(g,q)
F (g,q) :

Fq (g, q)

F (g, q)
= −

φ
[
Φ−1 (p)

]
σgp

gq (p, g)

16

fg [g (p, q) , q] ∼= −σ−2
g Φ−1 (p)φ

[
Φ−1 (p)

]
.
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Table A1: CBSA Observations Distribution Among States
CBSA State I State II State III State IV Pct SI Pct SII Pct SIII Pct SIV NAME
31100 CA 100.00% Los Angeles-Long Beach-Anaheim, CA
40140 CA 100.00% Riverside-San Bernardino-Ontario, CA
41740 CA 100.00% San Diego-Carlsbad, CA
41860 CA 100.00% San Francisco-Oakland-Hayward, CA
41940 CA 100.00% San Jose-Sunnyvale-Santa Clara, CA
19740 CO 100.00% Denver-Aurora-Lakewood, CO
47900 DC VA MD 45.91% 25.90% 28.19% Washington-Arlington-Alexandria, DC-VA-MD-WV
33100 FL 100.00% Miami-Fort Lauderdale-West Palm Beach, FL
45300 FL 100.00% Tampa-St. Petersburg-Clearwater, FL
12060 GA 100.00% Atlanta-Sandy Springs-Roswell, GA
16980 IL IN WI 98.23% 1.77% 0.00% Chicago-Naperville-Elgin, IL-IN-WI
26900 IN 100.00% Indianapolis-Carmel-Anderson, IN
35380 LA 100.00% New Orleans-Metairie, LA
14460 MA NH 86.75% 13.25% Boston-Cambridge-Newton, MA-NH
12580 MD 100.00% Baltimore-Columbia-Towson, MD
19820 MI 100.00% Detroit-Warren-Dearborn, MI
33460 MN WI 99.99% 0.01% Minneapolis-St. Paul-Bloomington, MN-WI
28140 MO KS 45.36% 54.64% Kansas City, MO-KS
41180 MO IL 80.98% 19.02% St. Louis, MO-IL
24660 NC 100.00% Greensboro-High Point, NC
15380 NY 100.00% Buffalo-Cheektowaga-Niagara Falls, NY
35620 NY NJ 69.24% 30.76% New York-Newark-Jersey City, NY-NJ
40380 NY 100.00% Rochester, NY
17140 OH KY 77.70% Cincinnati, OH-KY-IN
17460 OH 100.00% Cleveland-Elyria, OH
18140 OH 100.00% Columbus, OH
38900 OR WA 91.57% 8.43% Portland-Vancouver-Hillsboro, OR-WA
37980 PA NJ DE MD 62.06% 23.32% 14.62% 0.00% Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
38300 PA 100.00% Pittsburgh, PA
19100 TX 100.00% Dallas-Fort Worth-Arlington, TX
26420 TX 100.00% Houston-The Woodlands-Sugar Land, TX
47260 VA 100.00% Virginia Beach-Norfolk-Newport News, VA-NC
42660 WA 100.00% Seattle-Tacoma-Bellevue, WA
33340 WI 100.00% Milwaukee-Waukesha-West Allis, WI

Note: Information for 34 city areas: CBSA code in 2013, city belong to which state(s) and the percentage of sample observations in the CPS 1979-2015, name
of cities. Data sources: the Current Population Survey MORG and the US Census Bureau.
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Table A5: Individual Level Mincer Regression

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

Male 0.310 0.303 0.285 0.269 0.260
(179.08) (155.45) (129.15) (106.57) (92.36)

Male × Trend 0.00548 0.00499 0.00419 0.00354 0.00321
(131.11) (104.32) (75.88) (54.84) (43.75)

Single 0.0126 0.0121 0.00997 0.00863 0.00975
(9.11) (7.51) (5.31) (3.84) (3.82)

Single × Trend -0.00242 -0.00223 -0.00206 -0.00197 -0.00197
(-44.50) (-36.34) (-29.48) (-24.20) (-21.32)

Divorced 0.0257 0.0296 0.0267 0.0269 0.0268
(16.78) (16.36) (12.59) (10.61) (9.29)

Divorced × Trend -0.00164 -0.00175 -0.00164 -0.00162 -0.00160
(-25.43) (-24.00) (-19.67) (-16.86) (-14.67)

Male × Single -0.211 -0.216 -0.213 -0.207 -0.206
(-112.79) (-99.02) (-83.67) (-67.93) (-59.17)

Male × Single × Trend 0.00398 0.00399 0.00380 0.00353 0.00345
(54.11) (48.10) (39.97) (31.84) (27.43)

Male × Divorced -0.113 -0.117 -0.116 -0.115 -0.117
(-45.36) (-40.38) (-34.22) (-28.59) (-25.48)

Male × Divorced × Trend 0.00164 0.00182 0.00176 0.00173 0.00182
(15.94) (15.70) (13.41) (11.42) (10.61)

South 0.00609 0.00583 0.00716 0.00736 0.00714
(1.76) (1.67) (1.98) (2.01) (1.89)

