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Abstract 
The COVID-19 pandemic has generated a worldwide health crisis that has forced most 
countries to take social distancing measures to try to slow down COVID-19 contagion. 
Those measures have included closing schools and non-essential businesses, 
restricting people’s mobility, and the imposition of mandatory stay-at-home orders. We 
study the impacts of the pandemic on traffic volume, traffic congestion and public 
transit use in several cities in Latin America and the Caribbean, and document sharp 
decreases in mobility, even prior to official social distancing measures were taken. We 
show that the reductions in mobility are heterogeneous by time of day, type of fare (for 
public transit), and by proxies for socio-economic status of the drivers and public transit 
users, as well as by a city’s economic structure (as measured by firm size and sector). 
As cities are slowly re-opening and allowing more activities, those heterogeneous 
patterns are exacerbated, with clear evidence that more disadvantaged individuals are 
increasing their mobility at a faster rate. 
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1. Introduction 
The COVID-19 pandemic has generated a worldwide health crisis that has forced most countries 
to take measures to slow down COVID-19 contagion. Those measures have included closing 
schools and non-essential businesses, restricting people’s mobility, and the imposition of 
mandatory stay-at-home orders (Hale et al., 2020, present detailed country-specific data). The 
Inter-American Development Bank (IDB) and IDB Invest created the online IDB and IDB Invest 
Coronavirus Impact Dashboard, to track in real time the impacts of the pandemic, including 
measures of traffic volume, traffic congestion, public transit use, people mobility, air quality and 
COVID-19 cases. The data show a clear pattern of immediate reduced mobility as measured by 
traffic congestion, public transit use, and human mobility (Coronavirus Impact Dashboard Team, 
2020a; Aromi, Cristiá and Izquierdo, 2020), and an improvement in air quality for cities with more 
stringent social distancing measures (Coronavirus Impact Dashboard, 2020b), but also suggest 
that mobility is increasing again1, as well as that air quality gains may have been transitory.  
 
In this paper we study the impacts of the pandemic on different mobility measures (traffic volume, 
traffic congestion, and public transit use) in several cities in Latin America and the Caribbean 
(LAC). We document sharp decreases in mobility, even prior to official social distancing measures 
were taken, and show that the reductions in mobility, regardless of the measure, are 
heterogeneous by city, day of the week and time of the day. We also find unequal impacts when 
using different proxies for socio-economic status. To conduct the analysis we exploit: (i) traffic 
volume data from the Buenos Aires metropolitan area relying on highway tolls high-frequency 
data and show that there is heterogeneity associated to the socio-economic status of the drivers 
(as proxied by the socioeconomic characteristics of areas surrounding corridors within the 
metropolitan area); (ii) a  measure of traffic congestion using data from the community-driven 
navigation app Waze and find heterogeneity in traffic congestion impacts by the socio-economic 
status of different areas/cells of the metropolitan areas; and (iii) a measure of public transit use 
based on official trips data and find heterogeneity of impacts by type of fare, and other proxies for 
socio-economic status of the public transit users and public transit stations. In addition we conduct 
an analysis in Mexico City showing that impacts are differential by economic structure, as 
measured by firm size and sector. 
 
As cities are slowly re-opening and allowing more activities, heterogeneous patterns are 
exacerbated, with clear evidence of more disadvantaged individuals increasing mobility at a faster 
rate. Our results are consistent with evidence on the type of jobs that are plausible to be continued 
through telework under stay-at-home orders (Yasunov, 2020), which indicates that in the U.S. 
lower-wage workers are up to three times less likely to be able to work from home than higher-
wage workers. They are also consistent with findings on the heterogeneous impacts of the 
COVID-19 crisis for the U.S., based on data on mobility reductions by location-based measures 
of income distribution (Valentino-DeVries, Lu, and Dance, 2020). 
 