Black -0.100 -0.104 -0.110 -0.117 -0.120
(-103.19) (-103.42) (-102.89) (-100.16) (-96.59)

Other Race -0.0764 -0.0790 -0.0820 -0.0815 -0.0826
(-73.75) (-73.54) (-71.08) (-64.42) (-60.07)

South × Black -0.0349 -0.0314 -0.0246 -0.0158 -0.00996
(-25.71) (-21.57) (-16.05) (-9.59) (-5.63)

South ×Others 0.00133 0.00405 0.00889 0.00739 0.0104
(0.58) (1.71) (3.60) (2.84) (3.70)

Edu = 0 -0.637 -0.637 -0.622 -0.602 -0.594
(-107.31) (-98.90) (-88.62) (-77.16) (-69.69)

Edu = 1 -0.532 -0.518 -0.500 -0.465 -0.423
(-36.52) (-27.67) (-22.09) (-15.16) (-12.28)

Edu = 2 -0.530 -0.531 -0.509 -0.467 -0.456

Continued on next page
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Table A5 – continued from previous page

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

(-72.20) (-60.87) (-50.08) (-35.15) (-30.42)
Edu = 3 -0.525 -0.523 -0.520 -0.513 -0.509

(-80.23) (-65.61) (-55.10) (-40.58) (-35.31)
Edu = 4 -0.453 -0.459 -0.449 -0.419 -0.429

(-68.01) (-55.38) (-45.67) (-32.23) (-29.15)
Edu = 5 -0.465 -0.468 -0.451 -0.449 -0.436

(-103.70) (-88.79) (-75.07) (-59.31) (-50.99)
Edu = 6 -0.427 -0.436 -0.437 -0.412 -0.418

(-118.86) (-101.40) (-87.31) (-62.13) (-55.21)
Edu = 7 -0.357 -0.371 -0.365 -0.362 -0.363

(-109.67) (-93.89) (-80.11) (-66.97) (-60.03)
Edu = 8 -0.262 -0.268 -0.278 -0.277 -0.282

(-119.28) (-98.37) (-84.43) (-67.22) (-60.17)
Edu = 9 -0.259 -0.270 -0.272 -0.270 -0.272

(-166.68) (-155.34) (-142.54) (-127.25) (-117.00)
Edu = 10 -0.194 -0.200 -0.204 -0.206 -0.208

(-167.84) (-155.40) (-143.73) (-131.43) (-121.51)
Edu = 11 -0.157 -0.163 -0.166 -0.171 -0.172

(-148.07) (-138.94) (-129.94) (-120.72) (-111.43)
Edu = 13 0.0574 0.0549 0.0508 0.0439 0.0423

(60.89) (52.55) (43.56) (33.33) (29.18)
Edu = 14 0.165 0.170 0.174 0.176 0.178

(187.37) (177.70) (166.44) (151.76) (139.95)
Edu = 15 0.209 0.217 0.223 0.224 0.226

(135.36) (126.84) (116.73) (104.21) (95.54)
Edu = 16 0.420 0.429 0.433 0.435 0.437

(369.70) (347.58) (324.91) (298.35) (275.43)
Edu = 17 0.399 0.409 0.421 0.425 0.432

(167.36) (148.71) (129.95) (107.31) (95.26)
Edu = 18 0.574 0.586 0.593 0.594 0.597

(330.35) (311.82) (291.81) (267.91) (247.55)
Year of Experience (Exp) 0.0248 0.0243 0.0220 0.0188 0.0181

(40.85) (36.61) (30.49) (23.61) (20.82)
Exp2/100 -0.0400 -0.0354 -0.0229 -0.00666 -0.00221

(-14.39) (-11.59) (-6.89) (-1.81) (-0.55)
Exp3/100000 0.235 0.174 0.00153 -0.216 -0.283

Continued on next page

38



Table A5 – continued from previous page

(1) (2) (3) (4) (5)
VARIABLES β w̃ w̃ w̃ w̃ w̃

Full Obs. excl. 10% excl. 20% excl. 30% excl. 40%

(6.44) (4.31) (0.03) (-4.43) (-5.31)
Exp × Edu 0.00165 0.00169 0.00181 0.00197 0.00200

(37.30) (35.07) (34.65) (34.30) (32.10)
Exp2/100 × Edu -0.00888 -0.00919 -0.00983 -0.0106 -0.0108

(-43.79) (-41.37) (-40.80) (-39.96) (-37.47)
Exp3/100000 × Edu 0.107 0.111 0.120 0.130 0.134

(39.56) (37.39) (37.22) (36.63) (34.48)
Male × Exp 0.00581 0.00568 0.00605 0.00657 0.00683

(22.72) (20.51) (20.26) (20.16) (19.27)
Exp2/100 ×Male 0.00459 0.00356 0.000249 -0.00338 -0.00564

(3.52) (2.51) (0.16) (-2.02) (-3.10)
Exp3/100000 ×Male -0.233 -0.216 -0.168 -0.119 -0.0838