This paper adds to a growing literature studying the impacts of the COVID-19 pandemic on 
consumption spending patterns (Baker et al., 2020), economic activity (Sampi Bravo and Jooste, 

 
1 These mobility patterns are consistent with those from other sources of mobility data, like Google’s COVID-19 
Community Mobility Reports, and Apple’s COVID-19 Mobility Trends Report. 
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2020), heterogeneity of job losses (Cho and Winters, 20202), pollution (Breathe Londong, 2020; 
Brodeur, Cook and Wright, 2020; Coronavirus Dashboard Team, 2020b; Persico and Johnson, 
2020;), traffic accidents (Brodeur et al., 2020; Oguzoglu, 2020), among other dimensions. 
 
 
2. Data2  
We rely on different sources of data for traffic volume, traffic congestion, and public transit. 
 
2.1. Traffic volume data 
We measure traffic volume for the access highways to the City of Buenos Aires (Argentina), using 
high-frequency toll-based data. We obtain measures of traffic volume at the hourly level, and at 
the toll-station level from AUSA, the toll operator in Buenos Aires. The data is available on the 
City of Buenos Aires’ open data website, and is updated monthly. Traffic volume used in the 
analysis is computed from the three main tolls of the Buenos Aires highway network, Illia, 
Avellaneda and Dellepiane, which accounted jointly for 86% of all AUSA tolls in 2019.3 
 
2.2. Traffic congestion data 
The IDB Group has an agreement with Waze through the Waze for Cities Program. The 
agreement provides us with access to aggregate-level information originating from a continuous 
feed every two minutes from the Waze app. This feed provides information on traffic jams and 
user alerts. The data on traffic jams are passively generated while the Waze app is running on a 
user’s device (i.e., even if the user is not actively using it). Combining that information for all Waze 
users (“Wazers”) in the area, Waze identifies whether at any given geographic point traffic is 
slowing down (with respect to the expected speed under no-jam conditions, or “free-flow").4 The 
jam data is composed of jam lines (which can change over time) measured at different time 
intervals. Given the crowd-sourced nature of the data, it cannot be determined if fluctuations in 
jam line activity are due to actual changes in traffic conditions or due to fluctuations in the number 
of active Wazers. As we show in Appendix Figure A1, evidence from Buenos Aires supports the 
notion that changes in jam activity are generally due to actual changes in traffic volume. 
 
Using the Waze data, we can calculate a measure we call Traffic Congestion Intensity (TCI) for 
any given area (polygon or cell) for any time period. At every time interval i at which the data is 

 
2 This section relies heavily on Inter-American Development Bank and IDB Invest (2020), which details the data and 
methodology used in the IDB and IDB Invest Coronavirus Impact Dashboard (https://www.iadb.org/en/topics-
effectiveness-improving-lives/coronavirus-impact-dashboard). 
3 The Illia toll is located on the north highway axis (Illia Highway). This axis extends to the Buenos Aires Metropolitan 
Area through the Acceso Norte Highway. In 2019, it represented 26% of all AUSA tolls. The Avellaneda toll is located 
on the west highway axis (Perito Moreno Highway). This axis extends to the Buenos Aires Metropolitan Area through 
the Acceso Oeste Highway. In 2019, it represented 37% of all AUSA tolls. The Dellepiane toll is located on the 
southwest highway axis (Dellepiane Highway). This axis extends to the Buenos Aires Metropolitan Area through the 
Ricchieri Highway. In 2019, it accounted for 23% of all AUSA tolls. 
4 A “no congestion scenario” does not necessarily imply that there is no traffic on a specific road. This is because while 
congestion is obviously correlated with the volume of vehicles, the relationship between speed and volume is not linear. 
Even when congestion is reduced to zero there may still be vehicles driving on the road. 
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analyzed (in this case, every 5 minutes) and for every polygon, p, we calculate a measure of total 
jam length, L!", by adding the lengths of all jam lines5 j in the polygon in that time interval: 

JAM!" =)L#!". (1)	

The TCI measure for a period t (hour, day, etc.) adds up all the total jam lengths across all intervals 
in the period t:  

TCI"$ =)JAM!" . (2)	

The TCI summarizes both the extent of jams in the street network of a polygon (e.g., a 
metropolitan area) and their duration, because jam lengths are counted at each time interval i. 
For example, if in metropolitan area A and metropolitan area B the same 10 jam lines are formed 
in a day, each 150 meters long, we would have a measure of 1,500 meters jammed in both A and 
B during the day. However, if jams in A have a duration that is double the duration in B, the TCI 
for A would be double the TCI for B. The TCI is not particularly useful as a point-in-time measure, 
but it is useful to capture changes in jam intensity over time for a fixed-size polygon.  
 
For the IDB and IDB Invest Coronavirus Impact Dashboard, we calculate TCI changes for over 
60 metropolitan areas in LAC, adapting the OECD-EC methodology to identify metropolitan areas 
(Dijkstra and Poelman, 2012). For details see Inter-American Development Bank and IDB Invest 
(2020). In this paper we concentrate the analysis on the TCI for four metropolitan areas: Bogotá 
(Colombia), Buenos Aires (Argentina), Lima (Peru) and São Paulo (Brazil).  
 
2.3. Public transit use data 
We rely on four different data sources to measure public transit in the cities of Bogotá, Lima, and 
São Paulo (Brazil), plus an index of public transit use for 17 cities in Argentina, Brazil, Chile, 
Colombia, Mexico, Peru, and Uruguay generated by Moovit. Below we provide a more detailed 
description of each data source.  
 
1. Bogotá BRT and bus system: We use data on individual validations (i.e., each ticket card 

swipe) at stations for the BRT Transmilenio and for the SITP buses (when boarding the bus). 
We obtain the data from Transmilenio’s open data website. We can identify each individual 
bus ride during the day and when a full, subsidized or over-62 years old fare is used. 
 

2. Lima BRT: We use data on daily validations (i.e., ticket card swipes at stations) for the BRT 
Metropolitano. We obtain the data from the Instituto Metropolitano PROTRANSPORTE de 
Lima of the Municipality of Lima. Validations are registered at the point of entry into the 
system. We collect daily data by hour and stop. 

 
3. São Paulo Bus System: We use data on daily validations (i.e., ticket card swipes and single 

cash paid tickets in the buses) for the São Paulo Bus System. We obtain the data from the 
Secretaria Municipal de Mobilidade e Transportes of the Municipality of São Paulo. The data 

 
5 We exclude from the analysis jam lines with a value of traffic congestion level in the Waze data equal to 5 (blocked) 
which refers to streets that are closed to traffic. 
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is at the bus line level, and it is reported daily. We can identify when a full, free (no students) 
and student (free and paid) fare is used. 

 
4. Public Transit Index (Moovit): The public transit app Moovit generates the Moovit Public 

Transit Index for almost 100 cities across the world, of which 17 cities are in LAC, in Argentina 
(Buenos Aires), Brazil (Belo Horizonte, Brasilia, Campinas, Curitiba, Fortaleza, Porto Alegre, 
Recife, Rio de Janeiro, Salvador, São Paulo), Chile (Santiago), Colombia (Bogotá), Mexico 
(Guadalajara, Mexico City), Peru (Lima) and Uruguay (Montevideo). The index captures the 
usage of the Moovit app to plan public transit trips. 

 
2.4. Population change data 
We rely on data provided by Facebook through their Movement Range Maps to study the 
movement of population post-coronavirus crisis in Mexico City, classifying units of measure (Bing 
tiles6) by the economic activity of the tile (either by looking at firm size or firm sector), based on 
up-to-date economic activity data. Figure 1 presents the economic classification by Bing Tiles of 
Mexico City. In the left we show the classification by firm size, while in the right we show the 
classification by economic sector. Mixed indicates that there is no dominant category, and 
residential areas are also indicated. 
 
Figure 1. Economic classification of Bing tiles in Mexico City 

  
 
Note: Authors’ elaboration based on Mexico’s National Statistical Directory of Economic Units 
(Directorio Estadístico Nacional de Unidades Económicas, DENUE), 
https://www.inegi.org.mx/temas/directorio/. 
 

 
6 Bing tiles are determined by the Bing Maps Tile System, which render maps in tiles of 256 x 256 pixes. For more 
details see: https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system. 
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3. Methodology 
Our analysis relies on studying the changes in different mobility measures, as explained below. 
We analyze those changes by city (and areas within a city), hour of the day, day of the week, type 
of fare (for public transit), and by different proxies for socio-economic status (SES). The next sub-
section explains succinctly the different ways in which we proxy for SES for each type of data and 
city, while the following sub-section specifies our empirical model. 
 