(-12.13) (-10.31) (-7.41) (-4.81) (-3.11)

Observations 5,803,821 5,146,824 4,541,693 3,916,580 3,351,354
R-squared 0.584 0.547 0.515 0.489 0.474
R-MSE 0.449 0.453 0.456 0.458 0.460
Time x Region Dummy Y Y Y Y Y

t-statistics in parentheses

39



Table A2: Summary Statistics
Year s.d. gi mean qs(=) mean qs(<) #Region qs > 1.5% #≤FedMW
1979 0.346 0.045 0.060 79 80
1980 0.346 0.054 0.061 81 80
1981 0.345 0.050 0.066 81 80
1982 0.345 0.047 0.052 78 78
1983 0.344 0.048 0.045 79 80
1984 0.344 0.045 0.040 80 80
1985 0.345 0.038 0.035 76 79
1986 0.345 0.036 0.035 69 75
1987 0.347 0.032 0.032 69 74
1988 0.346 0.026 0.029 55 72
1989 0.359 0.018 0.025 41 56
1990 0.360 0.012 0.038 26 0
1991 0.360 0.006 0.024 7 63
1992 0.353 0.023 0.026 50 76
1993 0.354 0.020 0.024 50 75
1994 0.361 0.012 0.036 22 73
1995 0.366 0.011 0.030 18 72
1996 0.367 0.008 0.027 7 69
1997 0.368 0.008 0.033 10 70
1998 0.369 0.013 0.041 24 0
1999 0.371 0.011 0.034 19 0
2000 0.371 0.010 0.030 14 0
2001 0.370 0.007 0.030 10 0
2002 0.371 0.006 0.029 7 0
2003 0.372 0.007 0.026 7 0
2004 0.372 0.006 0.025 6 0
2005 0.371 0.007 0.025 9 0
2006 0.371 0.006 0.026 8 0
2007 0.371 0.008 0.032 12 0
2008 0.370 0.009 0.034 16 25
2009 0.368 0.011 0.038 19 34
2010 0.367 0.018 0.040 41 55
2011 0.370 0.016 0.039 38 51
2012 0.377 0.016 0.040 39 48
2013 0.368 0.015 0.038 33 46
2014 0.369 0.014 0.052 29 32
2015 0.369 0.014 0.043 28 32
2016 0.369 0.015 0.043 22 32
2017 0.368 0.013 0.040 21 32
2018 0.368 0.011 0.045 18 32
2019 0.368 0.010 0.055 16 32
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Table A3: Frequency table by year with the spike in the bottom 70%
Year Regions Year Regions Year Regions
1979 7 1993 54 2007 75
1980 1 1994 71 2008 72
1981 4 1995 75 2009 73
1982 8 1996 81 2010 62
1983 4 1997 77 2011 67
1984 7 1998 70 2012 69
1985 14 1999 73 2013 71
1986 17 2000 74 2014 73
1987 24 2001 77 2015 69
1988 42 2002 77 2016 68
1989 57 2003 77 2017 68
1990 72 2004 77 2018 70
1991 76 2005 77 2019 71
1992 45 2006 78 Total 2324

Table A4: Frequency table by region with the spike in the bottom 70%
Region ID Freq. Region ID Freq. Region ID Freq.
Atlanta, GA 35 St Louis, MO 31 Delaware 31
Baltimore, MD 33 San Diego, CA 18 Maryland 29
Boston, MA 35 San Francisco, CA 35 Virginia 31
Buffalo, NY 28 San Jose, CA 33 West Virginia 20
Chicago, IL 36 Seattle, WA 39 North Carolina 31
Cincinnati, OH 32 Tampa, FL 31 South Carolina 28
Cleveland, OH 31 Virginia Beach, VA 31 Georgia 24
Columbus, OH 33 Maine 30 Florida 31
Dallas, TX 37 New Hampshire 35 Kentucky 26
Denver, CO 35 Vermont 32 Tennessee 27
Detroit, MI 32 Massachusetts 29 Alabama 25
Greensboro, NC 33 Rhode Island 32 Mississippi 24
Houston, TX 33 Connecticut 34 Arkansas 24
Indianapolis, IN 32 New York 31 Louisiana 22
Kansas City, MO 33 Pennsylvania 30 Oklahoma 26
Los Angeles, CA 5 Ohio 26 Texas 21
Miami, FL 32 Indiana 30 Montana 28
Milwaukee, WI 33 Illinois 23 Idaho 28
Minneapolis, MN 39 Michigan 28 Wyoming 29
New Orleans, LA 30 Wisconsin 31 Colorado 29
New York, NY 36 Minnesota 28 New Mexico 21
New Jersey, NJ 33 Iowa 28 Arizona 28
Philadelphia, PA 34 Missouri 26 Utah 29
Pittsburgh, PA 29 North Dakota 29 Nevada 31
Portland, OR 28 South Dakota 28 Washington 18
Riverside, CA 10 Nebraska 30 Oregon 13
Rochester, NY 29 Kansas 27 California 9
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