3.1. Definition of socio-economic status 
To quantify the heterogeneous impacts of COVID-19 by SES we generate proxy measures for 
SES within different part of the cities. Our hypothesis is that impacts on mobility in areas of 
relatively lower SES will be less pronounced (and the return to normalcy faster) due to the nature 
of the jobs associated to a lower SES, which are probably less susceptible of being conducted at 
home or teleworking. 
 
We use highly disaggregated data from population censuses across countries and other data 
sources on income (mostly from household surveys) to classify the relevant unit of observation 
(details for each case below) in three socioeconomic status: Low, Middle, and Hight income, or 
Mixed when there is no dominant socioeconomic status. We also classify areas as non-residential 
when appropriate. 
 
For public transportation, the relevant unit of observation is the one related to the validations level 
of aggregation. When we have validations by stations, the station is the relevant unit and is 
classified according to the socioeconomic status of its surrounding area. In the cases where we 
have data at the bus line level, the whole line is classified. For that, we use the whole line 
surroundings, attributing the major socioeconomic status of this area to the bus line. 
  
For the traffic congestion intensity analysis, we divide the cities into H3 cells8, the relevant unit of 
analysis in this case. We then classify each cell in terms of socioeconomic status based on census 
or other available information and calculate the TCI within each cell. Figure 2 presents the SES 
classification of the three cities of interest, Bogotá, Lima and São Paulo by SES, using H3 cells.  
 
For traffic volume in Buenos Aires the units of analysis are the tolls across certain highways. For 
them, we characterize the socioeconomic level of the people who are expected to use the tolls 
and therefore the different highways that go into the City of Buenos Aires. In particular we use 
census data on the population that lives between 5 km and 30 km along the highways. This helps 
us determine the population areas that are expected to be most influenced by and that are closer 
to the different highways (see Appendix Figure A2). Since the national census does not directly 
measure income, we use the CAPECO area index as a proxy. This index is constructed using the 
relationship between the years of formal education of all income earners in the household and 
the total number of household members (see Appendix Figure A3). As a result, we obtain a 
continuous numerical indicator that varies between zero (when there is no earner of income in 

 
8 H3 cells are a hexagonal hierarchical geospatial grid system developed by Uber, to analyze sub-areas of the world. 
This grid system has the advantage of quickly splitting areas in grids, and allowing to efficiently assign points to those 
grids, worldwide, at different grid sizes (“resolutions”). For more details see https://eng.uber.com/h3/.  
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the household or the earners do not have formal education) and a maximum value that depends 
on the extension of the current formal education system and the number of adults in a household 
that have an income.  
 
Figure 2. SES classification of H3 cells in Bogotá, Lima and São Paulo 

  

 

 

 
Note: Authors’ elaboration based on SISBEN classification (Bogotá), 2017 population census data 
(Lima) and 2010 population census (São Paulo). 
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3.2. Empirical model 
Our approach estimates a flexible fit that includes a series of weekly dummies that capture the 
adjustment phase following the pandemic announcement made by the WHO10.  Although WHO’s 
announcement of pandemic was somehow expected at some point in March, we rely on the 
sudden nature of the virus spread itself as the source of external variation used to estimate the 
causal effect of COVID-19. Unlike the evaluation of a policy, we expect that the pandemic 
declaration to be unrelated to any previous trends in mobility. WHO declared pandemic on March 
11, 2020, well before most Latin American countries introduced severe mobility restrictions. In our 
specification, we consider the week from March 9 to 15, 2020, as week 0 when the effects of 
COVID-19 on mobility became apparent.  
  

𝑦%$ = 𝜆% + 𝛾& + 𝛾' + 𝛼𝑡 + 𝛽(𝑀( + 𝜀%) . (3)                                            

We estimate this equation for each city using daily data, where 𝑦%$ is the mobility outcome of 
interest (e.g. number of public transit validations or TCI) for the unit of analysis 𝑖 in day t; 𝜆% is a 
fixed effect for the unit of analysis i (e.g. bus stop or bus line for validations, and H3 cell for TCI 
or highway for traffic volume); 𝛾* are dummies for each day of the week; 𝛾' are month dummies; 
𝑡 is a linear time trend, and 𝛼 its associated coefficient; ; 𝑇) is a dummy variable that takes the 
value of 1 after a given breakpoint in the series, which could be date when the World Health 
Organization (WHO) declared COVID-19 a pandemic or else idiosyncratic dates by city based on 
their government-mandated social-distancing measures and the dates when they were taken; and 
𝜀%) is the error term. The impact of COVID-19 on mobility is captured by the coefficient 𝛽 resulting 
from the interaction of the time trend and 𝑇). The interpretation of 𝛽 would be the average 
percentage change in the mobility measure in the city as consequence of the irruption of the 
COVID-19 pandemic. We also estimate a flexible specification of (3) in which we allow 𝛽 to vary 
over time. 
 
To explore the heterogenous impacts of COVID-19 on mobility we re-express equation (3) as: 

𝑦%$ = 𝜆% + 𝛾& + 𝛾' + 𝛼𝑡 + 𝜃+( ∑ B𝑍+𝑀(D# + 𝜀%) , (4)                          

where 𝜋+% is a vector of j socioeconomic status and 𝜃+ captures impact of COVID-19 in the mobility 
measure of group j. As before, this model can be more flexible, allowing the 𝜃+ coefficients to vary 
over time. In further heterogeneity analysis we explore differential impacts by time-of-day, day- 
of- the-week, proximity to the date of WHO pandemic proclamation, and by proximity to different 
social distancing measures taken by the city and/or country.  
 
 
 
 
 
 
4. Preliminary results  

 
10 Similar approaches have been used to study the effect of driving restrictions. See Gallego, Montero, and Salas 
(2013). 
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In this version of the paper we include only descriptive statistics under the stylized facts sub-
section, and initial results for TCI regressions from estimating equations (3) and (4)  for Bogotá 
and Lima. In a subsequent version of the paper we will include the results for additional cities, 
mobility measures, and heterogeneity analyses. 
 
4.1. Stylized facts 
We present stylized facts on the impacts of COVID-19 for three measures of mobility we consider: 
traffic volume, traffic congestion intensity (TCI) and public transit use. In all cases the baseline 
period to calculate the percentage changes in the mobility measure is the week of March 2 to 8, 
2020, when there were very few declared cases of COVID-19 in the region. When presenting 
daily percentage changes, those are calculated comparing same days of the week (i.e., 
comparing Mondays against Monday March 2, Tuesdays against Tuesday March 3, etc.). For 
details see Inter-American Development Bank and IDB Invest (2020). 
 
• Traffic volume 
Figure 3 shows the daily percentage change in traffic volume in the three major highways that 
lead to the City of Buenos Aires. Each of them ends in a toll station where traffic volume is 
measured. Considering the classification by SES conducted, Illia in the north represents incoming 
inflow of vehicles from mostly well-off areas, Avellaneda from the East, represents vehicle inflow 
from middle income areas, and Dellepiane from the south, represents incoming inflow from low-
income areas. Figure 3 suggests that the initial drop in traffic volume was somewhat larger for 
well-off areas, but the recovery starting in May has been slower in those areas. The difference 
between well-off areas and low-income areas is on weekdays over 20 pp. 
 
Figure 3. Traffic volume percentage change in three major highways in Buenos Aires  

 
Note: Authors’ elaboration based on data from AUSA. Percentage change against the week of 
March 2-8. 
 
 
• Traffic congestion intensity 
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Figure 4 reports the weekly percentage changes in TCI based on Waze data when compared to 
the week of March 2 to 8. It also shows the clear overall and sharp initial reduction in traffic 
congestion for multiple metropolitan areas in LAC and the increase in congestion starting in May, 
as social distancing measures have been slowly being lifted in many metropolitan areas. There 
is, however, a fair amount of heterogeneity across cities (within and across countries) both in 
terms of the initial decrease and in terms of the return of congestion. 
 
Figure 4. TCI weekly percentage change in selected LAC metropolitan areas 

  
Note: Based on Waze data. Percentage change against the week of March 2-8. For daily changes 
and for more cities see the IDB and IDB Invest Coronavirus Impact Dashboard. 
 
• Public transit use 
Similar as with traffic volume in Buenos Aires, and traffic congestion for many LAC metropolitan 
areas, the evidence shows a large reduction in public transit use for many cities in LAC (as 
measured by planned trips in the Moovit app) and by actual trips in the four cities of interest, since 
the start of the COVID-19 pandemic. Figure 5 shows for 17 LAC cities the percentage change in 
Moovit’s public transit index. The patterns are quite similar to those captured by the TCI measure, 
with across city heterogeneity in an initial sharp drop, and a slow increase over time, in particular 
starting in May, for some cities. Overall the index seems to stay flatter over time, compared to the 
TCI measure. 
 
The data on actual validations (trips) for Bogotá, Lima and São Paulo suggest a similar story, as 
shown in Figure 6. We can see Bogotá’s bus and BRT systems separately as well as Lima’s BRT 
and Sao Paulo’s bus system. It is quite remarkable that the data from an app capturing the intent 
to use public transit (planned trips) matches so well the overall trends of actual public transit use 
in the cities. Ridership decreased dramatically either following stay-at-home orders or being 
cautious. São Paulo had a smaller but still impressive decrease of 70% in late March compared 
to the week before the pandemic, even though the city did not impose as restrictive stay-at-home 
orders as Lima and Bogotá did. In cities with strict stay at home orders the ridership fell between 
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80% and 90% in late March. Two months after the pandemic declaration by WHO we can see 
small rises in ridership, but still far from the levels prior to the crisis. 
 
Figure 5. Public transit index percentage change in selected LAC cities 

   
Note: Public transit index elaborated by Moovit, measuring use of the app for planning public 
transit trips. Percentage changes measured against the week of March 2-8. 
 
Figure 6. Public transit use percentage change in Bogotá, Lima and São Paulo 

  
Note: Public transit use based on validation (trips) data from each system. Percentage changes 
measured against the week of March 2-8.  
 
The validation data (when available) allows us to also analyze transit use changes by time of the 
day, fare type, and socio-economic status. Figure 7 presents the time of the day analysis for 
Bogotá and Lima (there is no time-of-day data for São Paulo).  In both cities public transit use 
decrease is smaller in the morning and mid-day, with a larger decrease in the afternoon/evening. 
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This suggests that there may be a change in behavior where people avoid using public transit 
during the afternoon and evening. In the case of Lima, we could explain this due to the mandatory 
curfew imposed at night but in Bogotá there was no such curfew in place. 
 
Figure 7. Public transit use change by time-of-day in Bogotá and Lima 

  
 

 

 

Note: Public transit use based on validation (trips) data from each system. Percentage changes 
measured against the week of March 2-8. There is no time-of-day information for the São Paulo 
bus system. 
 
Figure 8 presents transit use changes for the three cities with different splits of the data that serve 
as a first approximation to the SES heterogeneity analysis that will be conducted with cell-based 
data, using equation (4). The left and right top panels in the Figure show the changes in transit 
use in Bogotá, by fare type. It is clear that the decrease in transit use has been larger for 
individuals over 62 years old, consistent with the stricter social distancing measures for adults 
over 60 years old in the city. In the bottom we show splits for SES categories for Lima and São 
Paulo.  
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Figure 8. Public transit use change by fare type and SES in Bogotá, Lima and São Paulo 

  

  
Note: Public transit use based on validation (trips) data from each system. Percentage changes 
measured against the week of March 2-8. 
 
Figure 8 represents a first approximation to SES heterogeneity impacts. We can see that 
subsidized fares for Bogotá, low-income BRT stations in Lima15 and low SES bus lines in São 
Paulo16 have a smaller decrease in ridership after the start of the pandemic, and a faster increase 

 
15 Using data from the population census and ENAHO we estimate he average income within the census track based 
on its demographic composition. From ENAHO data for Metropolitan Lima for the period 2016-2018 we calculate 
monthly income cells by gender, industry (3 digit SIC code), occupation (3 digit SOC code), education (uneducated or 
primary, secondary, and tertiary), age categories (18-25, 26-30, 31-35, 36-40, 40-45, 46-50, 51-55, 56-60, and 61-60 
years of age). Using the same demographic variables available in the census data, we project income for everyone 
living in the census, and then aggregate at the census track level. Finally, using information from the 1,348 census 
tracks within the radius of all BRT stops we then aggregate monthly income at the stop level and classify them into 
three categories. 
16 For Sao Paulo public transport SES analysis, our primary source of information is the Brazilian Census Data from 
2010 (IBGE, 2010), where we have data at Census Tract (CT) level on the number of people over ten years old by 
income categories measured in minimum wages (m.w.). Based on this information, we classify each CT by SES. To 
harmonize the unit of observation among cities, we split the city area into H3 cells. Then, for Sao Paulo, we match the 
CT with the H3 cells, and, using the same majority rule used for the other analyses, we attribute an SES to each H3 
cell. Finally, to classify bus lines by SES,  we intersect each bus line itinerary with the H3 cells, identifying the cells the 
itinerary crosses and their neighbor cells, including all them in the set of H3 cells of the bus line. Having this set of H3 
cells, we define the bus line SES classification applying the same majority rule used before. 
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in ridership two months into the pandemic. This is consistent with the findings for traffic volume in 
Buenos Aires. Based on the nature of their jobs, those with a lower SES have a harder time 
following stay-at-home orders and rely on public transit to make it to their workplace. 
 
• Population changes 
We conduct an analysis of population changes at different times of the day (in 8-hour intervals) 
as provided by Facebook’s movement range maps. Using the classification presented in Figure 
1, we show in Figure 9 that there are unequal population movements compared to the pre-crisis 
period by firm size (top) and firm economic sector (bottom). 
 
Figure 9. Population changes by economic structure in Mexico City 

 

 
Note: Authors’ elaboration based on population changes in Facebook’s Movement Range Maps. 
 
 
4.2. Traffic congestion intensity regression analysis 
We estimate equations (3) and (4) for the TCI measure. The coefficients from these regressions 
are presented in Figure 10 for Bogotá (top) and Lima (bottom). The figure shows clearly that the 
low SES areas are those that have seen TCI trend toward the pre-crisis values, in particular for 
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Bogotá. This confirms the analysis in the prior section indicating that low SES individuals are less 
likely to be able to follow social distancing guidelines.  
 
Figure 10. Traffic congestion intensity estimated changes 

 

 
Note: The figures show the coefficients (expressed as percentage changes) from estimating 
equation (3) (for overall changes) and equation (4) (for changes by SES groups), using the Inverse 
Hyperbolic Sine (IHS) transformation of TCI as the dependent variable. The vertical lines show 
95% confidence intervals. 
 
 
 
5. Preliminary conclusion 
In this paper we study the impacts of theCOVID-19 pandemic on different mobility measures 
(traffic volume, traffic congestion, public transit use, and population changes) in several cities in 
Latin America and the Caribbean (LAC). We document sharp decreases in mobility, even prior to 
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official social distancing measures were put in place, and show that the reductions in mobility, 
regardless of the measure, are heterogeneous by city, day of the week and time of the day. We 
also find unequal impacts when using different proxies for socio-economic status. More 
disadvantaged populations not only reduced their mobility less than better off populations, but 
also returned to (possibly) work earlier. This could imply higher risks of COVID-19 contagion for 
the workers, and their families, and is consistent with evidence that COVID-19 deaths are higher 
for more disadvantaged groups (probably not only caused by differential mobility patterns, but 
also by worse living conditions, less susceptible of allowing social distancing). We also find 
differential impacts by firm size and economic sector. This is a preliminary version of the paper, 
which will be extended to more cities, and refined measures of economic activites. 
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Appendix 
 

Figure A1. Buenos Aires. Percentage change in TCI v. traffic volume 
 

 

 
Note: The figures shows the percentage change in TCI for the Buenos Aires metropolitan area and for the 
access highways to the City of Buenos Aires. It highlights how the traffic congestion intensity measure 
captures patterns that are very similar to those of observed traffic volume. 
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Figure A2. Buenos Aires. Highways areas of influence 

 
 
Figure A3. Buenos Aires. CAPECO Index by highways 
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